993 research outputs found

    Flight Energy Management Training: Promoting Safety and Efficiency

    Get PDF
    Poor aircraft energy management can lead to unsafe and inefficient operations. Despite their impact on safety and economy, energy management skills are not adequately taught or evaluated in civilian pilot training. This paper 1) addresses the need for better energy management training, 2) provides a conceptual and pedagogical framework for later curriculum development, and 3) suggests key attributes of an effective training program. To make the case, the study uses energy management to link safety and efficiency. It then synthesizes energy principles across disciplines and illustrates how such principles, once simplified, become powerful instructional tools. Finally, it suggests that an integrated, energy-centered, top-down training approach will lead to a better mental model of how the airplane works and, in doing so, to enhanced energy management and decision-making skills for safe and efficient operations

    "Metabolic switch" for desert survival.

    Full text link

    Designing Case Study Research for Pedagogical Application and Scholarly Outcomes

    Get PDF
    The purpose of this paper is to present the pedagogical/andragogical model of case study research in capstone courses in collegiate aviation programs. As higher education continues to advance in examining new or different ways to engage students, case study research in a capstone course affords seniors the opportunity to engage in learning how to plan, investigate, write a case study research report and present their findings on a topic of interest

    Collective shuttling of attracting particles in asymmetric narrow channels

    Get PDF
    The rectification of a single file of attracting particles subjected to a low frequency ac drive is proposed as a working mechanism for particle shuttling in an asymmetric narrow channel. Increasing the particle attraction results in the file condensing, as signalled by the dramatic enhancement of the net particle current. Magnitude and direction of the current become extremely sensitive to the actual size of the condensate, which can then be made to shuttle between two docking stations, transporting particles in one direction, with an efficiency much larger than conventional diffusive models predict

    Localization in non-chiral network models for two-dimensional disordered wave mechanical systems

    Full text link
    Scattering theoretical network models for general coherent wave mechanical systems with quenched disorder are investigated. We focus on universality classes for two dimensional systems with no preferred orientation: Systems of spinless waves undergoing scattering events with broken or unbroken time reversal symmetry and systems of spin 1/2 waves with time reversal symmetric scattering. The phase diagram in the parameter space of scattering strengths is determined. The model breaking time reversal symmetry contains the critical point of quantum Hall systems but, like the model with unbroken time reversal symmetry, only one attractive fixed point, namely that of strong localization. Multifractal exponents and quasi-one-dimensional localization lengths are calculated numerically and found to be related by conformal invariance. Furthermore, they agree quantitatively with theoretical predictions. For non-vanishing spin scattering strength the spin 1/2 systems show localization-delocalization transitions.Comment: 4 pages, REVTeX, 4 figures (postscript

    Observation of enhanced rate coefficients in the H2+_2^+ + H2_2 →\rightarrow H3+_3^+ + H reaction at low collision energies

    Full text link
    The energy dependence of the rate coefficient of the H2+ +H2→H3++H_2^+\ + {\rm H}_2 \rightarrow {\rm H}_3^+ + {\rm H} reaction has been measured in the range of collision energies between kB⋅10k_\mathrm{B}\cdot 10 K and kB⋅300k_\mathrm{B}\cdot 300 mK. A clear deviation of the rate coefficient from the value expected on the basis of the classical Langevin-capture behavior has been observed at collision energies below kB⋅1k_\mathrm{B}\cdot 1 K, which is attributed to the joint effects of the ion-quadrupole and Coriolis interactions in collisions involving ortho-H2_2 molecules in the j=1j = 1 rotational level, which make up 75% of the population of the neutral H2_2 molecules in the experiments. The experimental results are compared to very recent predictions by Dashevskaya, Litvin, Nikitin and Troe (J. Chem. Phys., in press), with which they are in agreement.Comment: 14 pages, 3 figure

    Field Theory of the Random Flux Model

    Full text link
    The long-range properties of the random flux model (lattice fermions hopping under the influence of maximally random link disorder) are shown to be described by a supersymmetric field theory of non-linear sigma model type, where the group GL(n|n) is the global invariant manifold. An extension to non-abelian generalizations of this model identifies connections to lattice QCD, Dirac fermions in a random gauge potential, and stochastic non-Hermitian operators.Comment: 4 pages, 1 eps figur

    Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator

    Full text link
    For two Coulombically interacting electrons in a quantum dot with harmonic confinement and a constant magnetic field, we show that time-dependent semiclassical calculations using the Herman-Kluk initial value representation of the propagator lead to eigenvalues of the same accuracy as WKB calculations with Langer correction. The latter are restricted to integrable systems, however, whereas the time-dependent initial value approach allows for applications to high-dimensional, possibly chaotic dynamics and is extendable to arbitrary shapes of the potential.Comment: 11 pages, 1 figur

    Persistent holes in a fluid

    Get PDF
    We observe stable holes in a vertically oscillated 0.5 cm deep aqueous suspension of cornstarch for accelerations a above 10g. Holes appear only if a finite perturbation is applied to the layer. Holes are circular and approximately 0.5 cm wide, and can persist for more than 10^5 cycles. Above a = 17g the rim of the hole becomes unstable producing finger-like protrusions or hole division. At higher acceleration, the hole delocalizes, growing to cover the entire surface with erratic undulations. We find similar behavior in an aqueous suspension of glass microspheres.Comment: 4 pages, 6 figure
    • …
    corecore