46 research outputs found

    Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria

    Get PDF
    2,4,6-Trinitrotoluene (TNT), a toxic nitroaromatic explosive, accumulates in the environment, making necessary the remediation of contaminated areas and unused materials. Although bioremediation has been utilized to detoxify TNT, the metabolic process involved in the metabolism of TNT have proven to be complex. The three aerobic bacterial strains reported here (Pseudomonas aeruginosa, Bacillus sp., and Staphylococcus sp.) differ in their ability to biotransform TNT and in their growth characteristics in the presence of TNT. In addition, enzymatic activities have been identified that differ in the reduction of nitro groups, cofactor preferences, and the ability to eliminate-NO2 from the ring. The Bacillus sp. has the most diverse bioremediation potential owing to its growth in the presence of TNT, high level of reductive ability, and capability of removing-NO2 from the nitroaromatic ring

    Amino-nitrile cleavage in the electrochemical reduction of hydeazones of aromatic aldehydes

    Get PDF
    1. Factors which determine the possibility of amino-nitrile cleavage of hydrazones on electrochemical reduction (ECR) include the basicity of the anionic product formed in the course of the ECR and the mobility of the aldehyde hydrogen which depends on the character of the electron polarization of the hydrazone fragment and the polarity of the N-N bond. 2. The primary action in amino-nitrile cleavage under conditions of ECR is the deprotonation of the azomethine fragment in the unreduced molecule by electrochemically generated strong base (anion or dianion). Β© 1988 Plenum Publishing Corporation

    The transition problems from traditional physical trainings to the trainings based on interests

    Full text link
    Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрСны Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΎΡ‚ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ занятий физичСской ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ ΠΊ занятиям физичСской ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ ΠΏΠΎ интСрСсамThis article describes possible and existing transition problems from traditional physical trainings to the trainings based on interest

    Increasing productivity of arylsulfatase B-producing cell line by coexpression of formylglycine-generating enzyme

    Get PDF
    Mucopolysaccharidosis type VI (Maroteaux–Lamy syndrome) is an orphan genetic disease caused by deficiency of the lysosomal enzyme arylsulfatase B (ASB). The need to develop a highly productive cell line for the production of recombinant ASB, is behind the concept and relevance of this study. The most promising approach seems to be the development of CHO producer cell lines coexpressing the target ASB enzyme and an auxiliary formylglycine-generating enzyme (FGE). At the same time, it is important from a practical perspective to have the possibility of cultivating producer cell lines as suspensions free of serum or other components of animal origin. The aim of the study was to develop highly productive cell lines for the production of recombinant ASB by coexpression of the auxiliary FGE. Materials and methods: a suspension CHO cell line was used in the study. CHO cells were transfected by electroporation using the MaxCyte STX system. Monoclonal cell lines were obtained with the help of the Cell Metric system. Enzyme-linked immunosorbent assay was used for determination of ASB concentration in the culture fluid. Culture fluid samples were analysed using polyacrylamide gel electrophoresis and Western blotting. The mRNA level was measured by real-time polymerase chain reaction. Results: producer cell lines coexpressing the target ASB enzyme and auxiliary FGE were obtained. An increase in the yield of the active target ASB enzyme from 2 to 100 mg/L was achieved by selecting the optimal ratio of plasmids during transfection. The highest yield of the target ASB enzyme was achieved at the 90:10 ratio (%) of plasmids encoding the ASB and FGE genes, respectively. Conclusions: the authors developed highly productive cell lines for the production of recombinant ASB, which coexpress the target and auxiliary enzymes. The coexpression of ASB and FGE improves the growth and production characteristics of the cell line, probably due to the modification of the ASB active site. The obtained results will help resolve the problem of low enzyme yield, which is typical of this class of medicines

    Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ продуктивности ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ B Π·Π° счСт коэкспрСссии Ρ„ΠΎΡ€ΠΌΠΈΠ»Π³Π»ΠΈΡ†ΠΈΠ½-Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°

