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Abstract. The sorting of apical and basolateral pro- 
teins into vesicular carriers takes place in the trans- 
Golgi network (TGN) in MDCK cells. We have previ- 
ously analyzed the protein composition of immunoiso- 
lated apical and basolateral transport vesicles and have 
now identified a component that is highly enriched in 
apical vesicles. Isolation of the encoding cDNA re- 
vealed that this protein, annexin XIIIb, is a new iso- 
form of the epithelial specific annexin XIII sub-family 
which includes the previously described intestine- 
specific annexin (annexin XIILa; Wice, B. M., and J. I. 
Gordon. 1992. J. Cell Biol. 116:405-422). Annexin 
XlIlb differs from annexin XIIIa in that it contains a 
unique insert of 41 amino acids in the NH2 terminus 
and is exclusively expressed in dog intestine and 
kidney. Immunofluorescence microscopy demonstrated 

that annexin XIIIb was localized to the apical plasma 
membrane and underlying punctate structures. Since 
annexins have been suggested to play a role in mem- 
brane-membrane interactions in exocytosis and en- 
docytosis, we investigated whether annexin XIl/b is 
involved in delivery to the apical cell surface. To this 
aim we used permeabilized MDCK cells and a cyto- 
sol-dependent in vitro transport assay. Antibodies 
specific for annexin XIIIb significantly inhibited the 
transport of influenza virus hemagglutinin from the 
TGN to the apical plasma membrane while the trans- 
port of vesicular stomatitis virus glycoprotein to the 
basolateral cell surface was unaffected. We propose 
that annexin XIIIb plays a role in vesicular transport 
to the apical plasma membrane in MDCK cells. 

T 
HE cellular endomembrane system is connected by 
vesicular transport routes that shuttle cargo between 
donor and acceptor compartments. Most of the known 

traffic pathways are now well delineated (Simons and Zerial, 
1993) as are some of the molecular mechanisms that are in- 
volved in vesicle budding and specificity of vesicle docking 
and fusion (Pryer et al., 1992; Bennett and Scheller, 1993; 
Rothman, 1994). The GTP-binding protein ADP-Ribosyla- 
tion Factor (ARF) 1 and coatomers have been demonstrated 
to be required for budding of intra-Golgi derived vesicles 
(Orci et al., 1993; Ostermann et al., 1993). The generation 
of endoplasmic reticulum derived vesicles in yeast requires 
the GTP-binding protein, Sarlp, the guanine nucleotide ex- 
change factor SEC12, and a distinct set of coat proteins 
(Barlowe and Schekman, 1993; Barlowe et al., 1994). The 
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N-ethylmaleimide sensitive factor; SLO, Streptolysin O; SNAPs, soluble 
NSF attachment proteins; SNAP-25, synaptosomal associated protein of 25 
kD; SNARE, SNAP receptor; VSV-G, vesicular stomatitis virus glyco- 
protein. 

mammalian rab proteins and their yeast homologues are im- 
plicated in conferring directionality of transport (Zerial and 
Stenmark, 1993; Nuoffer and Balch, 1994). N-ethylmale- 
imide sensitive factor (NSF) and soluble NSF attachment 
proteins (SNAPs) and their yeast counterparts have been 
shown to participate in the final fusion events (Rothman, 
1994). Syntaxin, synaptobrevin, synaptotagmin, and synap- 
tosomal-associated protein of 25 kD (SNAP-25) are involved 
in the docking and fusion of synaptic vesicles with the nerve 
terminal (Bennett and Scheller, 1993; Siidhof et al., 1993). 
According to the SNARE (SNAP receptor) hypothesis, fam- 
ilies of syntaxin and synaptobrevin homologues provide the 
specificity in vesicle docking before fusion (S611ner et al., 
1993; Rothman, 1994) and complexes of SNAREs may rep- 
resent the targets of regulation by members of the rab family 
of GTPases (Sogaard et al., 1994; Brennwald et al., 1994). 
Another class of proteins, the annexin family members, 
have a Ca2+-dependent lipid-binding activity and have also 
been implicated in membrane-membrane interactions such 
as those involved in vesicle docking, budding, or fusion 
(Creutz, 1992; Gruenberg and Emans, 1993). 

The mechanisms responsible for membrane bilayer fusion 
are still unclear. Based on morphological studies on exocytic 
fusion pores in mast cells (Chandler and Heuser, 1980) and 
electrophysiological data (Breckenridge and Almers, 1987) 
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several models have been proposed for this event, ranging 
from proteinaceous, ion channel-like pores (Almers, 1990) 
to purely lipidic pores only requiring a surrounding scaffold 
of proteins (Monck and Fernandez, 1994). Studies on viral 
membrane fusion suggest that a collar of proteins may pro- 
vide close contact between membranes and expose a hydro- 
phobic bridge that allows the flow of lipids between bilayers 
(Bentz et al., 1990; White, 1992). 

