2,020 research outputs found
Space test program of high-voltage solar array-space plasma interactions
Future spacecraft, notably the proposed Space Station, will require power systems much larger than have previously been flown. It is recognized that at higher voltages, and at the relatively high plasma density present at low Earth orbital altitudes, undesirable interactions between the high voltage solar array and the space plasma will occur. Space experiments on high voltage solar array space plasma interactions in low Earth orbit are an absolute requirement for confident design of a higher voltage solar array. Experiments are presently being identified to provide the necessary space data for calibration of ground testing, validation of analytical models, and development of design guidelines required for confident design of high voltage solar arrays in space. A proposed flight experiment program which is designed to obtain the required data is summarized
Droplet impact on a thin fluid layer
The initial stages of high-velocity droplet impact on a shallow water layer are described, with special emphasis given to the spray jet mechanics. Four stages of impact are delineated, with appropriate scalings, and the successively more important influence of the base is analysed. In particular, there is a finite time before which part of the water in the layer remains under the droplet and after which all of the layer is ejected in the splash jet
Large droplet impact on water layers
The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer
Knowledge Acquisition by Networks of Interacting Agents in the Presence of Observation Errors
In this work we investigate knowledge acquisition as performed by multiple
agents interacting as they infer, under the presence of observation errors,
respective models of a complex system. We focus the specific case in which, at
each time step, each agent takes into account its current observation as well
as the average of the models of its neighbors. The agents are connected by a
network of interaction of Erd\H{o}s-Renyi or Barabasi-Albert type. First we
investigate situations in which one of the agents has a different probability
of observation error (higher or lower). It is shown that the influence of this
special agent over the quality of the models inferred by the rest of the
network can be substantial, varying linearly with the respective degree of the
agent with different estimation error. In case the degree of this agent is
taken as a respective fitness parameter, the effect of the different estimation
error is even more pronounced, becoming superlinear. To complement our
analysis, we provide the analytical solution of the overall behavior of the
system. We also investigate the knowledge acquisition dynamic when the agents
are grouped into communities. We verify that the inclusion of edges between
agents (within a community) having higher probability of observation error
promotes the loss of quality in the estimation of the agents in the other
communities.Comment: 10 pages, 7 figures. A working manuscrip
Horizontal and vertical profiles of ozone, carbon monoxide, non-methane hydrocarbons and dimethyl sulphide near the Mace Head observatory, Ireland
International audienceThe distribution of trace gases upwind and above the Mace Head Atmospheric Research Station, Ireland has been determined using measurements made from aircraft. The observations indicate excellent agreement between most non-methane hydrocarbons, dimethyl sulphide (DMS) and ozone measured at the surface, at 390 m overhead and in upwind boundary layer regions of the coastal Atlantic. Vertical profiles above the observatory indicated that local convective events result in a marine influence being detected at 3 km and above. The observation of isoprene from maritime sources at these levels was indicative of very rapid uplift on the hour timescale. Measurements of trace gases were also made directly upwind of the observatory over coastal regions and as far as the deep open ocean beyond the continental shelf. A maximum of 240 pptV DMS was observed in the boundary layer near to the shelf region, declining to a concentration of around 40 pptV at the coastline. The upwelling of nutrient rich waters at the ocean shelf location may be a possible explanation for the high abundance of DMS in these regions. The observations suggest that this region, some 150?200 km from the observatory, would under these environmental conditions have a major influence in the determining the DMS observed on-shore. The spatial distribution of ethene within boundary layer over coastal and deep waters differed significantly from DMS with an almost uniform abundance over all ocean regions
Ly6C hi Monocytes Are Metabolically Reprogrammed in the Blood during Inflammatory Stimulation and Require Intact OxPhos for Chemotaxis and Monocyte to Macrophage Differentiation
Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6GāLy6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair
Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development
STUDY QUESTION
What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)?
SUMMARY ANSWER
An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases.
WHAT IS KNOWN ALREADY
Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear.
STUDY, DESIGN, SIZE, DURATION
This study was a retrospective review of investigations performed on 122 boys.
PARTICIPANTS/MATERIALS, SETTING, METHODS
All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1ā11). Details of phenotype, endocrine and genetic investigations were obtained from case records.
MAIN RESULTS AND THE ROLE OF CHANCE
An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1ā10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5ā11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5ā11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1ā9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations.
LIMITATIONS, REASONS FOR CAUTION
A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel.
WIDER IMPLICATIONS OF THE FINDINGS
The lack of a clear association between the extent of under-masculinization and presence of endocrine and genetic abnormalities suggests a role for parallel endocrine and genetic investigations in cases of suspected XY DSD
Can clade age alone explain the relationship between body size and diversity?
One of the most striking patterns observed among animals is that smaller-bodied taxa are generally much more diverse than larger-bodied taxa. This observation seems to be explained by the mere fact that smaller-bodied taxa tend to have an older evolutionary origin and have therefore had more time to diversify. A few studies, based on the prevailing null model of diversification (i.e. the stochastic constant-rate birthādeath model), have suggested that this is indeed the correct explanation, and body-size dependence of speciation and extinction rates does not play a role. However, there are several potential shortcomings to these studies: a suboptimal statistical procedure and a relatively narrow range of body sizes in the analysed data. Here, we present a more coherent statistical approach, maximizing the likelihood of the constant-rate birthādeath model with allometric scaling of speciation and extinction rates, given data on extant diversity, clade age and average body size in each clade. We applied our method to a dataset compiled from the literature that includes a wide range of Metazoan taxa (range from midges to elephants). We find that the higher diversity among small animals is indeed, partly, caused by higher clade age. However, it is also partly caused by the body-size dependence of speciation and extinction rates. We find that both the speciation rate and extinction rate decrease with body size such that the net diversification rate is close to 0. Even more interestingly, the allometric scaling exponent of speciation and extinction rates is approximately ā0.25, which implies that the per generation speciation and extinction rates are independent of body size. This suggests that the observed relationship between diversity and body size pattern can be explained by clade age alone, but only if clade age is measured in generations rather than years. Thus, we argue that the most parsimonious explanation for the observation that smaller-bodied taxa are more diverse is that their evolutionary clock ticks faster
- ā¦