235 research outputs found

    Enhancement and reproducibility of high quality factor, one-dimensional photonic crystal/photonic wire (1D PhC/PhW) microcavities

    Get PDF
    Background: The production of compact and multi-functional photonic devices has become a topic of major research activity in recent years. Devices have emerged that can be used for functional requirements in high speed optical data processing, filtering, nonlinear optical functions such as all-optical switching - and many other applications. The combination of photonic crystal (PhC) structures consisting of a single row of holes embedded in a narrow photonic wire (PhW) waveguide realised in high index-contrast materials is a possible contender for provision of a range of compact devices on a single chip. This trend has been motivated by the availability of a silicon technology that can support monolithic integration to form fully functional devices on CMOS chips. Results: We have successfully demonstrated experimentally an enhancement of the quality factor of a one-dimensional (1D) photonic crystal/photonic wire (PhC/PhW) microcavity that can exhibit resonance quality factor (Q-factor) values as high as 800,000 - together with a low modal volume of approximately 0.5 (λ/n)3. These results are based on the use of a mode matching approach previously used for device design - through the engineering of tapered hole sections within and outside the cavity - and were achieved without removing the silica cladding layer below the silicon waveguide core. The simulation results obtained in this case also agree with the experimental results obtained. Conclusions: In this work we have demonstrated that the mode matching, as light enters the photonic crystal structure, can be further enhanced through the use of careful fine tuning of the third hole, t3 of the tapered hole region outside the cavity. The Q-factor value obtained was approximately four times greater than that achieved in our previous work on a similar structure

    Modulational instability in a silicon-on-insulator directional coupler: Role of the coupling-induced group velocity dispersion

    Get PDF
    We report frequency conversion experiments in silicon-on-insulator (SOI) directional couplers. We demonstrate that the evanescent coupling between two subwavelength SOI waveguides is strongly dispersive and significantly modifies modulational instability (MI) spectra through the coupling induced group velocity dispersion (GVD). As the separation between two 380-nm-wide silicon photonic wires decreases, the increasing dispersion of the coupling makes the GVD in the symmetric supermode more normal and suppresses the bandwidth of the MI gain observed for larger separations

    Modelling of photonic wire Bragg Gratings

    No full text
    Some important properties of photonic wire Bragg grating structures have been investigate. The design, obtained as a generalisation of the full-width gap grating, has been modelled using 3D finite-difference time-domain simulations. Different types of stop-band have been observed. The impact of the grating geometry on the lowest order (longest wavelength) stop-band has been investigated - and has identified deeply indented configurations where reduction of the stop-bandwidth and of the reflectivity occurred. Our computational results have been substantially validated by an experimental demonstration of the fundamental stop-band of photonic wire Bragg gratings fabricated on silicon-on-insulator material. The accuracy of two distinct 2D computational models based on the effective index method has also been studied - because of their inherently much greater rapidity and consequent utility for approximate initial designs. A 2D plan-view model has been found to reproduce a large part of the essential features of the spectral response of full 3D models

    Supermode dispersion and waveguide-to-slot mode transition in arrays of silicon-on-insulator waveguides

    Get PDF
    In this Letter, we report group index measurements of the supermodes of an array of two strongly coupled silicon-on-insulator waveguides. We observe coupling-induced dispersion that is greater than the material and waveguide dispersion of the individual waveguides. We demonstrate that the system transforms from supporting the two supermodes associated with two coupled waveguides to the single mode of a slot waveguide within the investigated spectral range. During the cutoff of the antisymmetric supermode, an anti-crossing between the symmetric TM and antisymmetric TE supermodes has been observed

    Graphene Nano-, Micro-and Macro-Photonics

    Get PDF
    ABSTRACT Graphene has already become an established medium for novel photonic devices and their applications. In some cases, e.g. the use of graphene as a non-linear medium with saturable absorption properties, it is experimentally convenient to use the readily available form that is known as graphene oxide. Moreover, technological and scientific developments that are advancing control of the properties of graphene for electronic applications are also likely to be applicable in photonic and optoelectronic devices. This presentation will review research in the field of graphene photonics across the world. It will address, in particular, its application as a saturable absorber, e.g. for pulsed operation of fibre lasers -as well as work on materials characterisation of deposited graphene films. Patterning of graphene films with precision at the microand nano-scales will be an important requirement -and will be considered in this presentation
    corecore