In MDCK cells apical and basolateral proteins and lipids 
are sorted into distinct classes of vesicles in the TGN which 
are delivered to the polarized cell surface (Grifliths and Si- 
mons, 1986; Rodriguez-Boulan and Nelson, 1989). To iden- 
tify components involved in these events, we have previously 
immunoisolated apical and basolateral exocytic carrier vesi- 
cles and analyzed their protein composition by two dimen- 
sional (2-D) gels (Bennett et al., 1988; Wandinger-Ness et 
al., 1990). VIP21 (Kurzchalia et al., 1992; Dupree et al., 
1993) and VI.P36 (Fiedler et al., 1994) were identified as 
components of both the apical and basolateral pathways 
while the small GTPase rab8 was shown to be specific for 
the basolateral route and to be involved in transport to the 
basolateral cell surface (Huber et al., 1993). To date, no fac- 
tors of the putative sorting and targeting machinery that are 
specific for the apical secretory route have been identified. 
Here we describe the purification of a component that was 
highly enriched in apical exocytic carder vesicles. Isolation 
of the encoding cDNA showed that this protein, which we 
refer to as annexin XIIIb, is a new member of the annexin 
XIII sub-family. Annexin XIIIb was exclusively expressed in 
dog intestine and kidney and localized to the apical cell sur- 
face and underlying punctate structures by immunofluores- 
cence microscopy. Using antibodies specific for annexin 
XIIIb in a cytosol dependent in vitro transport assay with 
permeabilized MDCK cells, we show that transport to the 
apical but not basolateral plasma membrane is significantly 
inhibited. 

Materials and Methods 

Materials 
Unless otherwise indicated, all chemicals were obtained from the sources 
described previously (Bennett et al., 1988; Wandinger-Ness et al., 1990; 
Kurzchalia et ai., 1992). The donkey anti-rabbit rhodamine-conjngated and 
donkey anti-mouse FHC-conjugated antibodies were purchased from Di- 
anova (Hamburg, Germany), the rabbit anti-mouse IgG and deoxycholate 
were from Sigma (Deisenhofen, Germany), protein A-Sepharose was from 
Pharmacia (Freiburg, Germany). 

Cell Culture, Viral Infection, and lmmunoisolation 
Growth media compositions, MDCK II cells, viruses, cell culture pro- 
tocols, and immunoisolation of exocytic carrier vesicles from perforated 
MDCK II cells were as described previously by Wandinger-Ness et al. 
(1990). 

SDS-PAGE and 2-D Gel Electrophoresis 
SDS-PAGE on 12 % gels was performed as described (Bennett et al., 1988). 
Resolution of proteins in two dimensions by IEF and SDS-PAGE, based on 
the method of Bravo (1984), was performed according to Wandinger-Ness 
et al. (1990). Whenever indicated, the BioRad (Hercules, CA) Mini-Protean 
II 2-D cell was used instead according to the manufacturer's recommenda- 
tions, except for the IEF tube gel composition that corresponded to the gel 
mixture of Bravo (1984). Preparative amounts of proteins were resolved 
using the Millipore Investigator IEF first dimension. After eleetrophoresis 
the gels were fixed in 45% methanol and 7% acetic acid and stained with 

Coomassie blue or treated for fluorography using Entensify (Dupont, Brus- 
sels, Belgium). 

Isolation of Annexins 
A light cellular membrane fraction was prepared from metabolically la- 
beled or nonlabeled MDCK cells as previously described (Fiedler et al., 
1993) and was pelleted in the ultracentrifuge at 100,000 g for I h. The sam- 
ple was prepared for the IEF first dimension according to Ames and Nikaido 
(1976), with slight modifications. Approximately 50/~g of protein were 
directly solubilized in 1.7% SDS, 170 mM DTT. After healing to 97°C for 
4 min the sample was cooled to room temperature, 150 nag urea, 25/~180% 
NP-40 and 12.5/~1 ampholytes %9 were added and the volume was made 
up to 250/d with H20. The urea was dissolved at 370C and the sample was 
spun for 5 rain at 37°C in the Eppendorf centrifuge before loading. 

Amino Acid Sequence Analysis 
Coomassie blue-stained spots of annexin XIIIb, annexin H, or keratin ('~2 
~tg each) were excised from four 2-D gels and pooled. After washing with 
water, the gel pieces were lyophilized and rehydrated in 100 ttl of 100 mM 
NI-hHCO3, 0.5 mM CaCI2 containing 1 #g trypsin. After digestion (37°C 
for 12 h) peptide fragments were extracted from the gel slice with 100/tl 
of 70% trifluoracetic acid/0.01% Tween 20 and 100/d of 50% trifluoracetic 
acid/acetonitrile/0.01% Twcen 20 (modified from Eckerskorn and Lott- 
speich, 1989). The combined fractions were concentrated and subjected to 
reverse-phase-HPLC using Vydac 21grP (2.1 × 250 nun). Automated Ed- 
man degradation of peptides was performed using a sequencer (model 
477A) connected to an on-line PTH-analyzer (Appl. Biosystems, Inc., Fos- 
ter City, CA; model 120). 

