172 research outputs found
Femtosecond multichannel photodissociation dynamics of CH3I from the A band by velocity map imaging
4 pages, 3 figures, 1 table.The reaction times of several well-defined channels of the C–I bond rupture of methyl iodide from
the A band, which involves nonadiabatic dynamics yielding ground state I(2P3/2) and spin-orbit
excited I*(2P1/2) and ground and vibrationally excited CH3 fragments, have been measured by a
combination of a femtosecond laser pump-probe scheme and velocity map imaging techniques using
resonant detection of ground state CH3 fragments. The reaction times found for the different
channels studied are directly related with the nonadiabatic nature of this multidimensional
photodissociation reaction.Two of the authors (J. G. I. and J. D.) gratefully acknowledge financial support
from the FPI program and the CSIC-Unidades Asociadas
program, respectively, of the Spanish Ministry of
Education and Science (MEC). This work has been financed
by the Spanish MEC through Grant No. CTQ2005-08493-
C02-01.Peer reviewe
A femtosecond velocity map imaging study on B-band predissociation in CH 3I. II. the 2 0 1 and 3 0 1 vibronic levels
Femtosecond time-resolved velocity map imaging experiments are reported on several vibronic levels of the second absorption band (B-band) of CH 3I, including vibrational excitation in the 2 and 3 modes of the bound 3R 1(E) Rydberg state. Specific predissociation lifetimes have been determined for the 201 and 301 vibronic levels from measurements of time-resolved I*( 2P 12) and CH 3 fragment images, parent decay, and photoelectron images obtained through both resonant and non-resonant multiphoton ionization. The results are compared with our previously reported predissociation lifetime measurements for the band origin 000 [Gitzinger, J. Chem. Phys. 132, 234313 (2010)10.1063/1.3455207]. The result, previously reported in the literature, where vibrational excitation to the C-I stretching mode ( 3) of the CH 3I 3R 1(E) Rydberg state yields a predissociation lifetime about four times slower than that corresponding to the vibrationless state, whereas predissociation is twice faster if the vibrational excitation is to the umbrella mode ( 2), is confirmed in the present experiments. In addition to the specific vibrational state lifetimes, which were found to be 0.85 0.04 ps and 4.34 0.13 ps for the 201 and 301 vibronic levels, respectively, the time evolution of the fragment anisotropy and the vibrational activity of the CH 3 fragment are presented. Additional striking results found in the present work are the evidence of ground state I( 2P 32) fragment production when excitation is produced specifically to the 301 vibronic level, which is attributed to predissociation via the A-band 1Q 1 potential energy surface, and the indication of a fast adiabatic photodissociation process through the repulsive A-band 3A 1(4E) state, after direct absorption to this state, competing with absorption to the 301 vibronic level of the 3R 1(E) Rydberg state of the B-band.Peer Reviewe
Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma
Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear medium.Funding has been provided by Ministerio de Economía y Competitividad (MINECO) of Spain under Project CTQ2013-43086-P. I.L-Q., A.B-C. and M.O. thank respectively MINECO, for a FPI fellowship (BES-2011-044738), CSIC, for a JAE-TEC 2010 contract and CSIC for a contract. Fruitful discussions with Dr. Mikel Sanz and Prof. A. Gonzalez-Arroyo are acknowledged.Peer reviewe
Femtosecond pulsed laser deposition of nanostructured CdS films
In this work, we report an investigation of the properties of nanostructured deposits obtained from femtosecond pulsed laser deposition of CdS sintered targets. Specifically, we address the effects of laser irradiation wavelength, laser fluence, and substrate temperature (from 25 to 450 °C). The composition of the deposits was characterized using X-ray photoelectron spectroscopy (XPS), their crystallinity by X-ray diffraction (XRD), and the surface morphology was studied by environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM). It has been found that the smallest nanoparticles, with an average diameter of 25 nm and a narrow size distribution, together with particulates in the range of 80-120 nm, are obtained at the shortest laser wavelength of 266 nm on room-temperature substrates. Deposits do not contain microscopic droplets in any of the explored conditions. © 2010 American Chemical Society.Peer Reviewe
