1,093 research outputs found

    Omnidirectional multiple impact landing system Patent

    Get PDF
    Payload soft landing system using stowable gas ba

    Validation of an Active Gear, Flexible Aircraft Take-off and Landing analysis (AGFATL)

    Get PDF
    The results of an analytical investigation using a computer program for active gear, flexible aircraft take off and landing analysis (AGFATL) are compared with experimental data from shaker tests, drop tests, and simulated landing tests to validate the AGFATL computer program. Comparison of experimental and analytical responses for both passive and active gears indicates good agreement for shaker tests and drop tests. For the simulated landing tests, the passive and active gears were influenced by large strut binding friction forces. The inclusion of these undefined forces in the analytical simulations was difficult, and consequently only fair to good agreement was obtained. An assessment of the results from the investigation indicates that the AGFATL computer program is a valid tool for the study and initial design of series hydraulic active control landing gear systems

    Absorption of fermionic dark matter by nuclear targets

    Get PDF
    Absorption of fermionic dark matter leads to a range of distinct and novel signatures at dark matter direct detection and neutrino experiments. We study the possible signals from fermionic absorption by nuclear targets, which we divide into two classes of four Fermi operators: neutral and charged current. In the neutral current signal, dark matter is absorbed by a target nucleus and a neutrino is emitted. This results in a characteristically different nuclear recoil energy spectrum from that of elastic scattering. The charged current channel leads to induced β decays in isotopes which are stable in vacuum as well as shifts of the kinematic endpoint of β spectra in unstable isotopes. To confirm the possibility of observing these signals in light of other constraints, we introduce UV completions of example higher dimensional operators that lead to fermionic absorption signals and study their phenomenology. Most prominently, dark matter which exhibits fermionic absorption signals is necessarily unstable leading to stringent bounds from indirect detection searches. Nevertheless, we find a large viable parameter space in which dark matter is sufficiently long lived and detectable in current and future experiments

    A mathematical model of an active control landing gear for load control during impact and roll-out

    Get PDF
    A mathematical model of an active control landing gear (ACOLAG) was developed and programmed for operation on a digital computer. The mathematical model includes theoretical subsonic aerodynamics; first-mode wing bending and torsional characteristics; oleo-pneumatic shock strut with fit and binding friction; closed-loop, series-hydraulic control; empirical tire force-deflection characteristics; antiskid braking; and sinusoidal or random runway roughness. The mathematical model was used to compute the loads and motions for a simulated vertical drop test and a simulated landing impact of a conventional (passive) main landing gear designed for a 2268-kg (5000-lbm) class airplane. Computations were also made for a simply modified version of the passive gear including a series-hydraulic active control system. Comparison of computed results for the passive gear with experimental data shows that the active control landing gear analysis is valid for predicting the loads and motions of an airplane during a symmetrical landing. Computed results for the series-hydraulic active control in conjunction with the simply modified passive gear show that 20- to 30-percent reductions in wing force, relative to those occurring with the modified passive gear, can be obtained during the impact phase of the landing. These reductions in wing force could result in substantial increases in fatigue life of the structure

    Final design and fabrication of an active control system for flutter suppression on a supercritical aeroelastic research wing

    Get PDF
    The final design and hardware fabrication was completed for an active control system capable of the required flutter suppression, compatible with and ready for installation in the NASA aeroelastic research wing number 1 (ARW-1) on Firebee II drone flight test vehicle. The flutter suppression system uses vertical acceleration at win buttock line 1.930 (76), with fuselage vertical and roll accelerations subtracted out, to drive wing outboard aileron control surfaces through appropriate symmetric and antisymmetric shaping filters. The goal of providing an increase of 20 percent above the unaugmented vehicle flutter velocity but below the maximum operating condition at Mach 0.98 is exceeded by the final flutter suppression system. Results indicate that the flutter suppression system mechanical and electronic components are ready for installation on the DAST ARW-1 wing and BQM-34E/F drone fuselage

    Improvements to the FATOLA computer program including nosewheel steering: Supplemental instruction manual

    Get PDF
    Modifications to a multidegree of freedom flexible aircraft take-off and landing analysis (FATOLA) computer program, which improved its simulation capabilities, are discussed, and supplemental instructions for use of the program are included. Sample analytical results which illustrate the capabilities of an added nosewheel steering option indicate consistent behavior of the airplane tracking, attitude, motions, and loads for the landing cases and steering situations which were investigated

    Analytical investigation of the landing dynamics of a large airplane with a load-control system in the main landing gear

    Get PDF
    The results of an evaluation of an active load-control landing gear computer program (ACOLAG) for predicting the landing dynamics of airplanes with passive and active main gears are presented. ACOLAG was used in an analytical investigation of the landing dynamics of a large airplane with both passive and active main gears. It was concluded that the program is valid for predicting the landing dynamics of airplanes with both passive and active main gears. It was shown that the active gear reduces airframe-gear forces and airplane motions following initial impact, and has the potential for significant reductions in structural fatigue damage relative to that which occurs with the passive gear

    Experimental validation of a landing-dynamics computer program for legged spacecraft landers

    Get PDF
    Validation of a landing-dynamics computer program has been accomplished by comparing analytical data with data from a limited experimental program. Agreement obtained established the subject landing-dynamics computer program as a reliable design tool for legged spacecraft landers

    Frangible tube energy dissipation Patent

    Get PDF
    Energy dissipating shock absorbing system for land payload recovery or vehicle brakin

    Studies of some unconventional systems for solving various landing problems

    Get PDF
    Solutions to various landing problems were obtained through unconventional systems. The first, of these is the air cushion landing system, where efforts were concentrated on development of adequate braking and steering systems and an improved understanding of scaling laws and behavior. The second was concentrated on use of a wire brush skid as a drag producing device, which was shown to have good friction coefficients and reasonable wear rates at ground bearing pressures up to 689 kPa and forward speeds up to 80 km/hr. The third showed great promise in an active control landing gear where significant load reductions were possible during landing impact and subsequent rollout
    corecore