76 research outputs found

    AgroBot Smash a Robotic Platform for the Sustainable Precision Agriculture

    Get PDF

    An autonomous ground mobile unit for the precision physical weed control.

    Get PDF
    In this paper the design, the main characteristics and the automation systems of innovative autonomous ground mobile units (GMU) for physical weed control (PWC) in maize are described. The machine will be created within the activities of the European Project RHEA (Robot fleets for Highly Effective Agriculture and forestry management), that aims to produce different prototypes of autonomous terrestrial and aerial robot able to perform several activities related to the general crop protection in different agricultural scenarios. The first autonomous ground unit machine was designed in order to perform a mechanical and thermal treatment removing weeds from the inter-row crop space and applying in-row selective and precision flaming by means of two crossed LPG rod burners. By means of some modifications of the tools it will be possible to realize also an autonomous unit for the precision broadcast flaming application. In this case the design involves a replacement of the mechanical tools working in the inter-row space with 50 cm wide burners able to perform flaming at different intensities according to weed cover detected by the perception system of the robot. The working width of both the PWC machines will be of 4.5 m, thus covering five entire maize inter-row spaces of 0.75 m each and 2 half inter-row space of 0.375 m each. The correct position of the tools (mechanical and thermal) will be guaranteed by an automatic precision guidance system connected and supervised to an image based row detection system. Each working elements will be provided by two crossed 0.25 m wide rod burners, hitting one side of each crop row. The flame should hit the weeds growing in the “inrow” space (a 0.25 m wide strip of soil with the maize plant in the middle). Regarding the control of the weed emerged in the “inter-row” space each working unit of the will be provided with rigid tools (one central foot-goose and two side “L” shaped sweeps). The mechanical treatment will be performed, independently from the weed presence, as hoeing is a very important agronomical practice. On the contrary, broadcast flaming in the inter-row space will be performed after weed detection, using three different LPG pressures and doses according to weed cover (no weed cover-no treatment, weed cover between 0 and 25%-flaming at 0.3 MPa, weed cover higher than 25%-flaming at 0.4 MPa). This very innovative application of precision PWC in maize could represent not only a good opportunity for farmers in term of herbicide use reduction, but also an environmental friendly and energy saving application of flaming in organic farming

    Development of an algorithm for assessing canopy volumes with terrestrial LiDAR to implement precision spraying in vineyards

    Get PDF
    Received: February 13th, 2021 ; Accepted: November 28th, 2021 ; Published: December 3rd, 2021 ; Correspondence: [email protected] spraying is one of the techniques for the reduction of pesticides use and it can help achieve the new European Green Deal standards. The aim of such technique is to apply the right amount of pesticides according to the target characteristics. The precision spraying implementation requires target volume assessment, which can be carried out by LiDAR sensors. Such technique requires complex and time-consuming procedures of canopy characteristics computing through post-processing points cloud reconstruction. The present work aimed to develop and test an algorithm through the use of a tractor-coupled with terrestrial LiDAR and GNSS technology in order to simplify the process. With the aim to evaluate the algorithm the LiDAR-based volume was correlated with two manual measurements of canopy volume (Tree Row Volume and Point Net Cloud). The results showed good correlations between manual and LiDAR measures both for total canopy volumes (R 2 = 0.67 and 0.56) and for partial canopy volume (R 2 = 0.74). In conclusion, although the LiDAR-based algorithm works in automatic mode, the canopy volumes approximation seems acceptable to estimate the canopy volumes, with the advantages of a swifter procedure and less laborious post-processing computations
    • …
    corecore