Molecular Cloning of Annexin XlIlb 
Total RNA was prepared from confluent MDCK cells using the gua- 
nidinium hydrochioride procedure (Chirgvin et al., 1979). MDCK 
cDNAs were synthesized with the first strand synthesis kit of Stratagene (La 
Jolla, CA) with oligo dT as the primer. PCR was carded out according to 
Chavrier et al. (1992). The specific degenerate oligonucleotides were 5' 
CCGGGAATTCGGAAAATGGG(A/C/G/T)AA(C/T)(A/C)G(A/C/G/T) 
CA(C/T) 3' and 5' CGCCCTCGAG(A/G)TT(A/G)AAIGC(A/C/G/T)A 
(A/G)(C/T)TC(G/A)TC 3'. Of the 726-bp and 603-bp fragments obtained, 
the 726-bp fragment was used for screening of a h ZAP II MDCK cDNA 
library (Chavrier et al., 1990). Duplicate nitrocellulose filters were pre- 
hybridized for 2 h at 42°C in 5 × SSC, 50% formamide, 5 × Denhardts 
solution, 1% SDS (Sambrook et ai., 1989). Hybridization was carried out 
in the same solution, supplemented with 32p-labeled probe overnight at 
55°C. Positive recombinants were screened for the presence and length of 
the 5' cDNA end by PCR using the Bluescript SK primer and the primers 
shown above. Nucleotide sequences of both cDNA strands were determined 
using the T7 sequencing kit (Pharmacia, Uppsaia, Sweden). 

Computer Sequence Analysis 
Basic sequence analysis was carried out with the GCG programs (Wisconsin 
Package, Genetics Computer Group, Madison, WD (Devereux et al., 
1984). MPsreh (Sturrock and Collins, 1993) was used to search Swissprot 
release 28. This program is accessible by e-mail under Blitz@EMBL- 
Heidelberg.DE. Potential sites for posttranslational modifications were 
identified by search in the Prosite library (Balroch, 1991). The phylogenetic 
tree was calculated as described by Higgins et al. (1992) over a multiple se- 
quence alignment of the annexins shown in Fig. 4, spanning residues 47-357 
of annexin XIIIb and the corresponding residues of the aligned annexins, 
thus excluding the hypervariable NH2-terminal domains. The tree was cor- 
rected for multiple substitutions, analyzed by bootstrapping and visualized 
with Phylip (Felsenstein, 1993). 

Preparation of Antibodies, Immunoprecipitation, 
and lmmunoblotting 
Polyclonal sera were raised against synthetic peptides covalently coupled to 
keyhole limpet haemocyanin using residues 20-36 of annexin XIIIb 
(KGDIQPSAAVQPLSHPSK; anxl3b), including an additional K, and 
residues 4%64 (AKAKSHHGFDVDHDAKKL; anxl3) of annexin Xmb 
according to Kreis (1986). Sera were collected after the sixth injection of 
antigen. For affinity purification, the peptides were linked directly to CNBr- 
activated Sepharose 4B according to the manufacturer (Pharmacia). Serum 
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(1.4 ml) was passed continuously over the matrix overnight at 4°C. Bound 
antibody was eluted with 0.2 M glycine, pH 2.8, and the fractions neutral- 
ized with 1 M Tris-HCl (pH 8.0). Mock affinity-purified antibodies from 
preimmune serum were prepared identically using the anxl3b column. 

For immunoprecipitation a pelleted, light cellular membrane fraction 
(Kurzchalia et at., 1992; Fiedler et al., 1993) or immunoisolated apical exo- 
cytic carrier vesicles (Wandinger-Ness et at., 1990) from metabolically la- 
beled cells were used. 600/~1 ofS0 mM Tris-HCI, pH 7.4, 2 mM EDTA, 
150 mM NaCI, 1% NP-40, 0.4% Deoxyeholate, 0.4% SDS including 1 
mg/ml BSA and pretense inhibitors (buffer A) was added to the samples. 
The immunoisolated membranes had previously been solubilized in 2-D gel 
lysis buffer and thus contained additional 150 mM urea, 0.06% NP-40, 
0.03 % ampholines, pH 7-9, and 1.5 mM DTT. Insoluble material was re- 
moved by centrifugation in the Eppendorf centrifuge. After overnight incu- 
bation at 4°C in the presence of affinity-purified anxl 3b antibodies, immune 
complexes were bound to protein A-Sepharose (preblocked with BSA and 
nonlabeled MDCK cell lysate) for 1 h at 4°C. The protein A-Sepharose was 
washed four times with buffer A (SDS increased to 0.8 % final concentra- 
tion) and once with PBS before addition of 2-D gel lysis buffer and resolu- 
tion with the BioRad Mini 2-D cell. 

