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Abstract
We present a general survey of heliocentric LISA orbits, hoping that it might
help in the exercise of rescoping the mission. We try to semi-analytically
optimize the orbital parameters in order to minimize the disturbances coming
from the Earth–LISA interaction. In a set of numerical simulations, we include
non-autonomous perturbations and provide an estimate of Doppler shift and
breathing as a function of the trailing angle.

PACS numbers: 04.80.nn, 95.10.Eg

(Some figures may appear in colour only in the online journal)

1. Introduction

The LISA space experiment to detect low-frequency gravitational waves has been for a long
time a priority mission of space agencies, both in Europe and in the US. Recently, there has
been ample discussion [1] on a possible scaled-down version of the LISA mission that, in
order to meet tighter budget constraints, could be characterized by a shorter arm length !, a
closer mean distance from the Earth (a smaller trailing angle) and maybe a 2-arm (4-link)
configuration, giving up the third arm. In this case, it becomes natural to consider a right
angle geometry as an alternative to the traditional, 60◦, equilateral triangle (ET). A discussion
on a so-called New Gravitational Observatory (NGO) is underway within the LISA scientific
community, and its state of the art is summarized in a continuously updated, unpublished
document that goes under the name of NGO Yellow Book [2].

Although other configurations have been considered [1], these triangular ‘constellations’
on heliocentric Earth-trailing orbits still remain the favorite choice. We focus our attention on
the evaluation of the usual kinematic indicators of performance (arm flexing, breathing angles
and Doppler shifts) when reducing both the size of the triangle and the Earth–LISA/NGO

3 Present address: Dipartimento di Fisica, Università di Roma ‘Tor Vergata’ and INFN, Sezione di Roma Tor Vergata,
I-00133 Roma, Italy.
4 Author to whom any correspondence should be addressed.
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distance over the entire mission lifetime. As is well known, the interaction of LISA/NGO with
the Earth is the major perturbation. The dominant effect is a parabolic drift characterized by a
‘rendezvous’ (RV) at which the distance between the constellation and the Earth is minimum.
We investigate how additional perturbing effects influence the motion of LISA/NGO around
the RV and how it is possible to optimize it.

In agreement with the science requirements summarized in the NGO Yellow Book we
assume the following guidelines.

• Arm length: ! = 1 Gm. This choice allows a substantial budget reduction while maintaining
a useful bandwidth that extends down to below 3 × 10−3 Hz, preserving sensitivity to some
important classes of astrophysical sources like, e.g., compact binaries. We consider two
configurations: the ET with side ! and an isosceles right triangle (IRT) with two equal
arms of length ! and the third one !

√
2 long. Although it might appear fair to compare

configurations with the same sensitivity rather than same arm length (the sensitivity scales
with the sine of the angle between the arms, and is therefore 14% better in an IRT), the
ET has the added advantage of a third arm that increases its sensitivity, e.g., to stochastic
signals5.

• Flexing. The spacecraft (S/C) relative velocity in the sensitive axis (rate of change of the arm
length) causes a Doppler shift of the laser frequency. Technical constraints on the laser phase
meter [3] set a maximum bandwidth of 20 MHz over a λ = 1.064 µm carrier wavelength,
corresponding to V/c < 6.5 × 10−8 or V < 20 m s−1. For the sake of plot readability, we
note that, as # f = V/λ, the Doppler shift (in MHz) and the longitudinal velocity (in m s−1)
have approximately (within ∼6%) the same numerical value. This is the reason why our
plots report Doppler shifts expressed in m s−1.

• Breathing angle. The relative motion of S/Cs also imposes a continuous adjustment of the
angle between two beams departing from the same corner, in order to track the opposite
S/Cs; this fluctuation over the nominal angle (60◦ or 90◦) is referred to as the breathing
angle (BA). The telescope must therefore be continuously aligned by an optical assembly
tracking mechanism, to keep this mechanism simple (and lightweight) its range should not
exceed BA < ±1.5◦.

• Trailing angle (TA, also referred to as lag angle): LISA/NGO follows the Earth on a
heliocentric circular orbit and TA is the angle between the constellation and the Earth as
seen from the Sun. TA is a good indicator of the Earth–LISA/NGO distance, because the
radial secular motion (away from the Sun) of the constellation is normally much smaller
than the tangential (along the Earth orbit) one. The Earth is the main perturbation source
for the constellation, and a large distance would reduce its effects; however, communication
constraints demand TA as small as possible, compatibly with the above requirements. Initial
conditions are chosen in such a way that over the mission lifetime, TA will not exceed 21◦.

• Mission lifetime. Six years6.

The plan of the paper is as follows: we start by recalling the simple models describing the
interaction between the Sun and LISA (section 2) and the Sun, Earth and LISA (section 3).
In section 4, we describe an optimization method with the aim of an important reduction of

5 An ET, having a smaller distance h from the constellation center (see equation (4)), is in principle more robust
against orbit perturbations, although this does not show in our calculations. ET and IRT (both with ! = 1 Gm) are
the two configurations presently considered by the NGO Science Team for the mission reformulation: we conform to
this choice.
6 The ‘New LISA’ or ‘NGO’ mission is presently (December 2011) considered for a two years lifetime. This is,
however, a recent result that has emerged during the refereeing process. At the time of writing the manuscript, an
optimistic, high-end hypothesis of six years mission life was considered (Jennrich, private communication). It will be
anyway always desirable, if conditions allow, to extend the duration as much as possible.
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flexing, breathing angles and Doppler shifts. We test this method first on the simplified Sun–
Earth–LISA/NGO model and then on a more complete model including the real gravitational
effects due to the dynamics of the solar system. Finally, in section 5 conclusions are drawn.

