163 research outputs found

    Hydrochloride Salt of the GABAkine KRM-II-81

    Get PDF
    Imidazodiazepine (5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazole[1,5-α][1,4]diazepin-3-yl) oxazole or KRM-II-81) is a potentiator of GABAA receptors (a GABAkine) undergoing preparation for clinical development. KRM-II-81 is active against many seizure and pain models in rodents, where it exhibits improved pharmacological properties over standard-of-care agents. Since salts can be utilized to create opportunities for increased solubility, enhanced absorption, and distribution, as well as for efficient methods of bulk synthesis, a hydrochloride salt of KRM-II-81 was prepared. KRM-II-81·HCl was produced from the free base with anhydrous hydrochloric acid. The formation of the monohydrochloride salt was confirmed by X-ray crystallography, as well as 1H NMR and 13C NMR analyses. High water solubility and a lower partition coefficient (octanol/water) were exhibited by KRM-II-81·HCl as compared to the free base. Oral administration of either KRM-II-81·HCl or the free base resulted in high concentrations in the brain and plasma of rats. Oral dosing in mice significantly increased the latency to both clonic and tonic convulsions and decreased pentylenetetrazol-induced lethality. The increased water solubility of the HCl salt enables intravenous dosing and the potential for higher concentration formulations compared with the free base without impacting anticonvulsant potency. Thus, KRM-II-81·HCl adds an important new compound to facilitate the development of these imidazodiazepines for clinical evaluation

    A study of the structure–activity relationship of GABAA–benzodiazepine receptor bivalent ligands by conformational analysis with low temperature NMR and X-ray analysis

    Get PDF
    The stable conformations of GABAA-benzodiazepine receptor bivalent ligands were determined by low temperature NMR spectroscopy and confirmed by single crystal X-ray analysis. The stable conformations in solution correlated well with those in the solid state. The linear conformation was important for these dimers to access the binding site and exhibit potent in vitro affinity and was illustrated for α5 subtype selective ligands. Bivalent ligands with an oxygen-containing linker folded back upon themselves both in solution and the solid state. Dimers which are folded do not bind to Bz receptors

    The Role of Oligomerization and Cooperative Regulation in Protein Function: The Case of Tryptophan Synthase

    Get PDF
    The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase (TRPS). TRPS uses a set of α/β–dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein reaches the final ligand–bound conformations. Our simulations also revealed that the α/β–dimeric unit stabilizes the substrate–protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function

    The Effect of Surface Preparation on the Precipitation of Sigma During High Temperature Exposure of S32205 Duplex Stainless Steel

    Get PDF
    This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Although the formation of sigma phase in duplex stainless steels is reasonably well documented, the effect of surface finish on its formation rate in surface regions has not been previously noted. The growth of the sigma phase precipitated in the subsurface region (to a maximum depth of 120 ÎĽm) has been quantified after heat treatment of S32205 duplex stainless steel at 1073 K (800ËšC) and 1173 K (900ËšC) after preparation to two surface finishes. Here, results are presented that show that there is a change in the rate of sigma phase formation in the surface region of the material, with a coarser surface finish leading to a greater depth of precipitation at a given time and temperature of heat treatment. The growth rate and morphology of the precipitated sigma has been examined and explored in conjunction with thermodynamic equilibrium phase calculations

    Heterogeneous localisation of membrane proteins in Staphylococcus aureus

    Get PDF
    The bacterial cytoplasmic membrane is the interface between the cell and its environment, with multiple membrane proteins serving its many functions. However, how these proteins are organised to permit optimal physiological processes is largely unknown. Based on our initial findings that 2 phospholipid biosynthetic enzymes (PlsY and CdsA) localise heterogeneously in the membrane of the bacterium Staphylococcus aureus, we have analysed the localisation of other key membrane proteins. A range of protein fusions were constructed and used in conjunction with quantitative image analysis. Enzymes involved in phospholipid biosynthesis as well as the lipid raft marker FloT exhibited a heterogeneous localisation pattern. However, the secretion associated SecY protein, was more homogeneously distributed in the membrane. A FRET-based system also identified novel colocalisation between phospholipid biosynthesis enzymes and the respiratory protein CydB revealing a likely larger network of partners. PlsY localisation was found to be dose dependent but not to be affected by membrane lipid composition. Disruption of the activity of the essential cell division organiser FtsZ, using the inhibitor PC190723 led to loss of PlsY localisation, revealing a link to cell division and a possible role for FtsZ in functions not strictly associated with septum formation
    • …
    corecore