    Get PDF
    Mucopolysaccharidosis type VI (Maroteaux–Lamy syndrome) is an orphan genetic disease caused by deficiency of the lysosomal enzyme arylsulfatase B (ASB). The need to develop a highly productive cell line for the production of recombinant ASB, is behind the concept and relevance of this study. The most promising approach seems to be the development of CHO producer cell lines coexpressing the target ASB enzyme and an auxiliary formylglycine-generating enzyme (FGE). At the same time, it is important from a practical perspective to have the possibility of cultivating producer cell lines as suspensions free of serum or other components of animal origin. The aim of the study was to develop highly productive cell lines for the production of recombinant ASB by coexpression of the auxiliary FGE. Materials and methods: a suspension CHO cell line was used in the study. CHO cells were transfected by electroporation using the MaxCyte STX system. Monoclonal cell lines were obtained with the help of the Cell Metric system. Enzyme-linked immunosorbent assay was used for determination of ASB concentration in the culture fluid. Culture fluid samples were analysed using polyacrylamide gel electrophoresis and Western blotting. The mRNA level was measured by real-time polymerase chain reaction. Results: producer cell lines coexpressing the target ASB enzyme and auxiliary FGE were obtained. An increase in the yield of the active target ASB enzyme from 2 to 100 mg/L was achieved by selecting the optimal ratio of plasmids during transfection. The highest yield of the target ASB enzyme was achieved at the 90:10 ratio (%) of plasmids encoding the ASB and FGE genes, respectively. Conclusions: the authors developed highly productive cell lines for the production of recombinant ASB, which coexpress the target and auxiliary enzymes. The coexpression of ASB and FGE improves the growth and production characteristics of the cell line, probably due to the modification of the ASB active site. The obtained results will help resolve the problem of low enzyme yield, which is typical of this class of medicines.ΠœΡƒΠΊΠΎΠΏΠΎΠ»ΠΈΡΠ°Ρ…Π°Ρ€ΠΈΠ΄ΠΎΠ· VI Ρ‚ΠΈΠΏΠ° (синдром ΠœΠ°Ρ€ΠΎΡ‚ΠΎβ€“Π›Π°ΠΌΠΈ) β€” ΠΎΡ€Ρ„Π°Π½Π½ΠΎΠ΅ гСнСтичСскоС Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ связано с Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ΠΎΠΌ лизосомального Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования связана с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ высокопродуктивной ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Π° Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’. НаиболСС пСрспСктивным ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ прСдставляСтся созданиС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ΠΎΠ², ΠΊΠΎΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ†Π΅Π»Π΅Π²ΠΎΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρƒ Π’ ΠΈ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ„ΠΎΡ€ΠΌΠΈΠ»Π³Π»ΠΈΡ†ΠΈΠ½-Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π½Π° основС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ БНО. ΠŸΡ€ΠΈ этом большоС практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ΠΎΠ² Π² Π²ΠΈΠ΄Π΅ суспСнзии, Π±Π΅Π· использования сыворотки ΠΈΠ»ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ΠΎ происхоТдСния. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° высокопродуктивных ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ΠΎΠ² Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’ Π·Π° счСт коэкспрСссии Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„ΠΎΡ€ΠΌΠΈΠ»Π³Π»ΠΈΡ†ΠΈΠ½-Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: использовали ΡΡƒΡΠΏΠ΅Π½Π·ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ линию БНО. Π’Ρ€Π°Π½ΡΡ„Π΅ΠΊΡ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ БНО ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктропорации с использованиСм систСмы MaxCyte STX. ΠœΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ с использованиСм систСмы Cell Metric. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Тидкости опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠžΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Тидкости Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ элСктрофорСза Π² ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠΌ Π³Π΅Π»Π΅ ΠΈ вСстСрн-Π±Π»ΠΎΡ‚Π°. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ мРНК измСряли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Ρ‹, ΠΊΠΎΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ†Π΅Π»Π΅Π²ΠΎΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρƒ Π’ ΠΈ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ„ΠΎΡ€ΠΌΠΈΠ»Π³Π»ΠΈΡ†ΠΈΠ½-Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚. Достигнуто ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π²Ρ‹Ρ…ΠΎΠ΄Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’ с 2 Π΄ΠΎ 100 ΠΌΠ³/Π» Π·Π° счСт ΠΏΠΎΠ΄Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄ Π²ΠΎ врСмя трансфСкции. Наибольший Π²Ρ‹Ρ…ΠΎΠ΄ Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’ наблюдался ΠΏΡ€ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π³Π΅Π½Ρ‹ Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΠ»Π³Π»ΠΈΡ†ΠΈΠ½-Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, Ρ€Π°Π²Π½ΠΎΠΌ 90:10 (%). Π’Ρ‹Π²ΠΎΠ΄Ρ‹: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ высокопродуктивныС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ-ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Ρ‹ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’, ΠΊΠΎΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Ρ†Π΅Π»Π΅Π²ΠΎΠΉ ΠΈ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹. ΠšΠΎΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΠ»Π³Π»ΠΈΡ†ΠΈΠ½-Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡŽ ростовых ΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… характСристик ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, Ρ‡Ρ‚ΠΎ, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡƒ, обусловлСно ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π°Ρ€ΠΈΠ»ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Π°Π·Ρ‹ Π’. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ позволят Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ Π²Ρ‹Ρ…ΠΎΠ΄Π° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΡƒΡŽ для ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ класса

    Martensite-to-austenite reversion and recrystallization in cryogenically-rolled type 321 metastable austenitic steel

    Get PDF
    The annealing behavior of cryogenically-rolled type 321 metastable austenitic steel was established. Cryogenic deformation gave rise to martensitic transformation which developed preferentially within deformation bands. Subsequent annealing in the range of 600 C to 700 C resulted in reversion of the strain-induced martensite to austenite. At 800 C, the reversion was followed by static recrystallization. At relatively-low temperatures, the reversion was characterized by a very strong variant selection, which led to the restoration of the crystallographic orientation of the coarse parent austenite grains. An increase in the annealing temperature relaxed the variant-selection tendency and provided subsequent recrystallization thus leading to significant grain refinement. Nevertheless, a significant portion of the original coarse grains was found to be untransformed and therefore the fine-grain structure was fairly heterogeneous

    EBSD characterization of cryogenically rolled type 321 austenitic stainless steel

    Get PDF
    Electron backscatter diffraction was applied to investigate microstructure evolution during cryogenic rolling of type 321 metastable austenitic stainless steel. As expected, rolling promoted deformation-induced martensitic transformation which developed preferentially in deformation bands. Because a large fraction of the imposed strain was accommodated by deformation banding, grain refinement in the parent austenite phase was minimal. The martensitic transformation was found to follow a general orientation relationship, {111}Ξ³||{0001}Ξ΅||{110}Ξ±β€² and γ€ˆ110〉γ||γ€ˆ11-20〉Ρ||γ€ˆ111〉α′, and was characterized by noticeable variant selection
    corecore