While graphs and details are given below, we anticipate here some results.

• As far as Doppler and breathing requirements are concerned, a short LISA (an NGO) can
safely be put in an orbit much closer to the Earth: TA ≈ 12◦ at RV (the baseline design was
20◦) or 31 Gm.

• Should we give up the third arm (keep only 4 optical links), a right-angled triangle can be
employed and performs at least as well as the usual ET in several of the tests (Doppler,
breathing, etc) we carried out.

2. Keplerian orbits

We describe the interaction of LISA/NGO with the Earth in the framework of the Hill–
Clohessy–Wiltshire (HCW) system [4, 5]: this is a rotating reference frame where the equations
of motion are calculated via standard Lagrangian methods. In this and the following section,
we will assume the Sun at rest in an inertial reference frame. The origin of the HCW frame
rotates around the Sun on a circular reference orbit of radius R0 and with orthogonal axes
oriented as follows: x is directed radially opposite to the Sun, y is in the direction tangent to
the motion and z is perpendicular to the ecliptic. The time evolution of these orbits can be
described with adequate precision using the post-epicyclic approximation in the HCW frame
[6, 7].

2.1. Zeroth-order approximation

Under the effect of the Sun only, at zeroth order, the equations of motion for a S/C in the
rotating frame are

ẍ − 2ωẏ − 3ω2x = 0,

ÿ + 2ωẋ = 0,

z̈ + ω2z = 0,
(1)

where ω =
√

GM'/R3
0 is the mean motion and the most general solution is a combination of

an ellipse in the xy plane and an oscillation in the z direction

x(t) = 2
(

2x0 + ẏ0

ω

)
−

(
2

ẏ0

ω
+ 3x0

)
cos ωt + ẋ0

ω
sin ωt,

y(t) = y0 − 2
ẋ0

ω
− 3 (ẏ0 + 2ωx0) t + 2

ẋ0

ω
cos ωt + 2

(
2

ẏ0

ω
+ 3x0

)
sin ωt,

z(t) = z0 cos ωt + ż0

ω
sin ωt.

(2)

The first, most natural choice, that removes drifts and offsets, is to set ẏ0 = −2ωx0 and
ẋ0 = ωy0/2, so that the trajectory is reduced to a combination of simple oscillations along the
three axes. We shall later see, in section 4.2, how a different, more convenient initial condition
can be chosen. Moreover, for a rigid, polygonal constellation, the distance of the S/C from the
origin must be constant, say h, so that we obtain [8]

ż0 = ±
√

3
2

ωy0, z0 = ±
√

3x0, y0 = ±
√

h2 − 4x2
0, x0 = ±h

2
. (3)

The orbit of one of the S/Cs in the HCW frame is a circular motion with constant angular
velocity ω and radius h around the origin in a plane inclined at ±60◦ with respect to the xy
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(ecliptic) plane. A second S/C, describing the same path (with a certain delay), will be at a
constant distance !, from the first one. For n such S/Cs, on the vertices of a regular polygon,
their distance h from the origin and the relative phase delay are

h = !

2 sin(π/n)
, φ = 2π

n
.

Finally, we choose x0 = +h/2 to be consistent with the notations of [9, 6] and the zeroth-order
orbits turn out to be

r(0)
k (t) = !

2 sin(π/n)

[
1
2

cos σk, sin σk,

√
3

2
cos σk

]

, σk = 2π (k − 1)

n
− ωt. (4)

The ET constellation is obtained with n = 3 and k = 1, 2, 3, while the IRT one corresponds
to n = 4 (and k = 1, 2, 3), namely

r(0)
k (t) = !√

2

[
1
2

cos σk, sin σk,

√
3

2
cos σk

]

, σk = (k − 1)
π

2
− ωt.

2.2. First-order approximation

The first optimization is possible by changing the tilt angle of the constellation, i.e. the
inclination of the triangle with respect to the ecliptic. Introducing a parameter δ1 [6] such that,

±60◦ + δ1
!

2R0
,

the first-order corrections

r(1)
k (t) =

(
x(1)

k , y(1)
k , z(1)

k

)
, (5)

are

x(1)
k (t) = h2

2R0

[
3
2

(
1
2

− δ1

)
cos σk − 1

8
cos 2σk − 5

8

]
,

y(1)
k (t) = h2

2R0

[(
3
2

− 3δ1

)
sin σk − 1

2
sin 2σk

]
, (6)

z(1)
k (t) = h2

2R0

[√
3

2
(δ1 − 1) cos σk − 1

4

√
3 cos 2σk + 3

√
3

4

]

,

where h = !/
√

3 for the ET configuration and h = !/
√

2 for the IRT. It can be shown [6]
that, due to the small eccentricity and inclination of the orbits, the solution given by the above
zeroth- and first-order terms differs from the exact Keplerian solution by less than 0.03%
making the method of analytical series expansion a useful basis for an analytical model of the
motions of LISA/NGO.

