344 research outputs found

    Nanomechanical detection of nuclear magnetic resonance using a silicon nanowire oscillator

    Full text link
    We report the use of a silicon nanowire mechanical oscillator as a low-temperature nuclear magnetic resonance force sensor to detect the statistical polarization of 1H spins in polystyrene. Under operating conditions, the nanowire experienced negligible surface-induced dissipation and exhibited a nearly thermally-limited force noise of 1.9 aN^2/Hz in the measurement quadrature. In order to couple the 1H spins to the nanowire oscillator, we have developed a new magnetic resonance force detection protocol which utilizes a nanoscale current-carrying wire to produce large time-dependent magnetic field gradients as well as the rf magnetic field.Comment: 14 pages, 5 figure

    Langevin-like giant magnetoresistance in Co-Cu superlattices

    Get PDF
    We present evidence for a new type of giant magnetoresistance in (111) cobalt-copper superlattices with atomically smooth interfaces. We propose that the lowered dimensionality of the structure leads to an enhancement of the scattering of conduction electrons from paramagnetic interfaces obeying a Langevin-like saturation at very high fields, well beyond the switching field of the Co layers. The findings help to explain similarities in magnetotransport behavior with recently reported granular systems as well as differences with antiferromagnetically coupled multilayers

    Low temperature properties of a quantum particle coupled to dissipative environments

    Full text link
    We study the dynamics of a quantum particle coupled to dissipative (ohmic) environments, such as an electron liquid. For some choices of couplings, the properties of the particle can be described in terms of an effective mass. A particular case is the three dimensional dirty electron liquid. In other environments, like the one described by the Caldeira-Leggett model, the effective mass diverges at low temperatures, and quantum effects are strongly suppressed. For interactions within this class, arbitrarily weak potentials lead to localized solutions. Particles bound to external potentials, or moving in closed orbits, can show a first order transition, between strongly and weakly localized regimes.Comment: 10 page

    Quantum Diffusion of H/Ni(111) through the Monte Carlo Wave Function Formalism

    Get PDF
    We consider a quantum system coupled to a dissipative background with many degrees of freedom using the Monte Carlo Wave Function method. Instead of dealing with a density matrix which can be very high-dimensional, the method consists of integrating a stochastic Schrodinger equation with a non-hermitian damping term in the evolution operator, and with random quantum jumps. The method is applied to the diffusion of hydrogen on the Ni(111) surface below 100 K. We show that the recent experimental diffusion data for this system can be understood through an interband activation process, followed by quantum tunnelling.Comment: In press at Phys.Rev.Let

    Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation

    Get PDF
    Zinc oxide field effect transistors (ZnO-FET), covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene) to the 3′ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels

    Morphology of epitaxial core-shell nanowires

    Full text link
    We analyze the morphological stability against azimuthal, axial, and general helical perturbations for epitaxial core-shell nanowires in the growth regimes limited by either surface diffusion or evaporation-condensation surface kinetics. For both regimes, we find that geometric parameters (i.e., core radius and shell thickness) play a central role in determining whether the nanowire remains cylindrical or its shell breaks up into epitaxial islands similar to those observed during Stranski-Krastanow growth in thin epilayers. The combination of small cores and rapid growth of the shell emerge as key ingredients for stable shell growth. Our results provide an explanation for the different core-shell morphologies reported in the Si-Ge system experimentally, and also identify a growth-induced intrinsic mechanism for the formation of helical nanowires.Comment: In press, Nano Letters (7 pages, 4 figures

    Probing quantum confinement within single core-multishell nanowires

    Full text link
    Theoretically core-multishell nanowires under a cross-section of hexagonal geometry should exhibit peculiar confinement effects. Using a hard X-ray nanobeam, here we show experimental evidence for carrier localization phenomena at the hexagon corners by combining synchrotron excited optical luminescence with simultaneous X-ray fluorescence spectroscopy. Applied to single coaxial n-GaN/InGaN multiquantum-well/p-GaN nanowires, our experiment narrows the gap between optical microscopy and high-resolution X-ray imaging and calls for further studies on the underlying mechanisms of optoelectronic nanodevices. © 2012 American Chemical Society.The authors thank Irina Snigireva and Armando Vicente Sole for their assistance with the SEM measurements and data processing using PyMca, respectively. We thank Remi Tocoulou and Peter Cloetens for their help and the ESRF for the beam time allocated. We also thank Andrei Rogalev for the valuable discussions and Gary Admans for the critical reading of the manuscript. This work has been partially supported by the NANOWIRING Marie Curie ITN (EU project no. PITN-GA-2010-265073), as well as by the EPIC-NANOTICS (TEC2011-29120-C05-04) and Q&C-LIGHT (S2009ESP-1503) from Spanish MEC and CAM, respectively.Martínez Criado, G.; Homs Puron, AA.; Alen, B.; Sans Tresserras, JÁ.; Segura Ruiz, J.; Molina Sánchez, A.; Susini, J.... (2012). Probing quantum confinement within single core-multishell nanowires. Nano Letters. 12(11):5829-5834. https://doi.org/10.1021/nl303178uS58295834121

    Ge/Si nanowire mesoscopic Josephson junctions

    Full text link
    The controlled growth of nanowires (NWs) with dimensions comparable to the Fermi wavelengths of the charge carriers allows fundamental investigations of quantum confinement phenomena. Here, we present studies of proximity-induced superconductivity in undoped Ge/Si core/shell NW heterostructures contacted by superconducting leads. By using a top gate electrode to modulate the carrier density in the NW, the critical supercurrent can be tuned from zero to greater than 100 nA. Furthermore, discrete sub-bands form in the NW due to confinement in the radial direction, which results in stepwise increases in the critical current as a function of gate voltage. Transport measurements on these superconductor-NW-superconductor devices reveal high-order (n = 25) resonant multiple Andreev reflections, indicating that the NW channel is smooth and the charge transport is highly coherent. The ability to create and control coherent superconducting ordered states in semiconductor-superconductor hybrid nanostructures allows for new opportunities in the study of fundamental low-dimensional superconductivity

    Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    Get PDF
    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters
    corecore