25,427 research outputs found

    Self-Organized Routing For Wireless Micro-Sensor Networks

    No full text
    In this paper we develop an energy-aware self-organized routing algorithm for the networking of simple battery-powered wireless micro-sensors (as found, for example, in security or environmental monitoring applications). In these networks, the battery life of individual sensors is typically limited by the power required to transmit their data to a receiver or sink. Thus effective network routing algorithms allow us to reduce this power and extend both the lifetime and the coverage of the sensor network as a whole. However, implementing such routing algorithms with a centralized controller is undesirable due to the physical distribution of the sensors, their limited localization ability and the dynamic nature of such networks (given that sensors may fail, move or be added at any time and the communication links between sensors are subject to noise and interference). Against this background, we present a distributed mechanism that enables individual sensors to follow locally selfish strategies, which, in turn, result in the self-organization of a routing network with desirable global properties. We show that our mechanism performs close to the optimal solution (as computed by a centralized optimizer), it deals adaptively with changing sensor numbers and topology, and it extends the useful life of the network by a factor of three over the traditional approach

    Learn While You Earn: Two Approaches to Learning Auction Parameters in Take-it-or-leave-it Auctions

    No full text
    Much of the research in auction theory assumes that the auctioneer knows the distribution of participants ’ valuations with complete certainty. However, this is unrealistic. Thus, we analyse cases in which the auctioneer is uncertain about the valuation distributions; specifically, we consider a repeated auction setting in which the auctioneer can learn these distributions. Using take-it-or-leave-it auctions (Sandholm and Gilpin, 2006) as an exemplar auction format, we consider two auction design criteria. Firstly, an auctioneer could maximise expected revenue each time the auction is held. Secondly, an auctioneer could maximise the information gained in earlier auctions (as measured by the Kullback-Liebler divergence between its posterior and prior) to develop good estimates of the unknowns, which are later exploited to improve the revenue earned in the long-run. Simulation results comparing the two criteria indicate that setting offers to maximise revenue does not significantly detract from learning performance, but optimising offers for information gain substantially reduces expected revenue while not producing significantly better parameter estimates

    Trust-Based Fusion of Untrustworthy Information in Crowdsourcing Applications

    No full text
    In this paper, we address the problem of fusing untrustworthy reports provided from a crowd of observers, while simultaneously learning the trustworthiness of individuals. To achieve this, we construct a likelihood model of the userss trustworthiness by scaling the uncertainty of its multiple estimates with trustworthiness parameters. We incorporate our trust model into a fusion method that merges estimates based on the trust parameters and we provide an inference algorithm that jointly computes the fused output and the individual trustworthiness of the users based on the maximum likelihood framework. We apply our algorithm to cell tower localisation using real-world data from the OpenSignal project and we show that it outperforms the state-of-the-art methods in both accuracy, by up to 21%, and consistency, by up to 50% of its predictions. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved

    Phase Transitions and Symmetry Breaking in Genetic Algorithms with Crossover

    No full text
    In this paper, we consider the role of the crossover operator in genetic algorithms. Specifically, we study optimisation problems that exhibit many local optima and consider how crossover affects the rate at which the population breaks the symmetry of the problem. As an example of such a problem, we consider the subset sum problem. In so doing, we demonstrate a previously unobserved phenomenon, whereby the genetic algorithm with crossover exhibits a critical mutation rate, at which its performance sharply diverges from that of the genetic algorithm without crossover. At this critical mutation rate, the genetic algorithm with crossover exhibits a rapid increase in population diversity. We calculate the details of this phenomenon on a simple instance of the subset sum problem and show that it is a classic phase transition between ordered and disordered populations. Finally, we show that this critical mutation rate corresponds to the transition between the genetic algorithm accelerating or preventing symmetry breaking and that the critical mutation rate represents an optimum in terms of the balance of exploration and exploitation within the algorithm

    Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum Algorithm

    No full text
    This paper considers the problem of performing decentralised coordination of low-power embedded devices (as is required within many environmental sensing and surveillance applications). Specifically, we address the generic problem of maximising social welfare within a group of interacting agents. We propose a novel representation of the problem, as a cyclic bipartite factor graph, composed of variable and function nodes (representing the agents’ states and utilities respectively). We show that such representation allows us to use an extension of the max-sum algorithm to generate approximate solutions to this global optimisation problem through local decentralised message passing. We empirically evaluate this approach on a canonical coordination problem (graph colouring), and benchmark it against state of the art approximate and complete algorithms (DSA and DPOP). We show that our approach is robust to lossy communication, that it generates solutions closer to those of DPOP than DSA is able to, and that it does so with a communication cost (in terms of total messages size) that scales very well with the number of agents in the system (compared to the exponential increase of DPOP). Finally, we describe a hardware implementation of our algorithm operating on low-power Chipcon CC2431 System-on-Chip sensor nodes

    A Multi-Dimensional Trust Model for Heterogeneous Contract Observations

    No full text
    In this paper we develop a novel probabilistic model of computational trust that allows agents to exchange and combine reputation reports over heterogeneous, correlated multi-dimensional contracts. We consider the specific case of an agent attempting to procure a bundle of services that are subject to correlated quality of service failures (e.g. due to use of shared resources or infrastructure), and where the direct experience of other agents within the system consists of contracts over different combinations of these services. To this end, we present a formalism based on the Kalman filter that represents trust as a vector estimate of the probability that each service will be successfully delivered, and a covariance matrix that describes the uncertainty and correlations between these probabilities. We describe how the agents’ direct experiences of contract outcomes can be represented and combined within this formalism, and we empirically demonstrate that our formalism provides significantly better trustworthiness estimates than the alternative of using separate single-dimensional trust models for each separate service (where information regarding the correlations between each estimate is lost)

    Breaking the habit: measuring and predicting departures from routine in individual human mobility

    No full text
    Researchers studying daily life mobility patterns have recently shown that humans are typically highly predictable in their movements. However, no existing work has examined the boundaries of this predictability, where human behaviour transitions temporarily from routine patterns to highly unpredictable states. To address this shortcoming, we tackle two interrelated challenges. First, we develop a novel information-theoretic metric, called instantaneous entropy, to analyse an individual’s mobility patterns and identify temporary departures from routine. Second, to predict such departures in the future, we propose the first Bayesian framework that explicitly models breaks from routine, showing that it outperforms current state-of-the-art predictor

    Sellers Competing for Buyers in Online Markets

    Get PDF
    We consider competition between sellers offering similar items in concurrent online auctions, where each seller must set its individual auction parameters (such as the reserve price) in such a way as to attract buyers. We show that there exists a pure Nash equilibrium in the case of two sellers with asymmetric production costs. In addition, we show that, rather than setting a reserve price, a seller can further improve its utility by shill bidding (i.e., pretending to be a buyer in order to bid in its own auction). But, using an evolutionary simulation, we show that this shill bidding introduces inefficiencies within the market. However, we then go on to show that these inefficiencies can be reduced when the mediating auction institution uses appropriate auction fees that deter sellers from submitting shill bids

    A technique for correcting ERTS data for solar and atmospheric effects

    Get PDF
    The author has identified the following significant results. Based on processing ERTS CCTs and ground truth measurements collected on Michigan test site for January through June 1973 the following results are reported: (1) atmospheric transmittance varies from: 70 to 85% in band 4, 77 to 90% in band 5, 80 to 94% in band 6, and 84 to 97% in band 7 for one air mass; (2) a simple technique was established to determine atmospheric scattering seen by ERTS-1 from ground-based measurements of sky radiance. For March this scattering was found to be equivalent to that produced by a target having a reflectance of 11% in band 4, 5% in band 5, 3% in band 6, and 1% in band 7; (3) computer ability to classify targets under various atmospheric conditions was determined. Classification accuracy on some targets (i.e. bare soil, tended grass, etc.) hold up even under the most severe atmospheres encountered, while performance on other targets (trees, urban, rangeland, etc.) degrades rapidly when atmospheric conditions change by the smallest amount
    • 

    corecore