Choosing δ1 = 5/8, the first-order (Keplerian) flexing is minimized in both ET and IRT
configurations, giving, with arm lengths of order 1 Gm, an extra angle of respectively 7′ and
4′. In table 1, we report some orbit indicators (flexing, breathing angles and Doppler shifts)
relative to both IRT and ET configurations for δ1 = 0 and δ1 = 5/8. The indicators #+ and
#− represent the difference between the maximum and minimum (respectively) value and the
nominal value of a given parameter, over the six years of the mission.
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Table 1. Change of the relevant orbit indicators (arm length, breathing, Doppler modulation) for
the three S/Cs, for both IRT and ET configurations, in the standard δ1 = 0 and modified δ1 = 5/8
inclination. For each indicator, nominal value, average and deviations #+ and #− (see section 2.2),
relative to the nominal value over a mission lifetime of 6 years are shown.

IRT ET

δ1 = 0 Nominal Mean #+ #− Nominal Mean #+ #−

L12 (km) 106 1001 333 +5210 −969 106 1001 088 +3852 −757
L23 (km) 106 1001 333 +5210 −969 106 1001 088 +3859 −752
L31 (km)

√
2 106 1416 098 +4988 −1248 106 1001 088 +3852 −757

θ1 (deg) 45 60 60.00 +0.27 −0.18
θ2 (deg) 90 90.00 +0.36 −0.26 60 60.00 +0.27 −0.18
θ3 (deg) 45 60 60.00 +0.27 −0.18
#v12 (m s−1) – −0.11 +5.00 −5.16 – 0.00 +0.87 −0.87
#v23 (m s−1) – +0.16 +5.00 −4.55 – 0.00 +0.87 −0.87
#v31 (m s−1) – 0.00 +0.87 −0.87
δ1 = 5/8 Nominal Mean #+ #− Nominal Mean #+ #−

L12 (km) 106 999 115 +786 −2554 106 999 277 +241 −1686
L23 (km) 106 999 115 +786 −2554 106 999 277 +241 −1686
L31 (km)

√
2 106 1412 962 −1251 −1253 106 999 277 +241 −1686

θ1 (deg) 45 60 60.00 +0.09 −0.09
θ2 (deg) 90 90.00 +0.12 −0.12 60 60.00 +0.09 −0.09
θ3 (deg) 45 60 60.00 +0.09 −0.09
#v12 (m s−1) – 0.00 +0.27 −0.27 – 0.00 +0.16 −0.16
#v23 (m s−1) – 0.00 +0.27 −0.27 – 0.00 +0.16 −0.16
#v31 (m s−1) – 0.00 +0.16 −0.16

3. The Earth effect

We now include the perturbation due to the Earth.
In the analytic approach, the Earth is assumed at rest in the Hill frame. As shown in [9], in

the rotating frame, the global dynamics in the coupled fields of Sun and Earth is characterized
by secular terms producing, in the long run, a drift away from the Earth; this is linear in time
in the radial direction and quadratic in the tangential direction.

In order to minimize this quadratic y drift, an intuitive strategy is to choose initial
conditions such that LISA/NGO is a little further out at start, approaches the Earth, reaches its
minimum distance at mid-mission and departs after that [10]. However, other strategies can
be devised that provide better performance of the constellation. An appreciable reduction of
the flexing due to the Earth tidal field is in any case possible, over a limited time span, by
suitable tuning of all orbital parameters [11–13]. In our analytical approach, in order to keep
things simple, we still use three identical orbits (apart for relative phase shifts, see (4)) for
the three S/Cs of the constellation and, in addition to the above specs, we try and vary the
tilt angle δ1 and a subset of the initial conditions. We first consider a simplified model, where
the Earth describes a circular orbit of radius R0 = 1 AU around the Sun on the xy plane
[14, 9]. Introducing the minimum trailing angle TA0, taking place at time t0, the Earth
coordinates (x⊕, y⊕, z⊕) in the HCW frame are

x⊕ = −R0(1 − cos(TA0)), y⊕ = R0 sin(TA0), z⊕ = 0.

5
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We consider its effect as a constant + linear force to be added to the equations of motion.
We define the distance of the Earth from the origin, d⊕ =

√
x2
⊕ + y2

⊕, and introduce the
perturbation parameter

ε⊕ = M⊕

M'

(
R0

d⊕

)3

,
M⊕

M'
= 1

328 900
(7)

so that the effect of the Earth is given by the perturbation
f⊕x = ε⊕ω2(x⊕ + C11x + C12y),

f⊕y = ε⊕ω2(y⊕ + C12x + C22y),

f⊕z = ε⊕ω2(z⊕ − z),
where

C11 =
2x2

⊕ − y2
⊕

d2
⊕

, C12 = 3x⊕y⊕

d2
⊕

, C22 =
2y2

⊕ − x2
⊕

d2
⊕

. (8)

The equations of motion can be solved with the perturbation method and the solutions, to be
added to the zeroth- and first-order solutions, are of the form

x(E )
k (t) = (Ak,x + Bk,xt) sin ωt + (Ck,x + Dk,xt) cos ωt + Ek,x + Fxt,

y(E )
k (t) = (Ak,y + Bk,yt) sin ωt + (Ck,y + Dk,yt) cos ωt + Ek,y + Fk,yt + Gyt2, (9)

z(E )
k (t) = (Ak,z + Bk,zt) sin ωt + (Ck,z + Dk,zt) cos ωt.