For immunoblotting, dog tissues were homogenized with a Dounce 
homogenizer in modified SDS-sample buffer. The protein concentrations 
were determined with the Micro BCA Protein Assay (Pierce, Rockford, IL) 
and 10 #g of each were resolved by SDS-PAGE and transferred to nitrocellu- 
lose in a blotting buffer consisting of 25 mM Tris, 190 mM glycine and 20% 
methanol. Blots were incubated with a 1:40 dilution of the affinity-purified 
anti-anxl3b antibodies overnight at 40C, and then in 1:3,000 dilution of 
horseradish peroxidase-conjugated goat anti-rabbit IgG (BioRad) as the 
second antibody for 1 h at room temperature. As a blocking solution, 5 % 
nonfat dried milk, 0.2% Tween-20 (Sigma) was used. Bands were detected 
using ECL (Amersham, Braunschweig, Germany). 

Iramunofluorescence Microscopy 
Cells grown on coverslips and on polycarbonate filters were washed with 
PBS, fixed in 4% paraformaldehyde in PBS for 20 min and permeabilized 
with 0.1% Triton X-100 in PBS for 4 and 6 min, respectively, at room tem- 
perature. To reduce unspecific labeling of filter grown cells, they were dena- 
tured with 6 M Guanidine-HCl in 50 mM Tris-HC1 (pH 7.5) for 10 min at 
room temperature (Per/inen et al., 1993). All cells were rinsed in PBS and 
the free aldehyde groups quenched with 50 mM NH4CI in PBS for 20 rain. 
After an additional rinse in PBS, the cells were incubated in 0.2% gelatin 
in PBS for 30 rain and the first antibody diluted in 0.2% gelatin-PBS was 
added. The affinity-purified anti-anxl3b antisera was used at a dilution of 
1:5. The cells were incubated for 30 min at 37°C and washed with PBS. 
Primary antibodies were visualized with preadsorbed donkey anti-rabbit 
rhodamine-conjugated or anti-mouse FITC-conjugated antibodies. The 
coverslips were viewed and photographed with an Axiophot photomicro- 
scope (Carl Zeiss, Oberkochen, Germany) or with the EMBL confocal mi- 

croscope and photographed with a Polaroid Freeze frame directly from the 
monitor. 

In Vitro Transport of  HA and Vesicular Stomatitis 
Virus Glycoprotein in Permeabilized MDCK Cells 

The in vitro transport assay was based on the protocols earlier described 
(Kobayashi et at., 1992; Pimplikar and Simons, 1993) and carried out ex- 
actly as previously outlined (Huber et al., 1993; Pimplikar et al., 1994). 
Streptolysin O (SLO) was a generous gift of S. Bhakdi, University of Mainz, 
Germany. The transport assay was performed in triplicates without or with 
exogenously added cytosol (HeLa cytosol, 8 mg/ml) in the absence or pres- 
ence of 60 nM or 600 nM of affinity-purified anti-anxl3b antibody (final 
concentration). The anxl3b peptide was used at a concentration of 20 ~M. 
The amount of mock affinity-purified preimmune serum used was equiva- 
lent to a concentration of 600 nM of afffinity-purified antibodies. 

Resul ts  

Purification of  Annexin Xl l lb  

The  apical and basolateral  t ransport  vesicles immunoiso-  
lated f rom M D C K  cells conta in  both c o m m o n  and unique 
components  (Wandinger-Ness  et at . ,  1990). The  component  
that was most  enr iched  in the apical vesicles was A23  (Fig. 
1, spot b; 38-fold enr iched  in apical vs basolateral  carriers) .  
This  protein,  as well  as one other  apical protein,  was 
classified to be  a m e m b r a n e  protein by Tri ton X-114 phase 
parti t ioning. Based on these cri ter ia  we selected A23 for fur- 
ther studies and first wanted to de te rmine  its identity. We 
used a total  cel lular  m e m b r a n e  fract ion f rom M D C K  cells 
prepared  as previously  descr ibed (Kurzchal ia  et al . ,  1992; 
F ied le r  et a l . ,  1993) for the purif icat ion o f  A23. The  identity 
o f  A23 was verif ied by compar i son  of  this membrane  frac- 
t ion (Fig. 1 b) wi th  immunoiso la ted  apical vesicles  (Fig. 1 
a) by analytical  2-D gels. This  demonst ra ted  that A23 and 
the protein marked  b in the m e m b r a n e  fract ion had an iden- 
tical isoelectr ic  point  and apparent  molecu la r  weight.  More -  
over, no o ther  protein was overlapping with or  present  in 
its immedia te  vicini ty  in the m e m b r a n e  fraction,  suggest- 
ing that A23 and this protein were  identical  (see Fig. 6 for 
further  confirmation) .  For  protein isolat ion membranes  

