19 research outputs found

    Solvent Effect on the Fluorescence Properties of Two Biologically Active Thiophene Carboxamido Molecules

    Get PDF
    The absorption and fluorescence spectra of two thiophene carboxamido molecules namely 2–( - trimethoxy phenyl) imino–3–N–ethylcarboxamido–4, 5, tetramethylene thiophene (X) and 2-( -N, N-dimethylaminophenyl) imino-3-(N- methylphenyl carboxamido)-4, 5, tetramethylene thiophene (Y) have been recorded at room temperature. The ground (mg) and excited (me) state dipole moments are estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet equations by using the variation of Stokes shift with microscopic solvent dielectric constant (e) and refractive index (n). The excited dipole moments were also estimated by using the variation of Stokes shift with microscopic empirical solvent polarity parameter and the values are compared. It was estimated that dipole moments of the excited state were higher than those of the ground state of both the molecules. Further, the change in dipole moment (Dm) were calculated both from solvatochromic shift method and on the basis of microscopic empirical solvent polarity parameter

    Solvent effects on the dipole moments and photo physical properties of laser dye

    Get PDF
    The absorption and emission spectra of fluorescent laser dye namely, 4,4”’-bis-2-butyyloctyl-oxy)-P-quaterphenyl have been recorded at room temperature in solvents of different polarities. The exited state dipole moments (µe) have been estimated from Lippert’s, Bakhshiev’s and Kawski-Chamma-Viallet’s equations using the variation of Stoke’s shift with the solvent dielectric constant and refractive index. The geometry of the molecule has been fully optimized and the µg has also been calculated theoretically by Gaussian 03 software using B3LYP/6-31g* level of theory. The µg and µe have been calculated by means of solvatochromic shift method. It has been observed that µe is higher than µg, indicating a substantial redistribution of the π-electron densities in a more polar excited state for the selected laser dye. Further, the changes in the dipole moment (µ) has been calculated both from solvatochromic shift method and microscopic empirical solvent polarity parameter (E) and values are compared.

    Solvent Effect on Fluorescence Quenching of 7, 8 Benzo‑4‑azido Methyl Coumarin by Aniline

    Get PDF
    Fluorescence quenching of biologically active studies of 7, 8 benzo-4-azidomethyl coumarin (7BAMC) by aniline in four different organic solvents namely benzene, dioxane, tetrahydrofuran and acetonitrile has been carried out at room temperature with a view to understand the quenching mechanisms. The Stern–Volmer (S-V) plot has been found to be non-linear with a positive deviation for all the solvents studied. In order to interpret these results we have invoked the ground state complex formation and sphere of action static quenching models. Using these models various quenching rate parameters have been determined. The magnitudes of these parameters suggest that sphere of action static quenching model agrees well with the experimental results. Hence the positive deviation is attributed to the static and dynamic quenching. Further, with the use of Finite Sink approximation model, it was possible to check these bimolecular reactions as diffusion-limited and to estimate independently distance parameter R’ and mutual diffusion coefficient D. Finally an effort has been made to correlate the values of R’ and D with the values of the encounter distance R and the mutual coefficient D determined using the Edward’s empirical relation and Stokes – Einstein relation

    Effect of hydrogen bonding and solvent polarity on the fluorescence quenching and dipole moment of 2-methoxypyridin-3-yl-3-boronic acid

    Get PDF
    Two photophysical properties namely, fluorescence quenching and dipole moment (both ground state and excited state) of 2-methoxypyridin-3-yl-3-boronic acid (2MPBA) have been investigated in alcohol environment using steady state fluorescence technique at 300 K. In quenching studies, a rare but not unusual observation; negative Stern-Volmer (S-V) deviation has been noticed. It has been explained using the concept of solute’s conformational changes in the ground state due to inter-molecular and intra-molecular hydrogen bonding in alcohol environment. The spectroscopic data has been processed using Lehrer equation and thereby Stern-Volmer constant (KSV) has been evaluated. It has been found to be above 100 for most of the solvents used. The data related to dipole moment has been examined using different solvent polarity functions. Theoretical calculation of dipole moment in the ground state has been done using Gaussian software. The general solute–solvent interactions and hydrogen bond interactions have been found to be operative. An appreciable red shift of about 25 nm in the emission spectra has been identified with the rise in solvent polarity and decrease in molar mass of alcohols. It confirms the π→π* transition as well as the possibility of intra-molecular charge transfer (ICT) character in the emitting singlet state of 2MPBA