The integration constants Ai . . . Gy are defined by the choice of initial conditions (see
appendix A). The secular terms appearing in the solution generate the parabolic drift around
the RV (see appendix B).

By collecting terms, the orbit of the S/Ck is

rk(t) = r(0)
k (t) + r(1)

k (t) + r(E )
k (t), (10)

where the zeroth- and first-order terms are, respectively, given by (4) and (5) and r(E )
k (t) is

given by (9). The terms growing as t and t2 in (respectively) x(E )(t) and y(E )(t) vanish when
one calculates the relative motion between S/Cs, with Fx and Gy being equal for all S/Cs;
therefore, the increase in flexing with time is only due to the secular terms as t sin t and t cos t.

It is now useful to define some quantities in the heliocentric frame.

• Unit vectors of the rotating frame axes:
ux = {cos(ωt − TA0), sin(ωt − TA0), 0},
uy = {− sin(ωt − TA0), cos(ωt − TA0), 0},
uz = {0, 0, 1}.

• Position of the Earth: R⊕(t) = R0{cos ωt, sin ωt, 0}.
• Orbit of S/Ck:

Rk(t) = (R0 + xk(t))ux + yk(t)uy + zk(t)uz. (11)

• LISA/NGO barycenter position: Rg(t) = 1
3

∑
k Rk(t).

• LISA/NGO arm vectors: Ri j(t) = ri j(t) = r j(t) − ri(t).
• LISA/NGO arm lengths: Li j(t) = |ri j(t)| = |R j(t) − Ri(t)|.
• Doppler shifts: vi j(t) = d

dt Li j(t).
• Trailing angle:

TA(t) = 180
π

arccos
(

R⊕(t) · Rg(t)
R0Rg(t)

)
.

• Breathing angles:

θ j(t) = 180
π

arccos
(

ri j(t) · r jk(t)
Li j(t)Ljk(t)

)
.
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Figure 1. Effect of the Earth (not optimized, analytical derivation). Left: maximum Doppler shift
in m s−1. Right: maximum change of the angle between L12 and L13 (short arms in the IRT). Full
curves: ET, dashed curves: IRT. All curves represent the pessimistic scenario, i.e. refer to the one
arm that performs worst. No relevant variation appears, however, from one arm to another.

4. Minimization of the flexing

We shall address the choice of an orbit that minimizes the flexing of the arms in three steps:
first, by optimizing with respect to the tilt angle only. Then, by perturbing the initial conditions
of the three S/Cs in a still analytic approach. Finally, with a fully numerical integration of the
S/C orbits, taking into account all major perturbing effects. The mission begins at the time tini

and is assumed to last #t = 6 years. We refer to ‘mid-mission’ or tmid = tini + 3 years as the
time half-way into the mission.

In the panels of figure 1, we consider both the ET (full curves) and the IRT (dashed curves)
configurations: for these plots the optimization is carried out simply by evaluating the optimal
tilt angle over the mission lifetime of six years. Optimization is performed by minimizing the
RMS flexing of the three arms over the entire mission duration. The time of closest approach
to the Earth is three years after the mission starts and this identifies TA0.

The requirement on the Doppler shift (V < 20 m s−1) shows that we can reduce the
minimum TA to less than 10◦ for both cases (8◦ for the IRT). By choosing an optimal tilt angle,
we can strongly reduce the rms flexing of the arms; this angle always turns out to slightly
differ from the canonical 60◦. On the other hand, the breathing angle requirement of ±1.5◦

sets a limit at TA * 14◦. Breathing appears, therefore, the major obstacle to an appreciable
reduction of TA. In the following subsection, we attempt a more general optimization strategy.

4.1. Cost function

In order to extend the optimization to a wider set of parameters, we need to introduce a ‘cost
function’, i.e. a suitable function of the relevant quantities (the flexing) that has to be minimized.
To this purpose, we define the following cost function, suitable for both configurations (and
therefore different from those proposed in [11]):

σ 2 = 〈(L12 − 〈L12〉)2 + (L23 − 〈L23〉)2 + (L31 − 〈L31〉)2〉, (12)

where

〈· · ·〉 = 1
#t

∫ tfin

tini

. . . dt

7
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indicates average over the mission time. Although in the IRT case the third arm is not monitored
and its flexing could appear as a useless burden to the cost function, we maintained the same
σ 2, as defined in (12), for both configurations: minimizing the flexing of all arms is a way to
render the triangle ‘more rigid’ and is an effective strategy, as we shall show, to minimize the
breathing angle as well.

4.2. Perturbation of initial conditions—semi-analytic approach

As we extend our optimization strategy, remaining as close as possible to an analytic approach,
we must restrict the space of free parameters. Our choice is a subset of the initial conditions
of the unperturbed orbits. The Earth produces linear and secular terms in the orbits, as shown
by (9). On the other hand, (2) shows that, in general, a linear drift exists in the y component
(that we canceled by setting 2ωx0 + ẏ0 = 0). We can, therefore, modify the initial conditions
(3) by adding a suitable offset such that these two linear drifts compensate each other.