Figure L Comparison of the 
protein composition of im- 
munoisolated apical exocytic 
carrier vesicles with a mem- 
brane fraction from MDCK 
cells. (a) Immunoisolated api- 
cal vesicles were obtained 
from metabolically labeled, 
influenza virus WSN ts61- 
infected MDCK cells. After 
mechanical cell perforation 
the released vesicles were 
purified by flotation to the in- 
terface of a 1.2-M/0.8 M 
sucrose gradient and im- 
munoisolated with an anti- 
body directed against the cy- 
toplasmic domain of WSN 

hemagglutinin, (b) The membrane fraction was prepared from a postnuclear supernatant of metabolically labeled MDCK cells and collected 
from the interface of a 1.2 M/0.8 M sucrose gradient. The samples were resolved on large 2-D gels by IEF and 15% SDS-PAGE. The 
protein named A23 in Wandinger-Ness et al. (1990) is labeled with b. Protein a was identified as annexin XIIIa by Western blotting and 
proteins c and d were identified as annexin II and keratin 18, respectively, by microsequencing. An asterisk marks the position of actin. 
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were solubilized with SDS and resolved by preparative two- 
dimensional (2-D) gel electrophoresis (Fig. 2). The identity 
of the Coomassie blue-stained protein with the protein 
identified on analytical gels was confirmed by comigration 
(not shown). Coomassie blue-stained spots of A23 were ex- 
cised from four gels and pooled. Enzymatic digestion in the 
gel slice and chromatographic separation of the peptides al- 
lowed the determination of the amino acid sequence of three 
fragments (Fig. 3, open box). Comparison of the peptides 
obtained with the Swissprot protein database by using 
MPsrch (Sturrock and Collins, 1993) revealed that all three 
(with the exception of one single amino acid position) 
matched peptides found in annexin XIIIa (intestine-specific 
annexin) described by Wice and Gordon (1992). However, 
A23 had an apparent molecular mass of 40 kD in SDS-PAGE 
and not 36 kD, as reported for annexin XIIIa, which sug- 
gested that A23 might be a variant of the latter. 

Molecular Cloning of  Annexin XIIIb 

Wice and Gordon (1992) had reported an unknown protein 
with an apparent molecular mass of 42 kD that cross-reacted 
with an antibody raised against an NH2-terminal peptide of 
annexin XIIIa. They further showed that this component had 
a 41-amino acid insert five amino acids from the NH2 ter- 
minus of annexin XIIIa (Gordon, J., personal communica- 
tion). We therefore reasoned that the NH2 termini of an- 
nexin XIIIa and A23 would be conserved and simplified by 
our PCR-based approach to obtain a partial eDNA encoding 
A23. Two degenerate oligonucleotides encoding the NH2- 
terminal peptide MGNRH of annexin XIIIa and part of the 
peptide WGTDELAFNEVLAK obtained by microsequenc- 
ing (bold) were used to amplify a 603-bp product, corre- 
sponding to the length of the annexin Xma eDNA fragment, 
and a novel 726-bp product. The 726-bp fragment was used 
to screen '~200,000 plaques of a )~ ZAP II MDCK II eDNA 
library (Chavrier et al., 1990) and 30 hybridizing clones 
(corresponding to 0.015 % of the recombinants) were ob- 

tained. Out of the 16 clones further analyzed, 12 gave rise 
to a 603-bp fragment by PCR using the aforementioned 
primers while four clones generated a 726-bp product. Two 
of each group were partially sequenced and differed only in 
the length of the 5' non-coding regions. The shorter eDNA 
corresponded to nucleotides 1-1800 (Fig. 3) but was lacking 
nucleotides 77-199 (shaded box). The longer eDNA only 
lacked nucleotides 1-40 at the 5' end but contained the insert 

Figure 2. Isolation of annexin xmb. MDCK membranes were pre- 
pared as in Fig. 1 b, solubilized with SDS and resolved by prepara- 
tive 2-D gel electrophoresis. The gels were stained with Coomassie 
blue. Annexin XIIIb (A23 in Wandinger-Ness et al. [1990]), labeled 
with an arrowhead, was excised and analyzed by microsequencing. 
An asterisk marks the position of actin. 

Figure 3. Nucleotide sequences of the annexin XIHa and annexin 
XIIIb cDNAs and amino acid sequences of the encoded proteins. 
Peptides identified by microsequencing are boxed. The asterisk 
denotes the stop codon, the putative polyadenylation signals at the 
3' end are underlined. The isolated annexin XlIIa eDNA cor- 
responded to nucleotides 1-1800 without nucleotides 77-199 (en- 
coded amino acids are in a shaded box), the annexin XIIIb eDNA 
lacked nucleotides 1-40 but contained the insert of nucleotides 77- 
199. Two in frame stop codons are preceding the 5' ATG in position 
8 and 17. These sequence data for canine annexin XIlIa and annexin 
XIIIb are available from EMBL/GenBank/DDBJ under accession 
number X80208 and X80209, respectively. 
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of nucleotides 77-199 (Fig. 3, shaded box). We shall refer to 
these as annexin XIIIa and annexin XIIIb, respectively. 