    Examining the spectroscopic features and quantum chemical computations of a Quinoline derivative: Experimental and theoretical insights into the photophysical characteristics

    Get PDF
    The solvatochromic studies in a Quinoline derivative molecule namely Quinolin-8-ol (QO) have been carried out at ambient temperature using absorption and fluorescence spectroscopy. The QO molecule shows the bathochromic shift with increase in solvent polarity demonstrating π → π* transition. The solvatochromic data coupled with quantum mechanical calculations has been used to estimate change in dipole moment of the molecule after excitation. It has been found that excited state dipole moment is greater than the corresponding ground state dipole moment. Further, it is observed that excited and ground state dipole moments are parallel. The chemical reactivity and kinetic stability of QO molecule are investigated using Frontier molecular orbital (FMO) analysis. Natural bond orbital (NBO) analysis shows proton transfer within the selected donor-acceptor depicting large energy of stabilization for QO molecule. The calculated Fukui functions infer the local softness and local eletrophilicity index of QO molecule. The theoretically simulated UV-Vis absorption spectrum of QO molecule matches well with the experimental spectrum

    Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate

    Get PDF
    Red Guipuzcoana de Ciencia, Tecnologia e Innovacion OF218/2018 University of Basque Country GIU 17/13 Basque Government IT1005-16 IT1291-19 IT1310-19 Junta de Andalucia FQM-394 Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) PGC2018-102052-A-C22 PGC2018-102052-B-C21 MAT2016-75883-C2-1-P European Union (EU) ESFIn this work, three isostructural metal-organic frameworks based on frst row transition metal ions and 2-aminoisonicotinate (2ain) ligands, namely, {[M(μ-2ain)2]·DMF}n [MII=Co (1), Ni (2), Zn (3)], are evaluated for their sensing capacity of various solvents and metal ions by monitoring the modulation of their magnetic and photoluminescence properties. The crystal structure consists of an open diamond-like topological 3D framework that leaves huge voids, which allows crystallizing two-fold interpenetrated architecture that still retains large porosity. Magnetic measurements performed on 1 reveal the occurrence of feld-induced spin-glass behaviour characterized by a frequency-independent relaxation. Solvent-exchange experiments lead successfully to the replacement of lattice molecules by DMSO and MeOH, which, on its part, show dominating SIM behaviour with low blocking temperatures but substantially high energy barriers for the reversal of the magnetization. Photoluminescence studied at variable temperature on compound 3 show its capacity to provide bright blue emission under UV excitation, which proceeds through a ligand-centred charge transfer mechanism as confrmed by timedependent DFT calculations. Turn-of and/or shift of the emission is observed for suspensions of 3 in diferent solvents and aqueous solutions containing metal ions

    Steady state and time resolved methods of fluorescence quenching of three coumarin dyes using S-V plots

    No full text
    748-753Studies of steady state and time resolved methods of fluorescence quenching of excitation energy of three coumarin dyes by aniline were carried out in toluene solvent only to understand the role of diffusion in the quenching mechanism. The coumarin dyes (dye1, dye2 and dye3) were excited directly by UV radiation of 350 nm and probabilities of quenching per encounter p (or p') were determined in the toluene solvent. Further, the activation energy E'a (or E'a) of quenching was determined using the literature values of activation energy of diffusion Ed and the experimentally determined values of p (or p'). Magnitudes of p (or p') as well as the values of Ea (or E'a) suggest that the quenching reaction is predominantly controlled by material diffusion

    Solvent effects on the dipole moments and photo physical properties of laser dye

    Get PDF
    749-754The absorption and emission spectra of fluorescent laser dye namely, 4,4”’-bis-2-butyyloctyl-oxy)-P-quaterphenyl have been recorded at room temperature in solvents of different polarities. The exited state dipole moments (µe) have been estimated from Lippert’s, Bakhshiev’s and Kawski-Chamma-Viallet’s equations using the variation of Stoke’s shift with the solvent dielectric constant and refractive index. The geometry of the molecule has been fully optimized and the µg has also been calculated theoretically by Gaussian 03 software using B3LYP/6-31g* level of theory. The µg and µe have been calculated by means of solvatochromic shift method. It has been observed that µe is higher than µg, indicating a substantial redistribution of the π-electron densities in a more polar excited state for the selected laser dye. Further, the changes in the dipole moment (µ) has been calculated both from solvatochromic shift method and microscopic empirical solvent polarity parameter (E) and values are compared.
    corecore