Therefore, if we set

x0,k = − ẏ0,k

2 ω
+ εk, k = 1, 2, 3, (13)

the first two components of the position vector (4) become

x(0)
k = !

2 sin(π/n)

1
2

cos σk + εk(4 − 3 cos ωt),

y(0)
k = !

2 sin(π/n)
sin σk − 6εk(ωt − sin ωt),

(14)

while the third one is unchanged.
In this way trajectories and arm lengths are affected by a perturbation which grows

linearly in time. In the expansion (10) we modify only the zeroth-order terms: in principle, the
variation should be propagated through the higher order terms, but the contribution is of the
order of ε!/R in the first-order terms and even smaller in the term describing the Earth effect:
we can therefore safely neglect them.

The required amount of this variation can be determined by minimizing the cost function
σ 2(ε1, ε2, ε3, δ1) defined in (12). However, the analytic expression for σ 2 is sufficiently
cumbersome to impose a numerical minimization: this, on the other hand, allows us to use the
exact equations of motion

ẍk − 2ωẏk − ω2(xk + R0) = fx,k

ÿk + 2ωẋk − ω2yk = fy,k

z̈k = fz,k,

(15)

where fk is the Sun+Earth force per unit mass acting on the kth S/C, expressed in the HCW
coordinate system.

Setting the RV at t0 = tmid, for the IRT and ET configurations respectively, the minima
correspond to

IRT : δ1 = 0.808, ε1 = 867 km, ε2 = 519 km, ε3 = 66 km,

ET : δ1 = 0.894, ε1 = 523 km, ε2 = 64 km, ε3 = 7 km.
(16)

The results of the optimization are reported in table 2. The trailing angles in both cases at tini

and tfin are 12.8◦ (33 Gm from the Earth). The improvement in the values of the performance
indicators in the optimized cases is quite evident.

8
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Table 2. Variation of the same orbital indicators as in table 1 (arm length, breathing, Doppler
modulation) including the Earth effect (assumed on a circular orbit) corresponding to the optimal
data of (16) for the IRT and ET constellations (left and right, respectively).

IRT ET

Not opt. Nominal Mean #+ #− Nominal Mean #+ #−

L12 (km) 106 1004 681 +47 356 −32 740 106 1005 887 +54 846 −36 195
L23 (km) 106 1005 025 +55 742 −42 716 106 1001 830 +16 574 −16 501
L31 (km)

√
2 106 1425 000 +92 213 −59 335 106 1006 176 +59 722 −40 762

θ1 (deg) 60 59.73 +2.71 −3.50
θ2 (deg) 90 90.30 +4.27 −2.89 60 60.14 +3.91 −3.48
θ3 (deg) 60 60.11 +4.00 −3.48
#v12 (m s−1) – −0.36 +8.76 −12.15 −0.30 +10.93 −13.95
#v23 (m s−1) – +0.49 +13.07 −10.17 +0.06 +5.62 −5.04
#v31 (m s−1) +0.43 +14.72 −12.79

Optimized Nominal Mean #+ #− Nominal Mean #+ #−

L12 (km) 106 999 363 +14 322 −16 976 106 999 440 +13 569 −16 262
L23 (km) 106 999 284 +14 665 −15 256 106 999 228 +12 924 −15 261
L31 (km)

√
2 106 1413 390 +18 695 −21 444 106 999 353 +12 793 −15 472

θ1 (deg) 60 59.99 +1.15 −1.16
θ2 (deg) 90 90.01 +1.48 −1.50 60 60.00 +1.19 −1.24
θ3 (deg) 60 60.01 +1.27 −1.26
#v12 (m s−1) – −0.11 +5.00 −5.16 – −0.08 +4.88 −5.14
#v23 (m s−1) – +0.16 +5.00 −4.55 – +0.01 +5.02 −5.05
#v31 (m s−1) – +0.14 +4.97 −4.69

4.3. Numerical optimization

In this section, we describe the fully numeric evaluation and minimization of the cost
function (12) by solving the exact equations of motion and taking into account the
perturbing effect of the Sun, Venus, Earth, Moon, Mars and Jupiter. Their real trajectories
R'(t),R⊕(t),R (t),R (t),R (t),R (t) in the solar system barycenter (SSB), are

provided by the JPL HORIZON ephemerides [15], with the following characteristics:

• Reference epoch: J2000.0.
• XY -plane: plane of the Earth’s orbit at the reference epoch.
• X-axis: out along ascending node of instantaneous plane of the Earth’s orbit and the Earth’s

mean equator at the reference epoch.
• Z-axis: perpendicular to the XY-plane in the directional (+ or −) sense of Earth’s north pole

at the reference epoch.
• Step: 1 day.

In the simplified model used till here, the Sun is assumed at rest at the center of an inertial
frame. However, the true inertial frame is represented by the SSB, where the Sun moves in a
non-negligible and complex (not simply periodic) way: in this frame the motion of the Earth
is substantially different from an ellipse, and therefore the initial condition that we adopted
for the S/Cs using (2) is no longer suitable. Moreover, the motion of the Sun is also a relevant
source of perturbation. Therefore, to account for these additional effects while maintaining the
convenient, Sun-centered HCW description, we must complete the equations of motion with
an apparent force deriving from the acceleration of the Sun relative to the SSB.

