61 research outputs found

    Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination

    Get PDF
    Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves. We determined that plasmalogens are crucial for Schwann cell development and differentiation and that plasmalogen defects impaired radial sorting, myelination, and myelin structure. Plasmalogen insufficiency resulted in defective protein kinase B (AKT) phosphorylation and subsequent signaling, causing overt activation of glycogen synthase kinase 3β (GSK3β) in nerves of mutant mice. Treatment with GSK3β inhibitors, lithium, or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) restored Schwann cell defects, effectively bypassing plasmalogen deficiency. Our results demonstrate the requirement of plasmalogens for the correct and timely differentiation of Schwann cells and for the process of myelination. In addition, these studies identify a mechanism by which the lack of a membrane phospholipid causes neuropathology, implicating plasmalogens as regulators of membrane and cell signaling.We thank Paula Sampaio for microscopy support, Paula Magalhdes for genotyping, and Isabel Carvalho, Sofia Lamas, and Fatima Martins for excellent animal care. We are grateful to P. Brophy (University of Edinburgh) for the DRP2 antibody and to M. Baes (K.U. Leuven) for providing the Gnpat mouse strain. This work was funded by the Research Foundation of the European Leukodystrophy Association (ELA 2008-009C4, ELA 2010-042C5), by FEDER Funds through the Operational Competitiveness Program - COMPETE, and by national funds through the FCT - Fundacao para a Ciencia e a Tecnologia under the project FCOMP-01-0124-FEDER-015970 (PTDS/SAU-ORG/112406/2009). P. Brites is an FCT Investigator, and T. Ferreira da Silva was supported by the FCT (SFRH/BD/88160/2012)

    Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (<it>Hexb </it>gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (<it>Hexb-/-</it>), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system.</p> <p>Results</p> <p>We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the <it>Hexb</it>+/- and <it>Hexb</it>-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of <it>Hexb</it>+/- and <it>Hexb</it>-/- mice showed normal myelin periods; however, <it>Hexb</it>-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of <it>Hexb-/- </it>mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the <it>Hexb</it>-/- mice (undetectable in <it>Hexb</it>+/-).</p> <p>Conclusion</p> <p>Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.</p

    Impedimetric immunosensor for microalbuminuria based on a WS2/Au water-phase assembled nanocomposite

    No full text
    An electrochemical impedimetric biosensor for human serum albumin (HSA) determination is proposed. The biosensor is based on water-phase assembled nanocomposites made of 2D WS2 nanoflakes and Au nanoparticles (AuNPs). The WS2 has been produced using a liquid-phase exfoliation strategy assisted by sodium cholate, obtaining a water-stable suspension that allowed the straightforward decoration with AuNPs directly in the aqueous phase. The resulting WS2/Au nanocomposite has been characterized by atomic force microscopy and Raman spectroscopy and, then, employed to modify screen-printed electrodes. Good electron-transfer features have been achieved. An electrochemical immunosensing platform has been assembled exploiting cysteamine- glutaraldehyde covalent chemistry for antibody (Ab) immobilization. The resulting immunosensor exhibited good sensitivity for HSA detection (LOD = 2 ng mL(-1)), with extended linear range (0.005 - 100 mu g mL(-1)), providing a useful analytical tool for HSA determination in urine at relevant clinical ranges for microalbuminuria screening. The HSA quantification in human urine samples resulted in recoveries from 91.8 to 112.4% and was also reproducible (RSD &lt; 7.5%, n = 3), with marked selectivity. This nanocomposite, thanks to the reliable performance and the ease of the assembling strategy, is a promising alternative for electrochemical immunosensing of health relevant markers

    Issues Concerning Variability in Software Product Lines

    No full text
    Product-line architectures, i.e. a software architecture and component set shared by a family of products, represents a promising approach to achieving reuse of software. Several companies are initiating or have recently adopted a product-line architecture. However, little experience is available with respect to the evolution of the products, the software components and the software architecture. Due to the higher level of interdependency between the various software assets, software evolution is a more complex process. In this paper we discuss issues regarding variability that may help or cause problems when designing solutions for managing variability.

    Pointing-Stability Performance of the Cassini Spacecraft

    No full text
    corecore