408 research outputs found

    The Spermatophore in Glossina morsitans morsitans: Insights into Male Contributions to Reproduction.

    Get PDF
    Male Seminal Fluid Proteins (SFPs) transferred during copulation modulate female reproductive physiology and behavior, impacting sperm storage/use, ovulation, oviposition, and remating receptivity. These capabilities make them ideal targets for developing novel methods of insect disease vector control. Little is known about the nature of SFPs in the viviparous tsetse flies (Diptera: Glossinidae), vectors of Human and Animal African trypanosomiasis. In tsetse, male ejaculate is assembled into a capsule-like spermatophore structure visible post-copulation in the female uterus. We applied high-throughput approaches to uncover the composition of the spermatophore in Glossina morsitans morsitans. We found that both male accessory glands and testes contribute to its formation. The male accessory glands produce a small number of abundant novel proteins with yet unknown functions, in addition to enzyme inhibitors and peptidase regulators. The testes contribute sperm in addition to a diverse array of less abundant proteins associated with binding, oxidoreductase/transferase activities, cytoskeletal and lipid/carbohydrate transporter functions. Proteins encoded by female-biased genes are also found in the spermatophore. About half of the proteins display sequence conservation relative to other Diptera, and low similarity to SFPs from other studied species, possibly reflecting both their fast evolutionary pace and the divergent nature of tsetse's viviparous biology

    Stress in nursing staff: a comparative analysis between intensive care units and general medicine units

    Get PDF
    It's a current belief that stress is an outstanding feature of intensive care units, in particular within nursing staff. The aim of this study was to compare some variables belonging to stress (i.e. anxiety, depression and `Burnout' syndrome) between nurses working in intensive care units (ICUs) and general medicine units (GMUs). Materials and methods We studied a population of 883 nurses working in ICUs, distributed in 79 Italian hospitals (70.1 % female) and 509 nurses working in GMUs, distributed in 35 Italian hospitals (80.2 % female). We asked them to fill in a form including: 1) general data and his/her work environment; 2) different evaluation standardized scales - the Hospital Anxiety and Depression Scale, divided into anxiety (HAD A) and depression (HAD D) status 0-7 `non cases', 8-10 `doubtful cases', 11-21 `cases'; the S.T.A.I. scale, divided into acute anxiety (Y-1) and chronic anxiety (Y-2) status; the Maslach Burnout Inventory-Human Services Survey (MBI.) divided into Emotional Exhaustion (EE), 64 18 `low', 19-26 `average', 65 27 `high', Depersonalization (DP) and Personal Accomplishment (PA). We also evaluated the different reasons of anxiety through individual questions (higher value, more anxiety): A1, a critically ill patient; A2, a young patient; A3, an old patient; A4, a suicidal patient; A5, a terminal patient; A6, presence of mechanical supports; A7, relationship with patients' relatives. The comparison between the two groups was performed by the Mann-Whitney Rank Sum test and z-test; statistical significance was accepted as P<0.05. Results The results, expressed as median value, with 25th and 75th percentile in brackets, are shown in Tables 1 and 2. Table 1 also shows the proportions of nurses that had a highest value of HAD A and M.B.I. EE. Conclusions Pathologic anxiety and emotional exhaustion are more prevalent in nurses working in GMUs. Thus, contrary to a common belief, `stress' is a more distinctive peculiarity of general medicine units than intensive care units

    Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The medfly, <it>Ceratitis capitata</it>, is a highly invasive agricultural pest that has become a model insect for the development of biological control programs. Despite research into the behavior and classical and population genetics of this organism, the quantity of sequence data available is limited. We have utilized an expressed sequence tag (EST) approach to obtain detailed information on transcriptome signatures that relate to a variety of physiological systems in the medfly; this information emphasizes on reproduction, sex determination, and chemosensory perception, since the study was based on normalized cDNA libraries from embryos and adult heads.</p> <p>Results</p> <p>A total of 21,253 high-quality ESTs were obtained from the embryo and head libraries. Clustering analyses performed separately for each library resulted in 5201 embryo and 6684 head transcripts. Considering an estimated 19% overlap in the transcriptomes of the two libraries, they represent about 9614 unique transcripts involved in a wide range of biological processes and molecular functions. Of particular interest are the sequences that share homology with <it>Drosophila </it>genes involved in sex determination, olfaction, and reproductive behavior. The medfly <it>transformer2 </it>(<it>tra2</it>) homolog was identified among the embryonic sequences, and its genomic organization and expression were characterized.</p> <p>Conclusion</p> <p>The sequences obtained in this study represent the first major dataset of expressed genes in a tephritid species of agricultural importance. This resource provides essential information to support the investigation of numerous questions regarding the biology of the medfly and other related species and also constitutes an invaluable tool for the annotation of complete genome sequences. Our study has revealed intriguing findings regarding the transcript regulation of <it>tra2 </it>and other sex determination genes, as well as insights into the comparative genomics of genes implicated in chemosensory reception and reproduction.</p

    Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus

    Get PDF
    BACKGROUND: The dramatic worldwide expansion of Aedes albopictus (the Asian tiger mosquito) and its vector competence for numerous arboviruses represent a growing threat to public health security. Molecular markers are crucially needed for tracking the rapid spread of this mosquito and to obtain a deeper knowledge of population structure. This is a fundamental requirement for the development of strict monitoring protocols and for the improvement of sustainable control measures. METHODS: Wild population samples from putative source areas and from newly colonised regions were analysed for variability at the ribosomal DNA internal transcribed spacer 2 (ITS2). Moreover, a new set of 23 microsatellite markers (SSR) was developed. Sixteen of these SSRs were tested in an ancestral (Thailand) and two adventive Italian populations. RESULTS: Seventy-six ITS2 sequences representing 52 unique haplotypes were identified, and AMOVA indicated that most of their variation occurred within individuals (74.36%), while only about 8% was detected among populations. Spatial analyses of molecular variance revealed that haplotype genetic similarity was not related to the geographic proximity of populations and the haplotype phylogeny clearly indicated that highly related sequences were distributed across populations from different geographical regions. The SSR markers displayed a high level of polymorphism both in the ancestral and in adventive populations, and F(ST) estimates suggested the absence of great differentiation. The ancestral nature of the Thai population was corroborated by its higher level of variability. CONCLUSIONS: The two types of genetic markers here implemented revealed the distribution of genetic diversity within and between populations and provide clues on the dispersion dynamics of this species. It appears that the diffusion of this mosquito does not conform to a progressive expansion from the native Asian source area, but to a relatively recent and chaotic propagule distribution mediated by human activities. Under this scenario, multiple introductions and admixture events probably play an important role in maintaining the genetic diversity and in avoiding bottleneck effects. The polymorphic SSR markers here implemented will provide an important tool for reconstructing the routes of invasion followed by this mosquito

    Transcriptional variation of sensory-related genes in natural populations of Aedes albopictus

    Get PDF
    BACKGROUND: The Asian tiger mosquito, Aedes albopictus, is a highly dangerous invasive vector of numerous medically important arboviruses including dengue, chikungunya and Zika. In four decades it has spread from tropical Southeast Asia to many parts of the world in both tropical and temperate climes. The rapid invasion process of this mosquito is supported by its high ecological and genetic plasticity across different life history traits. Our aim was to investigate whether wild populations, both native and adventive, also display transcriptional genetic variability for functions that may impact their biology, behaviour and ability to transmit arboviruses, such as sensory perception. RESULTS: Antennal transcriptome data were derived from mosquitoes from a native population from Ban Rai, Thailand and from three adventive Mediterranean populations: Athens, Greece and Arco and Trento from Italy. Clear inter-population differential transcriptional activity was observed in different gene categories related to sound perception, olfaction and viral infection. The greatest differences were detected between the native Thai and the Mediterranean populations. The two Italian populations were the most similar. Nearly one million quality filtered SNP loci were identified. CONCLUSION: The ability to express this great inter-population transcriptional variability highlights, at the functional level, the remarkable genetic flexibility of this mosquito species. We can hypothesize that the differential expression of genes, including those involved in sensory perception, in different populations may enable Ae. albopictus to exploit different environments and hosts, thus contributing to its status as a global vector of arboviruses of public health importance. The large number of SNP loci present in these transcripts represents a useful addition to the arsenal of high-resolution molecular markers and a resource that can be used to detect selective pressure and adaptive changes that may have occurred during the colonization process