The equations of motion are as (15), with the forcing term modified as follows:

fx,k = (fk − R̈') · ux, fy,k = (fk − R̈') · uy, fz,k = (fk − R̈') · uz,

9
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Table 3. Variation of the same orbital indicators as in tables 1 and 2 (arm length, breathing,
Doppler modulation) including the effect of the main bodies of the Solar System for the IRT and
ET constellations (left and right, respectively).

IRT ET

RV at tini Nominal Mean #+ #− Nominal Mean #+ #−

L12 (km) 106 1001 798 +19 402 −13 718 106 1000 466 +15 507 −15 009
L23 (km) 106 1002 801 +20 096 −11 128 106 1001 006 +27 444 −24 115
L31 (km)

√
2 106 1417 361 +17 162 −9388 106 1001 529 +14 365 −11 594

θ1 (deg) 60 59.99 +1.45 −1.48
θ2 (deg) 90 89.99 +1.48 −1.48 60 60.05 +1.21 −1.42
θ3 (deg) 60 59.94 +1.47 −1.08
#v12 (m s−1) – −0.07 +3.35 −5.14 – −0.05 +3.32 −5.17
#v23 (m s−1) – +0.01 +3.44 −4.62 – −0.08 +3.91 −6.15
#v31 (m s−1) – +0.03 +3.57 −4.46
Distance (Gm) 32.6–54.5 31.4–53.6
TA (deg) 12.5–21.0 12.1–20.7
RV at tmid Nominal Mean #+ #− Nominal Mean #+ #−

L12 (km) 106 1002 735 +25 125 −15 193 106 1001 438 +16 132 −14 048
L23 (km) 106 1002 580 +17 867 −13 678 106 1001 331 +22 290 −22 441
L31 (km)

√
2 106 1418 240 +15 529 −3942 106 1001 359 +14 976 −10 561

θ1 (deg) 60 59.99 +1.18 −1.12
θ2 (deg) 90 90.02 +1.49 −1.49 60 60.00 +1.45 −1.45
θ3 (deg) 60 60.00 +1.46 −1.46
#v12 (m s−1) – −0.04 +4.44 −5.44 – −0.02 +3.86 −3.92
#v23 (m s−1) – +0.06 +4.56 −4.82 – +0.01 +5.52 −5.55
#v31 (m s−1) – +0.04 +3.60 −3.62
Distance (Gm) 36.1–48.6 36.1–48.2
TA (deg) 13.9–18.7 13.8 –18.5

where fk is the total Newtonian force per unit mass on the kth S/C,

fk = −
∑

α

GMα

‖R' − Rα + Rk‖3
(R' − Rα + Rk), α = , (17)

and Rk is the position of the kth S/C in the heliocentric frame (given by (11)).
The amplitude of flexing and breathing scales inversely with the LISA/NGO–Earth

distance. This can be intuitively explained as follows: a small flexing is obtained if the
constellation rapidly moves away from the Earth, its main source of perturbation to a rigid
configuration. However, the overall distance in the mission lifetime must be bound within
reasonable values dictated by communication requirements.

An analytical study of the evolution of the Earth–LISA/NGO distance is shown in
appendix B where it is verified that the LISA/NGO–Earth distance increases as t2, after
(and before) the RV. Moreover, there is an additional sinusoidal modulation at one-year period
due to the eccentricity of the Earth’s orbit. We prove that the minima of the sinusoid occur at
well-defined epochs that depend on the allowed minimum TA, but not on the epoch t0 of the
RV. Therefore, in order to minimize the Earth–LISA/NGO distance, the optimal choice for t0
is just one of these minima (B.5). This shows, as mentioned in section 3, that other choices of
t0, different from tmid, can minimize flexing and breathing.

In the following we shall discuss two cases: t0 = tini and t0 = tmid. The value of TA0 is
chosen as the minimum one that allows a breathing angle smaller than 1.5◦, as required. For
the two configurations and the two kinds of RVs considered, the minima of the cost function
are found at the following values of parameters.

10
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Figure 2. Fully numerical optimization (section 4.3) with respect to both initial conditions and tilt
angle for the IRT configuration. Left panels: RV at the beginning of the mission, right panels: RV at
mid-mission. Top panels: breathing angles. Center panels: Doppler shifts. Lower panels: distance
LISA/NGO–Earth, expressed as TA (red/dashed lines are obtained using (B.6). Ephemerids are
taken such that t = 0 corresponds to 1 January 2018.

IRT–RV at the beginning (t0 = tini):

δ1 = 0.061, ε1 = 430 km, ε2 = −113 km, ε3 = −9 km;
IRT–RV at mid-mission (t0 = tmid):

δ1 = −0.290, ε1 = 28 km, ε2 = −55 km, ε3 = −170 km;
ET–RV at the beginning (t0 = tini):

δ1 = 0.473, ε1 = 70 km, ε2 = −483 km, ε3 = 42 km;

11
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Figure 3. Same as in figure 2, but for the ET configuration. Left panels: RV at the beginning of the
mission, right panels: RV at mid-mission. Top panels: breathing angles. Center panels: Doppler
shifts. Lower panels: distance LISA/NGO–Earth, expressed as TA (red/dashed lines are analytical
predictions obtained using (B.6).

