5,615 research outputs found

    Hundred photon microwave ionization of Rydberg atoms in a static electric field

    Full text link
    We present analytical and numerical results for the microwave excitation of nonhydrogenic atoms in a static electric field when up to 1000 photons are required to ionize an atom. For small microwave fields, dynamical localization in photon number leads to exponentially small ionization while above quantum delocalization border ionization goes in a diffusive way. For alkali atoms in a static field the ionization border is much lower than in hydrogen due to internal chaos.Comment: revtex, 4 pages, 5 figure

    One month of cocaine abstinence potentiates rapid dopamine signaling in the nucleus accumbens core

    Get PDF
    Cocaine addiction is a chronic relapsing disorder that is difficult to treat in part because addicts relapse even after extended periods of abstinence. Given the importance of the mesolimbic dopamine (DA) system in drug addiction, we sought to characterize cocaine abstinence induced changes in rapid DA signaling in the nucleus accumbens (NAc). Here, rats were trained to self-administer cocaine for 14 consecutive days, then divided into two groups. Day 1 rats (D1; n = 7) underwent 24 hours of abstinence; Day 30 rats (D30; n = 7) underwent one month of abstinence. After abstinence, all rats underwent a single extinction session. Immediately after, rats were deeply anesthetized and fast scan cyclic voltammetry (FSCV) was used to measure DA release and uptake dynamics in the NAc core before and following a single cocaine injection. We show that one month of cocaine abstinence potentiates the peak concentration of electrically evoked DA in the NAc core following an acute injection of cocaine. This potentiation is not related to alterations in DA uptake parameters, which are unchanged following abstinence, but may reflect alterations in release. These results further support the abundance of literature showing that cocaine abstinence induces neuroplasticity in brain areas implicated in drug reward and relapse. The present findings also demonstrate critical differences between abstinence-induced neuroadaptations in DA signaling and those caused by drug exposure itself

    Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    Full text link
    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet impacts distant from the brain produce pressure waves that travel to the brain and can retain sufficient magnitude to induce brain injury. The link to long-term sequelae could be investigated via epidemiological studies of patients who were gunshot in the chest to determine whether they experience elevated rates of epilepsy and other neurological sequelae

    Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    Get PDF
    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-lm-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers

    Research review: young people leaving care

    Get PDF
    This paper reviews the international research on young people leaving care. Set in the context of a social exclusion framework, it explores young people's accelerated and compressed transitions to adulthood, and discusses the development and classification of leaving care services in responding to their needs. It then considers the evidence from outcome studies and argues that adopting a resilience framework suggests that young people leaving care may fall into three groups: young people 'moving on', 'survivors' and 'victims'. In concluding, it argues that these three pathways are associated with the quality of care young people receive, their transitions from care and the support they receive after care

    Emerging Roles for Long Non-Coding RNAs in Cancer and Neurological Disorders

    Get PDF
    The recent discovery of thousands of long non-coding (lnc)RNAs in the human genome has prompted investigation of the potential roles of these molecules in human biology and medicine. Indeed, it is now well documented that many lncRNAs are involved in key biological processes, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing of pre-mRNA, nuclear organization; and potentially many other biological processes, which are yet to be elucidated. Recently, a number of studies have also reported that lncRNAs are dysregulated in a number of human diseases, including several cancers and neurological disorders. Although many of these studies have fallen short of implicating lncRNAs as causative, they suggest potential roles that warrant further in depth investigations. In this review, we discuss the current state of knowledge regarding the roles of lncRNAs in cancer and neurological disorders, and suggest potential future directions in this rapidly emerging field

    Symmetry breaking in crossed magnetic and electric fields

    Get PDF
    We present the first observations of cylindrical symmetry breaking in highly excited diamagnetic hydrogen with a small crossed electric field, and we give a semiclassical interpretation of this effect. As the small perpendicular electric field is added, the recurrence strengths of closed orbits decrease smoothly to a minimum, and revive again. This phenomenon, caused by interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.Comment: 4 page REVTeX file including 5 postscript files (using psfig) Accepted for publication in Physical Review Letters. Difference from earlier preprint: we have discovered the cause of the earlier apparent discrepancy between experiment and theory and now achieve excellent agreemen
    • ā€¦
    corecore