The calculated molecular weights and isoelectric points of 
the encoded proteins were 39606 Da and pI 5.2 for annexin 
XIIIb which was in good agreement with the values observed 
for A23 on 2-D gels, and 35479 Da and pI 5.4 for annexin 
XllIa. Computer sequence analysis demonstrated that the 
amino acid sequence of canine annexin Xmb was 90% iden- 
tical and 96 % similar to human almexin XIIIa (Fig. 4 a). The 
identity to 31 other annexin family members ranged between 
38% and 47%. Armexin XIIIb differed from armexin XIIIa 
by having a unique 41-amino acid insert in the NH2- 
terminal domain which might be generated by alternative 
splicing of the mRNA. A comparison of the variable NH2- 
terminal domains of annexins I-XI]/is shown in Fig. 4 b. 
The NH2 terminus of annexin Xlfib does not show any 
significant similarity to the other family members. A search 
in the Prosite library (Bairoch, 1991) revealed that annexin 
XIIIb contains several potential phosphorylation sites for 
casein kinase II and protein kinase C throughout the se- 
quence and one potential tyrosine kinase phosphorylation 
site. Notably, a putative casein kinase II phosphorylation site 
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MSYPGYPPTGY . . . . . .  132 aa . . . . . . . . . . . .  SQPATVTQVTQ GTIRPAAIPDAIRDAE 

MAWWKAWZ BORG .................................. %~F/KS SSRFNPDp DAE 

NgrK~V ........................................ ~Kn~AP~mSQDAQ 

MSYPOYPPPAG . . . . . .  167 aa . . . . . . . . . . . .  PAVSPAQFG~R GTITDASGFDPLRDAE 

MVVQ .......................................... GTVKPHABFNSREDAE, 

MGNRH ......................................... AKASSPQGFDVDRDJX 

MG~RHSQ 8Y8 LSEGS~ LPKGD I QP SAAVQ PL SB PSGSGIP EAQQp AKAKS~GFDVDKDAK 

Figure 4. Alignment of annexin XIHa, XIRb, and other annexins. 
(a) Alignment of human annexin XIRa (intestine-specific annexin) 
with canine annexin XIIIb using the GCG program "gap7 Gaps are 
indicated by dots. For annexin XIlIb only amino acids different 
from annexin XIIIa are indicated. The overall identity and similar- 
ity is 90% and 96%, respectively. (b) Alignment of the NH2- 
terminal domains of representatives of all known annexins. Gaps 
are represented by dots that are imerted between the variable 
NH2-terminal domains and the beginning of the first conserved 
repeating domain. For the alignment the sequences of human an- 
nexins I-VIII (H), Drosophila melanogaster axmexin X (D), bovine 
annexin XIa (B), Hydra vulgaris annexin XII (HY), human armexin 
XIIIa (H), and canine annexin XIIlb (C) were used. The 5' end 
of the Drosophila melanogaster annexin IX cDNA has not been 
isolated. 

is located within the unique 41 NH2-terminal amino acids. 
Three of the four conserved annexin segments (endonexin 
folds) are retrieved by the program (some of the repeats are 
also not recognized in annexin IX, X, XI, and XII). Interest- 
ingly, annexin XIIIb contains a potential NH2-terminal 
myristoylation site. Analysis of the evolutionary distances of 
representatives of all known annexins (see Materials and 
Methods) showed that only annexins I,II, and III but not an- 
nexin XIII could be subgrouped into a distinct branch of the 
annexin family (Fig. 5). 

Annexin Xll lb Is Present in Apical Carrier Vesicles 
To further analyze annexin XIIIb, we raised polyclonal an- 
tisera against an NH2-terminal peptide common to annexin 
XIIIa and annexin x m b  (anxl3) and antisera against an 
NH2-terminal peptide unique to annexin XIIIb (anxl3b). 
The affinity-purified anti-anxl 3b antibodies were used to im- 
munoprecipitate annexin XIIIb. The antibody was specific 
and reacted only with one protein of the correct isoelectric 
point and apparent molecular weight (Fig. 6 a). For the im- 
munoprecipitation, the MDCK membrane fraction served as 
a starting material (Fig. 6 b). To identify annexin XIIIb in 
the membrane fraction the immunoprecipitate was mixed 
with the membranes (Fig. 6 c). This demonstrated that the 
antibody recognizes the originally purified protein A23 
(Figs. 1 and 2). The slightly different mobilities of some pro- 
teins in the second dimension of the 2-D gels in Fig. 6 com- 
pared to Figs. 1 and 2 is due to the different gel system used. 