ET–RV at mid-mission (t0 = tmid):

δ1 = −0.047 ε1 = 193 km, ε2 = 52 km, ε3 = 18 km.

Table 3 provides more results and details for the four cases (2 configurations × 2 RV
times) considered here.

Some results are also plotted in figures 2 and 3 for IRT and ET configurations, respectively.
The ranges of LISA/NGO–Earth distances and trailing angles, as well as the initial conditions
for the S/Cs are reported in table 4. We observe that the minimum TA is larger when the RV is

12
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Figure 4. Results of the optimization. Left: maximum Doppler shift in m s−1. Right: maximum
change of the angle between L12 and L13 (short arms in the IRT). Red/dashed curves: ET (RV at the
beginning of the mission), blue/full curves: IRT (RV at the beginning of the mission), brown/dotted
curves: ET (RV at mid-mission), green/dash-dotted curves: IRT (RV at mid-mission).

Table 4. Initial conditions for the IRT (top) and ET (bottom) configurations in the heliocentric
reference frame.

X (t0) Y (t0) Z(t0) Ẋ (t0) Ẏ (t0) Ż(t0)
(Gm) (km) (km) (km h−1) (km h−1) (km h−1)

IRT, RV at tini tmin = 5 Oct. 2018
S/C1 149 932 288 2412 779 612 461 1721 106 957 0
S/C2 149 588 968 1697 856 2895 1471 107 213 438
S/C3 149 222 635 2401 359 609 567 1729 107 465 0

IRT, RV at tmid tmin = 7 Oct. 2018
S/C1 149 753 118 2 563 623 611 220 1831 107 004 10
S/C2 149 404 775 1 872 191 11 110 1595 107 265 438
S/C3 149 042 293 2 568 312 608 484 1845 107 514 9

ET, RV at tini tmin = 5 Oct. 2018
S/C1 149 884 804 553 415 500 457 395 107 017 0
S/C2 149 453 230 51 258 248 057 217 107 327 311
S/C3 149 450 059 1052 373 248 057 576 107 326 311

ET, RV at tmid tmin = 7 Oct. 2018
S/C1 149 701 044 1382 500 499 337 987 107 064 9
S/C2 149 267 830 902 343 257 543 824 107 378 307
S/C3 149 266 254 1881 003 237 763 1167 107 370 314

at mid-mission, but the #TA is smaller. In general, breathing angles within the specs of 1.5◦

can be obtained at a smaller distance from the Earth for the ET than the IRT configuration.
Figure 4 shows, in a synoptic way, the results of our optimization procedure with respect

to Doppler and breathing angle, versus the minimum trailing angle TA0. By comparing these
optimized results with those derived from the simplest model shown in figure 1, we see that,
even considering many more perturbing agents, the optimization manages to reduce both
performance indicators by about a factor of 2, at small TA. Again, we see that the requirement
on the breathing remains the most stringent constraint. However, while complying with keeping
the breathing angle within ±1.5◦, we can address the reduction of flexing following again two
opposite strategies: we can set the RV at the beginning of the mission, achieving the lowest

13
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values of TA0 (we have 12.5◦ for the IRT and 12.1◦ for the ET), and accept a maximum #TA
of about 8.5◦ in both cases. Else, if RV takes place at mid-mission, we must accept larger
values of TA0 (13.9◦ for the IRT and 13.8◦ for the ET), but TA will change much less during
the mission: #TA is less than 4.8◦ in both cases.

5. Conclusions

We have shown that the choice of heliocentric orbits for LISA/NGO is a viable solution even
when reducing the arm length: this allows a substantial reduction in the TA (with beneficial
savings for placement in orbit and communications with the Earth) of an amount that depends
on the assumed mission duration. For an expected mission time of six years, the minimum
value of the TA can be reduced to about 12◦. If a two-link interferometer were preferred for a
new, cheaper version of the LISA mission, the IRT would be a viable configuration, as stable
as the ET in all of the tests we have computed. The amount of flexing that the constellation
undergoes during the mission depends strongly on the initial conditions. The reasons for this
behavior lie mostly in the time-dependent perturbations due to the eccentricity of the Earth
orbit, and to the motion of the Sun with respect to the SSB. A more detailed analysis of these
effects is underway.

Appendix A. Initial conditions for the motion in the Earth field

Equation (9) can be recast in the following, equivalent but more explicit form, where the
constants Ci j of (8) are folded into the solution:

x(2)
k = x⊕ + 2Ak + 2y⊕ωt + Bk cos ωt + Ck sin ωt

+ !
(C11 + 12C22) cos σk + 2(2C12 + (C11 + 4C22)ωt) sin σk

8
√

3
,

y(2)
k = 4y⊕ −

(
3

Ak

2
+ 2x⊕

)
ωt − 3

2
y⊕(ωt)2 + Dk + 2(Ck cos ωt − Bk sin ωt)

− !
(3C11 + 16C22) sin σk − 2(2C12 + (C11 + 4C22)ωt) cos σk

4
√

3
,

z(2)
k = Ek cos σk + Fk sin σk − !

4
σk sin σk,

where the σk are the time-dependent phases (4).
The 18 constants Ak, ..., Fk are determined by the initial conditions, which are chosen

assuming
(
x(E )

k , y(E )
k , z(E )

k

)
= (0, 0, 0) at t = 0.

