6 research outputs found

    FREE AND ZEOLITE-IMMOBILIZED PROBIOTIC MIXTURE VERSUS SODIUM VALPROATE IN PREVENTION OF OXIDATIVE STRESS AND MODULATION OF THE L-ARGININE INTRACELLULAR METABOLIC PATHWAYS IN THE RAT BRAIN AND BLOOD FOLLOWING DEXAMPHETAMINE-INDUCED BIPOLAR D

    Get PDF
    Experimental bipolar disorder (BD) was induced by repeated daily injection of the increasing doses of d-amphetamine sulfate (AMPH) (2-4 mg kg-1, 18 injections) in male young adult Wistar rats characterized by temporal arousal mimicked mania, and reduced exploratory and locomotor activities associated with behavioural depression under the condition of withdrawal of AMPH. At the end of the injection course, a stimulation of the lipid peroxidation processes and alterations in the mitochondrial and cytoplasmic activities of both arginase and nitric oxide synthase (NOS) were observed in the regions of brain corticolimbic system (prefrontal cortex, striatum, hippocampus and hypothalamus) and blood leukocytes. We have shown for the first time that a reversal treatment with the mixture of the specific probiotics with psycho- and antifungal activities in free (PMF) and zeolite-immobilized (PMZ) forms, and/or with a mood stabilizer, sodium valproate (VPA) inhibited oxidative stress and modulated differentially the L-arginine metabolic pathways in the brain and blood following AMPH-induced BD. Both PMF and PMZ efficiently normalized the activities of arginase isoforms and upregulated the suppressed intracellular NOS along with the gut microbiota restoration and prevention of the histopathological changes in the brain regions accompanied by normalization of rat behaviour

    ЭпидСмиологичСскиС аспСкты энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π² Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ Π·Π° ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ 2018–2019 Π³Π³.

