3,289 research outputs found

    Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies

    Full text link
    One of the striking features of particle production at high beam energies is the near equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In particular, we quantify explicitly the energy dependence of the approach to matter/antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter like antihypernuclei.Comment: 7 pages, 5 figure

    Quantifying the Energetics and Length Scales of Carbon Segregation to Fe Symmetric Tilt Grain Boundaries Using Atomistic Simulations

    Full text link
    Segregation of impurities to grain boundaries plays an important role in both the stability and macroscopic behavior of polycrystalline materials. The research objective in this work is to better characterize the energetics and length scales involved with the process of solute and impurity segregation to grain boundaries. Molecular dynamics simulations are used to calculate the segregation energies for carbon within multiple grain boundary sites over a database of 125 symmetric tilt grain boundaries in Fe. The simulation results show that the majority of atomic sites near the grain boundary have segregation energies lower than in the bulk. Moreover, depending on the boundary, the segregation energies approach the bulk value approximately 5-12 \AA\ away from the center of the grain boundary, providing an energetic length scale for carbon segregation. A subsequent data reduction and statistical representation of this dataset provides critical information such as about the mean segregation energy and the associated energy distributions for carbon atoms as a function of distance from the grain boundary, which quantitatively informs higher scale models with energetics and length scales necessary for capturing the segregation behavior of impurities in Fe. The significance of this research is the development of a methodology capable of ascertaining segregation energies over a wide range of grain boundary character (typical of that observed in polycrystalline materials), which herein has been applied to carbon segregation in a specific class of grain boundaries in iron

    Breaking quantum linearity: constraints from human perception and cosmological implications

    Full text link
    Resolving the tension between quantum superpositions and the uniqueness of the classical world is a major open problem. One possibility, which is extensively explored both theoretically and experimentally, is that quantum linearity breaks above a given scale. Theoretically, this possibility is predicted by collapse models. They provide quantitative information on where violations of the superposition principle become manifest. Here we show that the lower bound on the collapse parameter lambda, coming from the analysis of the human visual process, is ~ 7 +/- 2 orders of magnitude stronger than the original bound, in agreement with more recent analysis. This implies that the collapse becomes effective with systems containing ~ 10^4 - 10^5 nucleons, and thus falls within the range of testability with present-day technology. We also compare the spectrum of the collapsing field with those of known cosmological fields, showing that a typical cosmological random field can yield an efficient wave function collapse.Comment: 13 pages, LaTeX, 3 figure

    Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments

    Get PDF
    This is the author accepted manuscript. The final version is available from European Geosciences Union (EGU) via the DOI in this record.Land-use and land-cover change (LULCC) represents one of the key drivers of global environmental change. However, the processes and drivers of anthropogenic land-use activity are still overly simplistically implemented in terrestrial biosphere models (TBMs). The published results of these models are used in major assessments of processes and impacts of global environmental change, such as the reports of the Intergovernmental Panel on Climate Change (IPCC). Fully coupled models of climate, land use and biogeochemical cycles to explore land use-climate interactions across spatial scales are currently not available. Instead, information on land use is provided as exogenous data from the land-use change modules of integrated assessment models (IAMs) to TBMs. In this article, we discuss, based on literature review and illustrative analysis of empirical and modeled LULCC data, three major challenges of this current LULCC representation and their implications for land use-climate interaction studies: (I) provision of consistent, harmonized, land-use time series spanning from historical reconstructions to future projections while accounting for uncertainties associated with different land-use modeling approaches, (II) accounting for sub-grid processes and bidirectional changes (gross changes) across spatial scales, and (III) the allocation strategy of independent land-use data at the grid cell level in TBMs. We discuss the factors that hamper the development of improved land-use representation, which sufficiently accounts for uncertainties in the land-use modeling process. We propose that LULCC data-provider and user communities should engage in the joint development and evaluation of enhanced LULCC time series, which account for the diversity of LULCC modeling and increasingly include empirically based information about sub-grid processes and land-use transition trajectories, to improve the representation of land use in TBMs. Moreover, we suggest concentrating on the development of integrated modeling frameworks that may provide further understanding of possible land-climate-society feedbacks.The research in this paper has been supported by the European Research Council under the European Union’s Seventh Framework Programme project LUC4C (Grant No. 603542), ERC grant GLOLAND (No. 311819) and BiodivERsA project TALE (No. 832.14.006) funded by the Dutch National Science Foundation (NWO). This research contributes to the Global Land Project (www.globallandproject.org). This is paper number 26 of the Birmingham Institute of Forest Research

    Transnational social capital: the socio‐spatialities of civil society

    Get PDF
    Civil society remains a contested concept, but one that is widely embedded in global development processes. Transnationalism within civil society scholarship is often described dichotomously, either through hierarchical dependency relations or as a more amorphous networked global civil society. These two contrasting spatial imaginaries produce very particular ideas about how transnational relations contribute to civil society. Drawing on empirical material from research with civil society organizations in Barbados and Grenada, in this article I contend that civil society groups use forms of transnational social capital in their work. This does not, however, resonate with the horizontal relations associated with grassroots globalization or vertical chains of dependence. These social relations are imbued with power and agency and are entangled in situated historical, geographical and personal contexts. I conclude that the diverse transnational social relations that are part of civil society activity offer hope and possibilities for continued civil society action in these unexpected spatial arrangements

    Adaptive response and enlargement of dynamic range

    Full text link
    Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus, often supported by protein activity-dependent inactivation. Adaptive response is thought to be related to various cellular functions such as homeostasis and enlargement of dynamic range by background compensation. Here we study the quantitative relation between adaptive response and background compensation within a modeling framework. We show that any particular type of adaptive response is neither sufficient nor necessary for adaptive enlargement of dynamic range. In particular a precise adaptive response, where system activity is maintained at a constant level at steady state, does not ensure a large dynamic range neither in input signal nor in system output. A general mechanism for input dynamic range enlargement can come about from the activity-dependent modulation of protein responsiveness by multiple biochemical modification, regardless of the type of adaptive response it induces. Therefore hierarchical biochemical processes such as methylation and phosphorylation are natural candidates to induce this property in signaling systems.Comment: Corrected typos, minor text revision

    Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

    Full text link
    We consider two dimensional maps preserving a foliation which is uniformly contracting and a one dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for the Poincare maps of a large class of singular hyperbolic flows. From this we deduce logarithm laws for these flows.Comment: 39 pages; 03 figures; proof of Theorem 1 corrected; many typos corrected; improvements on the statements and comments suggested by a referee. Keywords: singular flows, singular-hyperbolic attractor, exponential decay of correlations, exact dimensionality, logarithm la
    corecore