    Sex and the single embryo: early deveopment in the Mediterranean fruit fly, Ceratitis capitata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In embryos the maternal-to-zygotic transition (MTZ) integrates post-transcriptional regulation of maternal transcripts with transcriptional activation of the zygotic genome. Although the molecular mechanisms underlying this event are being clarified in <it>Drosophila melanogaster</it>, little is know about the embryogenic processes in other insect species. The recent publication of expressed sequence tags (ESTs) from embryos of the global pest species <it>Ceratitis capitata </it>(medfly) has enabled the investigation of embryogenesis in this species and has allowed a comparison of the embryogenic processes in these two related dipteran species, <it>C. capitata </it>and <it>D. melanogaster</it>, that shared a common ancestor 80-100 mya.</p> <p>Results</p> <p>Using a novel PCR-based sexing method, which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly Y chromosome, the transcriptomes of individual early male and female embryos were analysed using RT-PCR. This study is focused on two crucial aspects of the onset of embryonic development: sex determination and cellular blastoderm formation. Together with the three known medfly genes (<it>Cctransformer</it>, <it>Cctransformer2 </it>and <it>Ccdoublesex</it>), the expression patterns of other medfly genes that are similar to the <it>D. melanogaster </it>sex-determination genes (<it>sisterlessA, groucho, deadpan, Sex-lethal, female lethal d, sans fille </it>and <it>intersex</it>) and four cellular blastoderm formation genes (<it>Rho1, spaghetti squash, slow-as-molasses </it>and <it>serendipity-α</it>) were analyzed, allowing us to sketch a preliminary outline of the embryonic process in the medfly. Furthermore, a putative homologue of the <it>Zelda </it>gene has been considered, which in <it>D. melanogaster </it>encodes a DNA-binding factor responsible for the maternal-to-zygotic transition.</p> <p>Conclusions</p> <p>Our novel sexing method facilitates the study of i) when the MTZ transition occurs in males and females of <it>C. capitata</it>, ii) when and how the maternal information of "female-development" is reprogrammed in the embryos and iii) similarities and differences in the regulation of gene expression in <it>C. capitata </it>and <it>D. melanogaster</it>. We suggest a new model for the onset of the sex determination cascade in the medfly: the maternally inherited <it>Cctra </it>transcripts in the female embryos are insufficient to produce enough active protein to inhibit the male mode of <it>Cctra </it>splicing. The slow rate of development and the inefficiency of the splicing mechanism in the pre-cellular blastoderm facilitates the male-determining factor (M) activity, which probably acts by inhibiting CcTRA protein activity.</p

    Modelling TGFbR and Hh pathway regulation of prognostic matrisome molecules in ovarian cancer

    Get PDF
    In a multi-level ‘deconstruction’ of omental metastases, we previously identified a prognostic matrisome gene expression signature in high-grade serous ovarian cancer (HGSOC) and twelve other malignancies. Here, our aim was to understand how six of these extracellular matrix, ECM, molecules, COL11A1, COMP, FN1, VCAN, CTSB and COL1A1, are up-regulated in cancer. Using biopsies, we identified significant associations between TGFβR activity, Hedgehog signalling and these ECM molecules and then studied the associations in mono-, co- and tri-culture. Activated omental fibroblasts produced more matrix than malignant cells, directed by TGFβR and Hedgehog signalling crosstalk. We ‘reconstructed’ omental metastases in tri-culture of HGSOC cells, omental fibroblasts and adipocytes. This combination was sufficient to generate all six ECM proteins and the matrisome expression signature. TGFβR and Hedgehog inhibitor combinations attenuated fibroblast activation, gel remodelling and ECM remodelling in these models. The tri-culture model reproduces key features of omental metastases and allows study of diseased-associated ECM

    Improved procedural workflow for catheter ablation of paroxysmal AF with high-density mapping system and advanced technology: Rationale and study design of a multicenter international study

    Full text link
    The antral region of pulmonary veins (PV)s seems to play a key role in a strategy aimed at preventing atrial fibrillation (AF) recurrence. Particularly, low-voltage activity in tissue such as the PV antra and residual potential within the antral scar likely represent vulnerabilities in antral lesion sets, and ablation of these targets seems to improve freedom from AF. The aim of this study is to validate a structured application of an approach that includes the complete abolition of any antral potential achieving electrical quiescence in antral regions.The improveD procEdural workfLow for cathETEr ablation of paroxysmal AF with high density mapping system and advanced technology (DELETE AF) study is a prospective, single-arm, international post-market cohort study designed to demonstrate a low rate of clinical atrial arrhythmias recurrence with an improved procedural workflow for catheter ablation of paroxysmal AF, using the most advanced point-by-point RF ablation technology in a multicenter setting. About 300 consecutive patients with standard indications for AF ablation will be enrolled in this study. Post-ablation, all patients will be monitored with ambulatory event monitoring, starting within 30 days post-ablation to proactively detect and manage any recurrences within the 90-day blanking period, as well as Holter monitoring at 3, 6, 9, and 12 months post-ablation. Healthcare resource utilization, clinical data, complications, patients' medical complaints related to the ablation procedure and patient's reported outcome measures will be prospectively traced and evaluated.The DELETE AF trial will provide additional knowledge on long-term outcome following a structured ablation workflow, with high density mapping, advanced algorithms and local impedance technology, in an international multicentric fashion. DELETE AF is registered at ClinicalTrials.gov (NCT05005143).© 2022 The Authors. Clinical Cardiology published by Wiley Periodicals LLC
    corecore