    Get PDF
    Aim: Analysis of enterovirus infection morbidity and characteristics of the etiological agents of this infection on some territories of Russia in 2017.Materials and methods: We investigated 7858 samples of the biological material from the patients suffering from enterovirus infection. The isolation and identification of enteroviruses were conducted by virological and molecular methods.Results: The epidemic process and the clinical picture of enterovirus infection on different territories had some peculiarities. On some territories enterovirus meningitis was the predominant form of infection, on other territories enterovirus infection with exanthema prevailed. In Saint-Petersburg, Archangel and Saratov regions the percentage of enterovirus infection cases with the clinical picture of enterovirus meningitis was significantly higher than the percentage of enterovirus infection with exanthema. In the Komi Republic, Leningrad and Murmansk regions the percentage of infection with exanthema was statistically higher than the enterovirus meningitis portion. Enteroviruses of 30 serotypes were detected in the samples of patients suffering from enterovirus infection. We determined the etiology of sporadic and epidemic cases of enterovirus infection represented by different clinical forms. On some territories the epidemic foci of enterovirus infection among children were revealed. The etiological agents of enterovirus meningitis foci in Saint-Petersburg, Murmansk and Saratov regions were Coxsackievirus B5, Coxsackievirus B4 and Echovirus 30. The foci of enterovirus infection with exanthema in Archangel, Leningrad, Murmansk and Novgorod regions were caused by Coxsackieviruses A10, A16 and A6.Conclusion: The clinical forms of enterovirus infection on some territories were provoked by enteroviruses which dominated in the circulation on one or other territory. Enteroviruses of species B, mainly Echovirus 30, Echovirus 6 and Coxsackieviruses B1–6 were the etiological agents of enterovirus meningitis. The etiological factors of enterovirus infection with exanthema were Enteroviruses of species A, mainly Coxsackieviruses of different serotypes as well as Enterovirus 71.ЦСль: Π°Π½Π°Π»ΠΈΠ· заболСваСмости энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ ΠΈ характСристика Π΅Π΅ этиологичСских Π°Π³Π΅Π½Ρ‚ΠΎΠ² Π½Π° рядС Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΉ Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ Π² 2018–2019 Π³Π³.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: исслСдовано 7858 ΠΏΡ€ΠΎΠ± биологичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΎΡ‚ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ энтСровирусов ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ вирусологичСским ΠΈ молСкулярно-гСнСтичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ эпидСмичСского процСсса ΠΈ клиничСскиС проявлСния энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… тСрриториях ΠΈΠΌΠ΅Π»ΠΈ отличия. На ΠΎΠ΄Π½ΠΈΡ… тСрриториях ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ заболСвания с ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎΠΉ энтСровирусного ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡ‚Π°, Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… тСрриториях ΠΏΡ€Π΅Π²Π°Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ экзантСмныС Ρ„ΠΎΡ€ΠΌΡ‹ заболСвания. Π’ Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³Π΅, ΠΡ€Ρ…Π°Π½Π³Π΅Π»ΡŒΡΠΊΠΎΠΉ ΠΈ Баратовской областях ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ вСс случаСв энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ с клиничСской ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΎΠΉ энтСровирусного ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡ‚Π° достовСрно ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π» Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ для экзантСмных Ρ„ΠΎΡ€ΠΌ энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ. Π’ РСспубликС Коми, ЛСнинградской ΠΈ ΠœΡƒΡ€ΠΌΠ°Π½ΡΠΊΠΎΠΉ областях доля случаСв энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ с экзантСмными проявлСниями Π±Ρ‹Π»Π° достовСрно Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ доля Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ энтСровирусным ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡ‚ΠΎΠΌ. ЭнтСровирусы 30 сСротипов Π±Ρ‹Π»ΠΈ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π² ΠΏΡ€ΠΎΠ±Π°Ρ… ΠΎΡ‚ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ. Π‘Ρ‹Π»Π° установлСна этиология спорадичСских ΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ с Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ клиничСскими Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ. На Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… тСрриториях Π±Ρ‹Π»ΠΈ выявлСны ΠΎΡ‡Π°Π³ΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ срСди Π΄Π΅Ρ‚Π΅ΠΉ. ЭтиологичСскими Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ Π³Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Ρ…Β Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ энтСровирусным ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡ‚ΠΎΠΌ Π² Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³Π΅, ΠœΡƒΡ€ΠΌΠ°Π½ΡΠΊΠΎΠΉ ΠΈ Баратовской областях Π±Ρ‹Π»ΠΈ энтСровирусы Коксаки Π’5, Коксаки Π’4 ΠΈ вирус ECHO30. Π“Ρ€ΡƒΠΏΠΏΠΎΠ²Ρ‹Π΅ заболСвания с ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎΠΉ вирусной экзантСмы Π² ΠΡ€Ρ…Π°Π½Π³Π΅Π»ΡŒΡΠΊΠΎΠΉ, ЛСнинградской, ΠœΡƒΡ€ΠΌΠ°Π½ΡΠΊΠΎΠΉ ΠΈ Новгородской областях Π±Ρ‹Π»ΠΈ обусловлСны энтСровирусами Коксаки А10, А16 ΠΈ А6.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: клиничСскиС Ρ„ΠΎΡ€ΠΌΡ‹ энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… тСрриториях Π±Ρ‹Π»ΠΈ обусловлСны энтСровирусами, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² циркуляции Π½Π° Ρ‚ΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ. ЭтиологичСскими Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ энтСровирусного ΠΌΠ΅Π½ΠΈΠ½Π³ΠΈΡ‚Π° Π±Ρ‹Π»ΠΈ энтСровирусы Π²ΠΈΠ΄Π° Π’, Ρ‡Π°Ρ‰Π΅ всСго ECHO30, ECHO6 ΠΈ Коксаки Π’1–6. ЭтиологичСскими Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ экзантСмных Ρ„ΠΎΡ€ΠΌ энтСровирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ являлись энтСровирусы Π²ΠΈΠ΄Π° А (Π² основном, вирусы Коксаки А Ρ€Π°Π·Π½Ρ‹Ρ… сСротипов ΠΈ энтСровирус 71 Ρ‚ΠΈΠΏΠ°)

    Radiation Damping of Surface Plasmons in a Pair of Nanoparticles and in Nanoparticles near Interfaces

    No full text
    A theory of surface plasmon radiation damping in a system of coupled spherical metallic nanoparticles is developed, and a simple formula for the radiation line width is obtained for the first time. It is shown that as a result of surface plasmon frequency redshift, a notable reduction of the radiation damping rate takes place. For small separations, the radiation line width narrows by a factor of 3 as compared to large separations. The theory is expanded to the case of a spherical metallic nanoparticle placed near an interface of two dielectric media. The dependence of the redshift of surface plasmon frequency and the radiation damping rate on the particle–interface separation are calculated. It is revealed that in both cases, a decrease of refractive index of the surrounding media also leads to a decrease of the damping rate
    corecore