They are

Ak = − !
2C22 cos σ 0

k − C12 sin σ 0
k√

3
,

Bk = − x⊕ −
√

3!

24

(
(C11 − 4C22) cos σ 0

k + 4C12 sin σ 0
k

)
,

Ck = − 2y⊕ +
√

3!

24

(
(C11 − 4C22) sin σ 0

k − 4C12 cos σ 0
k

)
,

Dk = !

2
√

3
(C12 cos σ 0

k − 2(C11 + 3C22) sin σ 0
k ),

Ek = − !

4
sin2 σ 0

k , Fk = −!

8

(
2σ 0

k − sin 2σ 0
k

)
,

where σ 0
k = 2π (k−1)

n are the relative phase shifts of (4) evaluated at t = 0.
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Appendix B. Distance Earth–LISA/NGO barycenter in epicyclic approximation

Here we calculate the analytic expression for the distance between a particle (i.e. the
LISA/NGO barycenter) and the Earth, taking into account the eccentricity of the orbit.

We consider the Earth orbit in the epicyclic approximation (at t = 0 in the perihelion) in
the inertial frame centered in the Sun:

R⊕(t) = R0

{
cos ωt + e

2
cos 2ωt − 3

2
e, sin ωt + e

2
sin 2ωt, 0

}
. (B.1)

The LISA/NGO barycenter, as a first approximation, can be considered at rest in the HCW
frame at TA0 degrees from the Earth. In the inertial frame its trajectory is

Rg(t) = R0{cos(ωt − TA0), sin(ωt − TA0), 0}.
At zero order, the force of the Earth on the particle is

f = εR0ω
2{ fx + ecx cos ωt + esx sin ωt, fy + ecy cos ωt + esy sin ωt, 0}, (B.2)

where e ≈ 0.016 71 is the eccentricity of the Earth’s orbit and

ε = M⊕

4M'
√

2 − 2 cos TA0
, fx = −2, fy = 2

tan TA0/2
,

cx = 2
cos TA0 − 1

− 1, cy = 1
tan TA0/2

,

sx = 2
tan TA0/2

, sy = 8
cos TA0 − 1

+ 2.

The new perturbation parameter (ε = 2.6×10−4 for TA0 = 10◦) is slightly different from that
introduced in (7) to show the explicit dependence on TA0. The coefficients ecx, ecy, esx and
esy are much smaller than fx and fy and, therefore, we neglect the terms proportional to eε in
(B.2) and solve perturbatively the HCW equations, assuming rg = {0, 0, 0} as the unperturbed
motion. We calculate the perturbation r1(t) with the assumptions r1(t0) = {0, 0, 0} and
ṙ1(t0) = {0, 0, 0}, where t0 is the epoch at which we put the particle at TA0 degrees from the
Earth. Letting t ′ = t − t0 we have

r1(t ′) = εR0{ fx(1 − cos ωt ′) + 2 fy(ωt ′ − sin ωt ′),
2 fx(sin ωt ′ − ωt ′) + fy(4 − 4 cos ωt ′ − 3/2ω2t ′2),
0}.

(B.3)

We transform (B.3) in the inertial coordinates using (11) and calculate the distance d(t) of
the particle from the Earth using expression (B.1). Finally, we expand in the Taylor series the
distance to the first order in e and ε:

d(t) = d0 + e d1(t) + ε d2(t) + O(e2), (B.4)

where

d0 = R0

√
2 − 2 cos TA0,

d1(t) = R0√
2 − 2 cos TA0

[(cos TA0 − 1) cos ωt + 2 sin TA0 sin ωt],

d2(t ′) = R0

2
√

2 − 2 cos TA0
fx

+ 2 fyωt ′ − fx cos TA0 − 2 fyωt ′ cos TA0 + 1/2(−8 fy + 4 fxωt ′

+ 3 fyω
2t ′2) sin TA0 + cos ωt ′(− fx + fx cos TA0 + 4 fy sin TA0)

+ (−2 fy + 2 fy cos TA0 − 2 fx sin TA0) sin ωt ′.
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The term d0 is a constant and d1 is a sum of sinusoids with 1 year period. The d2 term contains
linear and quadratic terms in t − t0, and is, therefore, negligible for t ≈ t0 because ε . e but
it becomes dominant for larger t.

The epochs of the relative minima and maxima of d(t) depend on TA0 but not on t0. They
are found by equating to zero the first derivative of d1,

2 cos ωt sin TA0 + (1 − cos TA0) sin ωt = 0.

With the additional condition on the second derivative

(1 − cos TA0) cos ωtmin − 2 sin TA0 sin ωtmin > 0,

the minima occur at

tmin,k = − 1
ω

arctan
[

2
tan(TA0/2)

]
+ 2kπ

ω
, k ∈ Z. (B.5)

In the same fashion of (B.4), the TA can be obtained, to first order in e, as

TA(t) = TA0 + 2e sin ωt + ε
[
4 fy(cos ωt ′ − 1) + 2 fx(ωt ′ − sin ωt ′) + 3

2 fy(ωt ′)2] . (B.6)

Although the epochs tmin are obtained using a first-order approximation, they are in good
agreement with the exact values (for an example, see the bottom panels of figuress 2 and 3).
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