7,317 research outputs found
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
Magnetic multipole analysis of kagome and artificial ice dipolar arrays
We analyse an array of linearly extended monodomain dipoles forming square
and kagome lattices. We find that its phase diagram contains two (distinct)
finite-entropy kagome ice regimes - one disordered, one algebraic - as well as
a low-temperature ordered phase. In the limit of the islands almost touching,
we find a staircase of corresponding entropy plateaux, which is analytically
captured by a theory based on magnetic charges. For the case of a modified
square ice array, we show that the charges ('monopoles') are excitations
experiencing two distinct Coulomb interactions: a magnetic 'three-dimensional'
one as well as a logarithmic `two dimensional' one of entropic origin.Comment: 4 pages, 2 figures; v2: minor changes as in final published versio
A p-multigrid method enhanced with an ILUT smoother and its comparison to h-multigrid methods within Isogeometric Analysis
Over the years, Isogeometric Analysis has shown to be a successful
alternative to the Finite Element Method (FEM). However, solving the resulting
linear systems of equations efficiently remains a challenging task. In this
paper, we consider a p-multigrid method, in which coarsening is applied in the
approximation order p instead of the mesh width h. Since the use of classical
smoothers (e.g. Gauss-Seidel) results in a p-multigrid method with
deteriorating performance for higher values of p, the use of an ILUT smoother
is investigated. Numerical results and a spectral analysis indicate that the
resulting p-multigrid method exhibits convergence rates independent of h and p.
In particular, we compare both coarsening strategies (e.g. coarsening in h or
p) adopting both smoothers for a variety of two and threedimensional
benchmarks
Correlations and enlarged superconducting phase of - chains of ultracold molecules on optical lattices
We compute physical properties across the phase diagram of the -
chain with long-range dipolar interactions, which describe ultracold polar
molecules on optical lattices. Our results obtained by the density-matrix
renormalization group (DMRG) indicate that superconductivity is enhanced when
the Ising component of the spin-spin interaction and the charge component
are tuned to zero, and even further by the long-range dipolar interactions.
At low densities, a substantially larger spin gap is obtained. We provide
evidence that long-range interactions lead to algebraically decaying
correlation functions despite the presence of a gap. Although this has recently
been observed in other long-range interacting spin and fermion models, the
correlations in our case have the peculiar property of having a small and
continuously varying exponent. We construct simple analytic models and
arguments to understand the most salient features.Comment: published version with minor modification
A simple, ultrahigh vacuum compatible scanning tunneling microscope for use at variable temperatures
We present the construction of a very compact scanning tunneling microscope (STM) which can be operated at temperatures between 4 and 350 K. The tip and a tiny tip holder are the only movable parts, whereas the sample and the piezoscanner are rigidly attached to the body of the STM. This leads to an excellent mechanical stability. The coarse approach system relies on the slip-stick principle and is operated by the same piezotube which is used for scanning. As an example of the performance of the device, images of a NbSe2 surface with atomic resolution are obtained
Nuclear Ground-State Masses and Deformations
We tabulate the atomic mass excesses and nuclear ground-state deformations of
8979 nuclei ranging from O to . The calculations are based on the
finite-range droplet macroscopic model and the folded-Yukawa single-particle
microscopic model. Relative to our 1981 mass table the current results are
obtained with an improved macroscopic model, an improved pairing model with a
new form for the effective-interaction pairing gap, and minimization of the
ground-state energy with respect to additional shape degrees of freedom. The
values of only 9 constants are determined directly from a least-squares
adjustment to the ground-state masses of 1654 nuclei ranging from O to
106 and to 28 fission-barrier heights. The error of the mass model is
0.669~MeV for the entire region of nuclei considered, but is only 0.448~MeV for
the region above .Comment: 50 pages plus 20 PostScript figures and 160-page table obtainable by
anonymous ftp from t2.lanl.gov in directory masses, LA-UR-93-308
Which finitely generated Abelian groups admit isomorphic Cayley graphs?
We show that Cayley graphs of finitely generated Abelian groups are rather
rigid. As a consequence we obtain that two finitely generated Abelian groups
admit isomorphic Cayley graphs if and only if they have the same rank and their
torsion parts have the same cardinality. The proof uses only elementary
arguments and is formulated in a geometric language.Comment: 16 pages; v2: added reference, reformulated quasi-convexity, v3:
small corrections; to appear in Geometriae Dedicat
Proton-neutron quadrupole interactions: an effective contribution to the pairing field
We point out that the proton-neutron energy contribution, for low multipoles
(in particular for the quadrupole component), effectively renormalizes the
strength of the pairing interaction acting amongst identical nucleons filling
up a single-j or a set of degenerate many-j shells. We carry out the
calculation in lowest-order perturbation theory. We perform a study of this
correction in various mass regions. These results may have implications for the
use of pairing theory in medium-heavy nuclei and for the study of pairing
energy corrections to the liquid drop model when studying nuclear masses.Comment: 19 pages, TeX, 3 tables, 2 figures. Accepted in PR
- âŠ