A detailed experimental and theoretical study of the femtosecond A -band photodissociation of C H3I
The real time photodissociation dynamics of C H3I from the A band has been studied experimentally and theoretically. Femtosecond pump-probe experiments in combination with velocity map imaging have been carried out to measure the reaction times (clocking) of the different (nonadiabatic) channels of this photodissociation reaction yielding ground and spin-orbit excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch and umbrella modes) C H3 fragments. The measured reaction times have been rationalized by means of a wave packet calculation on the available ab initio potential energy surfaces for the system using a reduced dimensionality model. A 40 fs delay time has been found experimentally between the channels yielding vibrationless CH3(ν=0) and I(2P3/2) and I*(2P1/2) that is well reproduced by the calculations. However, the observed reduction in delay time between the I and I* channels when the C H3 fragment appears with one or two quanta of vibrational excitation in the umbrella mode is not well accounted for by the theoretical model. © 2008 American Institute of Physics.This work has been financed by the Spanish MEC through Grant Nos. CTQ2005-08493-C02-01, FIS-2007- 62002, and Consolider program “Science and Applications of Ultrafast Ultraintense Lasers” No. CSD2007-00013.Peer Reviewe
Low-order harmonic generation in a ZnS laser ablation plasma
Low-order (3rd to 9th) harmonic generation of a near-infrared driving laser (1064 nm) is reported in a laser ablation plasma of ZnS. Temporal analysis shows two distinct components with respect to the ablation event. The late temporal component exhibits high conversion efficiency for the highest harmonic orders observed. This is attributed to a dramatic modification of the plasma medium with the driving laser.Peer Reviewe
Probing orbital structure of polyatomic molecules by high-order harmonic generation (vol 98, art no 203007, 2007)
Publisher’s Note: Probing Orbital Structure of Polyatomic Molecules by High-Order Harmonic Generation [Phys. Rev. Lett. 98, 203007 (2007)
Apotopes and the biliary specificity of primary biliary cirrhosis
Primary biliary cirrhosis (PBC) is characterized by antimitochondrial antibodies (AMAs), directed to the E2 component of the pyruvate dehydrogenase complex (PDC-E2). Notwithstanding the presence of mitochondria in virtually all nucleated cells, the destruction in PBC is limited to small intrahepatic bile ducts. The reasons for this tissue specificity remain unknown, although biliary epithelia cells (BECs) uniquely preserve the PDC-E2 epitope following apoptosis. Notably, PBC recurs in an allogeneic transplanted liver, suggesting generic rather than host PBC-specific susceptibility of BEC. We used cultured human intrahepatic BECs (HIBECs) and other well-characterized cell lines, including, HeLa, CaCo-2 cells, and nontransformed human keratinocytes and bronchial epithelial cells, to determine the integrity and specific localization of PDC-E2 during induced apoptosis. All cell lines, both before and after apoptosis, were tested with sera from patients with PBC (n = 30), other autoimmune liver and rheumatic diseases (n = 20), and healthy individuals (n = 20) as well as with a mouse monoclonal antibody against PDC-E2 and AMA with an immunoglobulin A isotype. PDC-E2 was found to localize unmodified within apoptotic blebs of HIBECs, but not within blebs of various other cell lineages studied. The fact that AMA-containing sera reacted with PDC-E2 on apoptotic BECs without a requirement for permeabilization suggests that the autoantigen is accessible to the immune system during apoptosis. Conclusion: Our data indicate that the tissue (cholangiocyte) specificity of the autoimmune injury in PBC is a consequence of the unique characteristics of HIBECs during apoptosis and can be explained by exposure to the immune system of intact immunoreactive PDC-E2 within apoptotic blebs
- …