643 research outputs found

    Direct fabrication through electron beam melting technology of custom cranial implants designed in a phantom based haptic

    Get PDF
    Repairing critical human skull injuries requires the production and use of customized cranial implants and involves the integration of computer aided design and manufacturing (CAD and CAM). The main causes for large cranial defects are trauma, cranial tumors, infected craniotomy bone flaps and external neurosurgical decompression. The success of reconstructive cranial surgery depends upon: the preoperative evaluation of the defect, the design and manufacturing of the implant, and the skill of the operating surgeon. Cranial implant design is usually carried out manually using CAD although this process is very time-consuming and the quality of the end product depends wholly upon the skill of the operator. This paper presents an alternative automated method for the design of custom-made cranial plates in a PHANToM \uae-based haptic environment, and their direct fabrication in biocompatible metal using electron beam melting (EBM) technology

    5d-5f Electric-multipole Transitions in Uranium Dioxide Probed by Non-resonant Inelastic X-ray Scattering

    Full text link
    Non-resonant inelastic x ray scattering (NIXS) experiments have been performed to probe the 5d-5f electronic transitions at the uranium O(4,5) absorption edges in uranium dioxide. For small values of the scattering vector q, the spectra are dominated by dipole-allowed transitions encapsulated within the giant resonance, whereas for higher values of q the multipolar transitions of rank 3 and 5 give rise to strong and well-defined multiplet structure in the pre-edge region. The origin of the observed non-dipole multiplet structures is explained on the basis of many-electron atomic spectral calculations. The results obtained demonstrate the high potential of NIXS as a bulk-sensitive technique for the characterization of the electronic properties of actinide materials.Comment: Submitted to Physical Review Letters on 31 December 200

    Cell-surface binding domains from Clostridium cellulovorans can be used for surface display of cellulosomal scaffoldins in Lactococcus lactis

    Get PDF
    Engineering microbial strains combining efficient lignocellulose metabolization and high-value chemical production is a cutting-edge strategy towards cost-sustainable 2nd generation biorefining. Here, protein components of the Clostridium cellulovorans cellulosome were introduced in Lactococcus lactis IL1403, one of the most efficient lactic acid producers but unable to directly ferment cellulose. Cellulosomes are protein complexes with high cellulose depolymerization activity whose synergistic action is supported by scaffolding protein(s) (i.e., scaffoldins). Scaffoldins are involved in bringing enzymes close to each other and often anchor the cellulosome to the cell surface. In this study, three synthetic scaffoldins were engineered by using domains derived from the main scaffoldin CbpA and the Endoglucanase E (EngE) of the C. cellulovorans cellulosome. Special focus was on CbpA X2 and EngE S-layer homology (SLH) domains possibly involved in cell-surface anchoring. The recombinant scaffoldins were successfully introduced in and secreted by L. lactis. Among them, only that carrying the three EngE SLH modules was able to bind to the L. lactis surface although these domains lack the conserved TRAE motif thought to mediate binding with secondary cell wall polysaccharides. The synthetic scaffoldins engineered in this study could serve for assembly of secreted or surface-displayed designer cellulosomes in L. lactis

    Evaluation of 3D Technologies In Dentistry

    Get PDF
    Quality of service, in terms of improvement in patient satisfaction, is an increasingly important objective in all medical fields, and is especially imperative in orthodontics due to the high numbers of patients treated. Information technology can provide a meaningful contribution to bettering treatment processes, and we maintain that systems such as CAD, CAM and CAE, although initially conceived for industrial purposes, should be evaluated, studied and customized with a view to use in medicine. The present study aims to evaluate Reverse Engineering (RE) and Rapid Prototyping (RP) in order to define an ideal chain of advanced technological solutions to support the critical processes of orthodontic activity

    Limitations posed by free DEMs in watershed studies: The case of river Tanaro in Italy

    Get PDF
    Topography is a critical element in the hydrological response of a drainage basin and its availability in the form of digital elevation models (DEMs) has advanced the modeling of hydrological and hydraulic processes. However, progress experienced in these fields may stall, as intrinsic characteristics of free DEMs may limit new findings, while at the same time new releases of free, high-accuracy, global digital terrain models are still uncertain. In this paper, the limiting nature of free DEMs is dissected in the context of hydrogeomorphology. Ten sets of terrain data are analyzed: the SRTM GL1 and GL3, HydroSHEDS, TINITALY, ASTER GDEM, EU DEM, VFP, ALOS AW3D30, MERIT and the TDX. In specific, the influence of three parameters are investigated, i.e., spatial resolution, hydrological reconditioning and vertical accuracy, on four relevant geomorphic terrain descriptors, namely the upslope contributing area, the local slope, the elevation difference and the flow path distance to the nearest stream, H and D, respectively. The Tanaro river basin in Italy is chosen as the study region and the newly released LiDAR for the Italian territory is used as benchmark to reassess vertical accuracies. In addition, the EU-Hydro photo-interpreted river network is used to compare DEM-based river networks. Most DEMs approximate well the frequency curve of elevations of the LiDAR, but this is not necessarily reflected in the representation of geomorphic features. For example, DEMs with finer spatial resolution present larger contributing areas; differences in the slope can reach 10%; between 5 m and 12 m H, none of the considered DEMs can faithfully represent the LiDAR; D presents significant variability between DEMs; and river network extraction can be problematic in flatter terrain. It is also found that the lowest mean absolute error (MAE) is given by the MERIT, 2.85 m, while the lowest root mean square error (RMSE) is given by the SRTM GL3, 4.83 m. Practical implications of choosing a DEM over another may be expected, as the limitations of any particular DEM in faithfully reproducing critical geomorphic terrain features may hinder our ability to find satisfactory answers to some pressing problems

    Prolonged changes in hepatic mitochondrial activity and insulin sensitivity by high fructose intake in adolescent rats

    Get PDF
    Persistence of damage induced by unhealthy diets during youth has been little addressed. Therefore, we investigated the impact of a short‐term fructose‐rich diet on liver metabolic activity in adolescent rats and the putative persistence of alterations after removing fructose from the diet. Adolescent rats were fed a fructose‐rich diet for three weeks and then switched to a control diet for further three weeks. Body composition and energy balance were not affected by fructose‐rich diet, while increased body lipids and lipid gain were found after the rescue period. Switching to a control diet reversed the upregulation of plasma fructose, uric acid, lipocalin, and haptoglobin, while plasma triglycerides, alanine aminotransferase, lipopolysaccharide, and tumor necrosis factor alpha remained higher. Hepatic steatosis and ceramide were increased by fructose‐rich diet, but reversed by returning to a control diet, while altered hepatic response to insulin persisted. Liver fatty acid synthase and stearoyl‐CoA desaturase (SCD) activities were upregulated by fructose‐rich diet, and SCD activity remained higher after returning to the control diet. Fructose‐induced upregulation of complex II‐driven mitochondrial respiration, peroxisome proliferator‐activated receptor‐gamma coactivator 1 alpha, and peroxisome proliferator activated receptor α also persisted after switching to control diet. In conclusion, our results show prolonged fructose‐induced dysregulation of liver metabolic activity
    corecore