40 research outputs found

    Effective and reliable operation of marine diesel by working process monitoring

    Get PDF
    The basic characteristics of diesel engine working process monitoring system are considered. The low speed main engine one cylinder diagnostics example of fuel equipment and gas distribution mechanism is resulted

    The In Vivo Role of the RP-Mdm2-p53 Pathway in Signaling Oncogenic Stress Induced by pRb Inactivation and Ras Overexpression

    Get PDF
    The Mdm2-p53 tumor suppression pathway plays a vital role in regulating cellular homeostasis by integrating a variety of stressors and eliciting effects on cell growth and proliferation. Recent studies have demonstrated an in vivo signaling pathway mediated by ribosomal protein (RP)-Mdm2 interaction that responds to ribosome biogenesis stress and evokes a protective p53 reaction. It has been shown that mice harboring a Cys-to-Phe mutation in the zinc finger of Mdm2 that specifically disrupts RP L11-Mdm2 binding are prone to accelerated lymphomagenesis in an oncogenic c-Myc driven mouse model of Burkitt's lymphoma. Because most oncogenes when upregulated simultaneously promote both cellular growth and proliferation, it therefore stands to reason that the RP-Mdm2-p53 pathway might also be essential in response to oncogenes other than c-Myc. Using genetically engineered mice, we now show that disruption of the RP-Mdm2-p53 pathway by an Mdm2C305F mutation does not accelerate prostatic tumorigenesis induced by inactivation of the pRb family proteins (pRb/p107/p130). In contrast, loss of p19Arf greatly accelerates the progression of prostate cancer induced by inhibition of pRb family proteins. Moreover, using ectopically expressed oncogenic H-Ras we demonstrate that p53 response remains intact in the Mdm2C305F mutant MEF cells. Thus, unlike the p19Arf-Mdm2-p53 pathway, which is considered a general oncogenic response pathway, the RP-Mdm2-p53 pathway appears to specifically suppress tumorigenesis induced by oncogenic c-Myc

    Autotrophic CO(2) Fixation by Chloroflexus aurantiacus: Study of Glyoxylate Formation and Assimilation via the 3-Hydroxypropionate Cycle

    No full text
    In the facultative autotrophic organism Chloroflexus aurantiacus, a phototrophic green nonsulfur bacterium, the Calvin cycle does not appear to be operative in autotrophic carbon assimilation. An alternative cyclic pathway, the 3-hydroxypropionate cycle, has been proposed. In this pathway, acetyl coenzyme A (acetyl-CoA) is assumed to be converted to malate, and two CO(2) molecules are thereby fixed. Malyl-CoA is supposed to be cleaved to acetyl-CoA, the starting molecule, and glyoxylate, the carbon fixation product. Malyl-CoA cleavage is shown here to be catalyzed by malyl-CoA lyase; this enzyme activity is induced severalfold in autotrophically grown cells. Malate is converted to malyl-CoA via an inducible CoA transferase with succinyl-CoA as a CoA donor. Some enzyme activities involved in the conversion of malonyl-CoA via 3-hydroxypropionate to propionyl-CoA are also induced under autotrophic growth conditions. So far, no clue as to the first step in glyoxylate assimilation has been obtained. One possibility for the assimilation of glyoxylate involves the conversion of glyoxylate to glycine and the subsequent assimilation of glycine. However, such a pathway does not occur, as shown by labeling of whole cells with [1,2-(13)C(2)]glycine. Glycine carbon was incorporated only into glycine, serine, and compounds that contained C(1) units derived therefrom and not into other cell compounds
    corecore