To further confirm the presence of annexin XllIb in apical 
carrier vesicles, we used immunoisolated apical vesicles 
(Wandinger-Ness et al., 1990) for the immunoprecipitation 

Figure 5. Phylogenetic tree representing the evolutionary distances 
between canine annexin XIII and representatives of all known an- 
nexin protein sequences. The tree was calculated as described by 
Higgins et al. (1992) over a multiple sequence alignment of an- 
nexins (see Fig. 4 b) spanning residues 47-357 of annexin Xmb and 
the corresponding residues of the aligned sequences. The compari- 
son excluded the variable NH2-terminal domains. The length of 
the branches is proportional to the actual distances between the se- 
quences. Branchpoints of the tree that are above 88 % statistically 
significant are labeled with a circle. 
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Figure 6. Annexin XIIIb is 
present in immunoisolal~l ap- 
icai carrier vesicles. (a) An 
affinity-purified anti-peptide 
(anx13b) antibody directed 
against annexin XllIb was 
used to immunoprecipitate 
annexin XIIIb from a mem- 
brane fraction from metaboli- 
cally labeled MDCK ceils 
(obtained as in Fig. 1 b). (b) 
Membrane fraction. (c) Mix- 
tare of immunoprecipitated 
annexin XIIIb (a) with the 
membrane fraction (b). (d) 
Annexin X/lib immunoprecip- 
itated from immunoisolated 
apical carrier vesicles (ob- 
tained as in Fig. 1 a). Due to 
the limited amount of im- 
munoisolated carrier vesicles 
available, all samples were 
resolved with the BioRad 
Mini 2-D cell by IEF and 12% 
SDS-PAGE. This resulted in 
slightly different mobilities of 
some proteins in the second 
dimension compared to Figs. 
1 and 2. Armexin XIIIb is la- 
beled with an arrowhead in b 
and c. 

(Fig. 6 d). The immunoprecipitated protein (Fig. 6 d) can 
be perfectly aligned with annexin XIIIb from the MDCK 
membrane fraction. Since no other protein is present in the 
immediate vicinity of A23 in apical vesicles, this unequivo- 
cally demonstrates the presence of annexin XIl/b in apical 
exocytic carrier vesicles. 

We next used the afffinity-purified anti-anxl 3 antibodies for 
Western blotting of the MDCK membrane fraction (data not 
shown). In addition to annexin XIIIa and annexin XIIIb (Fig. 
1, spots a and b) the antibody cross-reacted with two further 
proteins (Fig. 1, spots c and d). To determine their identity 
they were purified from Coomassie blue-stained 2-D gels, 
enzymaticaUy digested in the gel slice, and analyzed by 
microsequencing. Protein c gave rise to a fragment corre- 
sponding to residues 178-195 of bovine annexin II, protein 
d gave rise to a fragment corresponding to residues 149-157 
of human keratin 18. Neither annexin XllIa nor annexin II, 
a very abundant MDCK protein localized to endosomes as 
well as to the apical and basolateral plasma membrane 
(Harder and Gerke, 1993; Parton, R. G., unpublished), was 
present in the immunoisolated apical vesicles (Fig. 1). This 
further illustrates the high specificity of the immunoisolation 
and excludes the possibility that the immunoisolated annexin 
XIIIb is derived from a plasma membrane contamination. 

Annexin XIIlb Is Expressed in Intestine and Kidney 

We next analyzed the tissue distribution of annexin XIllb by 
Western blotting of dog tissue homogenates. This showed 

that annexin XIIIb was exclusively expressed in dog intestine 
and kidney (Fig. 7 a). The reactions were specific since they 
could be inhibited by the addition of 100 #g/ml of the respec- 
tive peptide (Fig. 7 b). In addition, the anti-anxl 3b antibod- 
ies reacted with proteins of an apparent molecular mass of 
,,o 20 kD in pancreas and ~55 kD in kidney and liver, the 
identity of which remains unknown. Neither of these pro- 
teins was detected in MDCK cells (not shown) and they may 
thus represent abundant cross-reacting proteins only present 
in the tissue homogenates. 

Figure 7. Western blot surveys of dog tissue homogenates for the 
presence of annexin XIIlb. Total cell lysates (10 #g/lane) were 
resolved by 13% SDS-PAGE, transferred to nitrocellulose and 
probed with atlinity-purified anti-anxl3b antibodies in the absence 
(a) or presence (b) of 100 #g/ml of anxl3b peptide. 
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Figure 8. Immunofluorescence localization of armexin XIHb. Sub- 
confluent MDCK cells were permeabilized with 0.1% Triton X-100 
after fixation with 4% paraformaldehyde. Immunostaining with 
affinity-purified anti-anxl3b antibodies in the absence (a) or pres- 
ence (b) of 50/zg/ml of anxl3b peptide. Bars, 8 ~m. 

