35 research outputs found

    Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation : a collaborative study of the SIOPE Host Genome Working Group

    Get PDF
    Background Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. Methods To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. Results Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. Conclusion Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.Peer reviewe

    Multi-omics comparison of malignant and normal uveal melanocytes reveals molecular features of uveal melanoma.

    Get PDF
    Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM

    Identification of Genes Potentially Involved in the Increased Risk of Malignancy in NF1-Microdeleted Patients

    No full text
    Patients with NF1 microdeletion develop more neurofibromas at a younger age, and have an increased risk of malignant peripheral nerve sheath tumors (MPNSTs). We postulated that the increased risk of malignancy could be due to inactivation, in addition to NF1, of a second tumor suppressor gene located in the typical 1.4-Mb microdeletion found in most of the microdeleted patients. We investigated the expression of NF1, the other 16 protein-coding genes and the 2 microRNAs located in the 1.4-Mb microdeletion by means of real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) in a large series of human dermal and plexiform neurofibromas and MPNSTs. Five genes were significantly upregulated: OMG and SUZ12 in plexiform neurofibromas and ATAD5, EVI2A and C17orf79 in MPNSTs. More interestingly, two genes were significantly downregulated (RNF135 and CENTA2) in tumor Schwann cells from MPNST biopsies and in MPNST cell lines. This study points to the involvement of several genes (particularly RNF135 and CENTA2) in the increased risk of malignancy observed in NF1-microdeleted patients
    corecore