1,059 research outputs found
Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane
The sorting of apical and basolateral proteins into vesicular carriers takes place in the trans-Golgi network (TGN) in MDCK cells. We have previously analyzed the protein composition of immunoisolated apical and basolateral transport vesicles and have now identified a component that is highly enriched in apical vesicles. Isolation of the encoding cDNA revealed that this protein, annexin XIIIb, is a new isoform of the epithelial specific annexin XIII sub-family which includes the previously described intestine-specific annexin (annexin XIIIa; Wice, B. M., and J. I, Gordon. 1992. J. Cell Biol. 116:405-422). Annexin XIIIb differs from annexin XIIIa in that it contains a unique insert of 41 amino acids in the NH2 terminus and is exclusively expressed in dog intestine and kidney, Immunofluorescence microscopy demonstrated that annexin XIIIb was localized to the apical plasma membrane and underlying punctate structures. Since annexins have been suggested to play a role in membrane-membrane interactions in exocytosis and endocytosis, we investigated whether annexin XIIIb, is involved in delivery to the apical cell surface. To this aim we used permeabilized MDCK cells and a cytosol-dependent in vitro transport assay. Antibodies specific for annexin XIIIb significantly inhibited the transport of influenza virus hemagglutinin from the TGN to the apical plasma membrane while the transport of vesicular stomatitis virus glycoprotein to the basolateral cell surface was unaffected. We propose that annexin XIIIb, plays a role in vesicular transport to the apical plasma membrane in MDCK cells
Quantum Hall resistance standards from graphene grown by chemical vapor deposition on silicon carbide
Replacing GaAs by graphene to realize more practical quantum Hall resistance
standards (QHRS), accurate to within in relative value, but operating
at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date,
the required accuracy has been reported, only few times, in graphene grown on
SiC by sublimation of Si, under higher magnetic fields. Here, we report on a
device made of graphene grown by chemical vapour deposition on SiC which
demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4
K. This is explained by a quantum Hall effect with low dissipation, resulting
from strongly localized bulk states at the magnetic length scale, over a wide
magnetic field range. Our results show that graphene-based QHRS can replace
their GaAs counterparts by operating in as-convenient cryomagnetic conditions,
but over an extended magnetic field range. They rely on a promising hybrid and
scalable growth method and a fabrication process achieving low-electron density
devices.Comment: 12 pages, 8 figure
A Submillimeter HCN Laser in IRC+10216
We report the detection of a strong submillimeter wavelength HCN laser line
at a frequency near 805 GHz toward the carbon star IRC+10216. This line, the
J=9-8 rotational transition within the (04(0)0) vibrationally excited state, is
one of a series of HCN laser lines that were first detected in the laboratory
in the early days of laser spectroscopy. Since its lower energy level is 4200 K
above the ground state, the laser emission must arise from the inner part of
IRC+10216's circumstellar envelope. To better characterize this environment, we
observed other, thermally emitting, vibrationally excited HCN lines and find
that they, like the laser line, arise in a region of temperature approximately
1000 K that is located within the dust formation radius; this conclusion is
supported by the linewidth of the laser. The (04(0)0), J=9-8 laser might be
chemically pumped and may be the only known laser (or maser) that is excited
both in the laboratory and in space by a similar mechanism.Comment: 11 pages, 3 figure
Productivity of Stream Definitions
We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition
is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as
the limit. Whereas productivity is undecidable for stream definitions in general, we show that it can be decided for ‘pure’
stream definitions. For every pure stream definition the process of its evaluation can be modelled by the dataflow of abstract
stream elements, called ‘pebbles’, in a finite ‘pebbleflow net(work)’. And the production of a pebbleflow net associated with
a pure stream definition, that is, the amount of pebbles the net is able to produce at its output port, can be calculated
by reducing nets to trivial nets
The ecdysteroidome of Drosophila: influence of diet and development
Ecdysteroids are the hormones regulating development, physiology and fertility in arthropods, which synthesize them exclusively from dietary sterols. But how dietary sterol diversity influences the ecdysteroid profile, how animals ensure the production of desired hormones and whether there are functional differences between different ecdysteroids produced in vivo remains unknown. This is because currently there is no analytical technology for unbiased, comprehensive and quantitative assessment of the full complement of endogenous ecdysteroids. We developed a new LC-MS/MS method to screen the entire chemical space of ecdysteroid-related structures and to quantify known and newly discovered hormones and their catabolites. We quantified the ecdysteroidome in Drosophila melanogaster and investigated how the ecdysteroid profile varies with diet and development. We show that Drosophila can produce four different classes of ecdysteroids, which are obligatorily derived from four types of dietary sterol precursors. Drosophila makes makisterone A from plant sterols and epi-makisterone A from ergosterol, the major yeast sterol. However, they prefer to selectively utilize scarce ergosterol precursors to make a novel hormone 24,28-dehydromakisterone A and trace cholesterol to synthesize 20-hydroxyecdysone. Interestingly, epi-makisterone A supports only larval development, whereas all other ecdysteroids allow full adult development. We suggest that evolutionary pressure against producing epi-C-24 ecdysteroids might explain selective utilization of ergosterol precursors and the puzzling preference for cholesterol.Max Planck Geselleschaft, Deutsche Forschungsgemeinschaft (TRR 83, projects A17 and A19), European Molecular Biology Organization Long Term Fellowship, University Pierre and Marie Curie
Variable binding, symmetric monoidal closed theories, and bigraphs
This paper investigates the use of symmetric monoidal closed (SMC) structure
for representing syntax with variable binding, in particular for languages with
linear aspects. In our setting, one first specifies an SMC theory T, which may
express binding operations, in a way reminiscent from higher-order abstract
syntax. This theory generates an SMC category S(T) whose morphisms are, in a
sense, terms in the desired syntax. We apply our approach to Jensen and
Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This
leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at
Concur '0
Topological entropy and blocking cost for geodesics in riemannian manifolds
For a pair of points in a compact, riemannian manifold let
(resp. ) be the number of geodesic segments with length
joining these points (resp. the minimal number of point obstacles
needed to block them). We study relationships between the growth rates of
and as . We derive lower bounds on
in terms of the topological entropy and its fundamental group. This
strengthens the results of Burns-Gutkin \cite{BG06} and Lafont-Schmidt
\cite{LS}. For instance, by \cite{BG06,LS}, implies that is
unbounded; we show that grows exponentially, with the rate at least
.Comment: 13 page
- …