376 research outputs found

    Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    Get PDF
    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed

    The Identification of Scientific Programs to Utilize the Space Environment

    Get PDF
    A program to identify and develop ideas for scientific experimentation on the long duration exposure facility (LDEF) was completed. Four research proposals were developed: (1) Ultra pure germanium gamma ray radiation detectors in the space environment, intended to develop and demonstrate an X-ray and gamma-ray spectroscopy system incorporating a temperature cyclable high-purity germanium detector and diode heat pipe cryogenic system for cooling, (2) growth, morphogenesis and metabolism of plant embryos in the zero-gravity environment, to investigate if the space environment induces mutations in the embryogenic cells so that mutants of commercial significance with desirable attributes may be obtained, (3) effect of zero gravity on the growth and pathogenicity of selected zoopathic fungi. It is possible that new kinds of treatment for candidiasis, and tichophytosis could eventuate from the results of the proposed studies, and (4) importance of gravity to survival strategies of small animals. Gravitational effects may be direct or mediate the selection of genetic variants that are preadapted to weightlessness

    Temperature measurements behind reflected shock waves in air

    Get PDF
    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems

    Consideration of permanent tidal deformation in the orbit determination and data analysis for the Topex/Poseidon mission

    Get PDF
    The effects of the permanent tidal effects of the Sun and Moon with specific applications to satellite altimeter data reduction are reviewed in the context of a consistent definition of geoid undulations. Three situations are applicable not only for altimeter reduction and geoid definition, but also for the second degree zonal harmonic of the geopotential and the equatorial radius. A recommendation is made that sea surface heights and geoid undulations placed on the Topex/Poseidon geophysical data record should be referred to the mean Earth case (i.e., with the permanent effects of the Sun and Moon included). Numerical constants for a number of parameters, including a flattening and geoid geopotential, are included

    A 40th deg and order gravitational field model for Mars

    Get PDF
    Understanding the origin and evolution of major photographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, will require improved resolution of that planet's gravitational and topographic fields. The highest resolution gravity model for Mars published to date was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft, and is of 18th degree and order. That field has a maximum spatial resolution of approx. 600 km, which is comparable to that of the best topographic model. The resolution of previous gravity models was limited not by data density, but rather by the computational resources available at the time. Because this restriction is no longer a limitation, the Viking and Mariner data sets were reanalyzed and a gravitational field was derived complete to the 40th degree and order with a corresponding maximum spatial resolution of 300 km where the data permit

    Contribution of the Pacific Decadal Oscillation to Global Mean Sea Level Trends

    Get PDF
    Understanding and explaining the trend in global mean sea level (GMSL) have important implications for future projections of sea level rise. While measurements from satellite altimetry have provided accurate estimates of GMSL, the modern altimetry record has only now reached 20 years in length, making it difficult to assess the contribution of decadal to multidecadal climate signals to the global trend. Here, we use a sea level reconstruction to study the 20 year trends in sea level since 1950. In particular, we show that the Pacific Decadal Oscillation (PDO) contributes significantly to the 20 year trends in GMSL. We estimate the PDO contribution to the GMSL trend over the past 20 years to be approximately 0.49 ± 0.25 mm/year and find that removing the PDO contribution reduces the acceleration in GMSL estimated over the past 60 years. Key Points The PDO has contributed 0.49 mm/yr to the current altimetry GMSL trend The PDO has a large impact on regional and global sea level trends Reconstructions allow for the study of decadal-scale climate variability

    Optimizing the Earth-LISA "rendez-vous"

    Get PDF
    We present a general survey of heliocentric LISA orbits, hoping it might help in the exercise of rescoping the mission. We try to semi-analytically optimize the orbital parameters in order to minimize the disturbances coming from the Earth-LISA interaction. In a set of numerical simulations we include nonautonomous perturbations and provide an estimate of Doppler shift and breathing as a function of the trailing angle.Comment: 18 pages, 16 figures. Submitted on CQ

    An Ongoing Shift in Pacific Ocean Sea Level

    Get PDF
    Based on the satellite altimeter data, sea level off the west coast of the United States has increased over the past 5 years, while sea level in the western tropical Pacific has declined. Understanding whether this is a short‐term shift or the beginning of a longer‐term change in sea level has important implications for coastal planning efforts in the coming decades. Here, we identify and quantify the recent shift in Pacific Ocean sea level, and also seek to describe the variability in a manner consistent with recent descriptions of El Nino‐Southern Oscillation (ENSO) and particularly the Pacific Decadal Oscillation (PDO). More specifically, we extract two dominant modes of sea level variability, one related to the biennial oscillation associated with ENSO and the other representative of lower‐frequency variability with a strong signal in the northern Pacific. We rely on cyclostationary empirical orthogonal function (CSEOF) analysis along with sea level reconstructions to describe these modes and provide historical context for the recent sea level changes observed in the Pacific. As a result, we find that a shift in sea level has occurred in the Pacific Ocean over the past few years that will likely persist in the coming years, leading to substantially higher sea level off the west coast of the United States and lower sea level in the western tropical Pacific. Sea level in the Pacific has undergone a shift in the past 5 years, with sea level in the eastern (western) Pacific rising (falling) Sea level variability in the Pacific Ocean has been separated into a biennial oscillation mode and a decadal mode This shift appears to result from a change of phase of a low‐frequency climate signal, that could continue on for the next several year

    Ice mass change in Greenland and Antarctica between 1993 and 2013 from satellite gravity measurements

    Get PDF
    We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a Principal Component Analysis to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite track-ing data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low and high degree potential coe�cients re ected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily in uenced by interannual variations

    Co-Culture of Endothelial Cells and Smooth Muscle Cells in a Flow Environment: An Improved Culture Model of the Vascular Wall?

    Get PDF
    Numerous studies have demonstrated that the neighboring smooth muscle cells (SMC) influence the morphology, cytoskeleton and growth of co-cultured endothelial cells (EC). Also, flow-induced laminar shear stress has been shown to induce cell elongation, F-actin reorganization and growth inhibition in cultured EC. We investigated the effect of neighboring SMC and collagen matrix on the response of EC to shear stress. The co-culture system was made by growing porcine aortic SMC in a gel of collagen type I and then seeding porcine aortic EC (P AEC) on the top surface. Then the co-culture was exposed to steady, laminar shear stress of 10 and 30 dynes/cm2 in a parallel-plate flow chamber. EC had a different morphology when cultured on top of collagen gels as compared to cells grown on plastic. When grown in static co-culture with SMC, EC were already elongated and showed a random wavy pattern of orientation. When exposed to 30 dynes/cm2, the EC aligned with the direction of flow after 24 to 48 hours. We suggest that the elongation and orientation of the EC, when cultured on a collagen matrix under static conditions, may be due to contact guidance on the collagen fibers previously rearranged by the SMC during gel retraction. Shear stress, however, was sufficient to induce cell orientation along the direction of flow
    corecore