Cellular Localization of  Annexin XIIIb  

Since annexin x m b  was biochemically identified as a com- 
ponent of apical exocytic carrier vesicles, we determined its 
subcellular localization in MDCK cells by immunofluores- 
eence microscopy with affinity-purified antisera. Annexin 
XIIIb was labeled on punctate structures above the nucleus 
and throughout the cells in subconfluent, non-polarized 
MDCK cells (Fig. 8 a). This labeling could be inhibited by 
addition of 50 #g/ml of the anxl 3b peptide (Fig. 8 b). To ana- 
lyze the localization of annexin XIIIb in fully polarized 
MDCK cells, we performed confocal microscopy. Annexin 
XRIb was localized almost exclusively to the apical pole and 
restricted to the upper quarter of the cells. Strong labeling 
was detected in X-Y views taken along the apical membrane 
(Fig. 9 a). Punctate labeling was also detected in focal planes 
through the upper quarter of the cells (Fig. 9 b) but was 
strongly decreased or absent in the cell middle (Fig. 9 c), in 
the lower quarter of the cells (Fig. 9 d), and on the 
basolateral side (Fig. 9 e). 

Figure 9. Localization of annexin XIIIb in filter-grown MDCK cells 
by confocal microscopy. Cells were grown on Transwell filters for 
4 d, fixed with 4% paraformaldehyde, permeabilized with 0.1% Tri- 
ton X-100 and denatured with 6 M Guanidine-HCl to reduce 
unspecific background staining (Periinen et al., 1993). X-Y views 

(a-e) of cells labeled with afffinity-purified anti-anxl3b antibodies. 
The focal planes are (a) apical, (b) upper cell quarter, (c) cell mid- 
dle, (d) lower cell quarter, and (e) basolateral. Bars, 5 #m. 
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Annexin Xl l lb  and Transport to the Apical 
Plasma Membrane 

To test the possible involvement of annexin XMb in the 
delivery from the TGN to the plasma membrane we used an 
in vitro transport assay that reconstitutes vesicular transport 
in SLO permeabilized MDCK cells (Kobayashi et al., 1992; 
Pimplikar and Simons, 1993; Pimplikar et al., 1994). The 
transport of both, the vesicular stomatitis virus glycoprotein 
(VSV-G protein) from the TGN to the basolateral cell surface 
as well as of influenza hemagglutinin (HA) to the apical cell 
surface, has been shown to be temperature-, ATP-, and 
cytosol-dependent. Addition of the afffinity-purified anti- 
anxl 3b antibodies to the exogenously added cytosol prepara- 
tion significantly inhibited the apical transport of influenza 
HA in a dose-dependent fashion (Fig. 10 a). This result was 
reproducibly obtained with different preparations of affinity- 
purified antisera. The reduction was specific since the deliv- 
ery of VSV-G protein to the basolateral plasma membrane 
was not, or only slightly affected. Moreover, the inhibition 
of apical transport was abolished by the addition of anti- 
anxl3b antibodies together with anxl3b peptide (Fig. 10 b). 
Neither the addition of preimmune serum (Fig. 10 b), nor 
the addition of unspecific IgGs (not shown) at equivalent 
concentrations showed any effect on apical transport. These 
data implicate a role for annexin XMb in vesicular delivery 
from the TGN to the apical cell surface. 

Discussion 

The cell surface of simple epithelial cells is differentiated 
into an apical and basolateral plasma membrane domain that 
are separated by tight junctions (Simons and Fuller, 1985; 
Rodriguez-Boulan and Nelson, 1989; Rodriguez-Boulan and 
Powell, 1992). The different protein and lipid composition 
of each domain is generated by the sorting of components 
into distinct classes of vesicles in the TGN (Wandinger-Ness 
et al., 1990). Both the apical pathway and also the transcy- 
totic pathway connecting the apical and basolateral cell sur- 
face are likely to involve factors that are unique to epithelial 
cells to mediate sorting and to provide specificity in delivery 
and membrane fusion (Simons and Wandinger-Ness, 1990). 

In our approach to characterize and identify proteins in- 
volved in the transport process, we have previously used 
perforated MDCK cells to isolate apical and basolateral 
exocytic carrier vesicles (Bennett et ai., 1988). Immuno- 
isolation and separation by 2-D gels permitted the iden- 
tification of components common to apical and basolateral 
carriers and proteins unique to the apical or basolateral path- 
way (Wandinger-Ness et al., 1990). Among putative factors 
that distinguish the apical and basolaterai direction, to date, 
only the small GTPase rab8 has been found to be highly en- 
riched in the basolateral pathway and to be involved in trans- 
port to the basolateral cell surface (Huber et al., 1993). No 
apical specific factors have been identified. We now report 
the purification of the component A23 which was almost 
forty times enriched in apical, as compared to basolateral 
carrier vesicles (Wandinger-Ness et al., 1990). Peptide 
microsequencing and the isolation of the encoding cDNA 
demonstrated that this protein, annexin XMb, is homolo- 
gous to the previously described annexin XMa (intestine- 
specific annexin; Wice and Gordon, 1992) but contains a 
unique insert of 41 amino acids in the NH2-terminal do- 

Figure 10. In vitro transport assay. (a) MDCK cells grown on Trans- 
well filters were permeabilized with streptolysin O from the apical 
or basolateral side and cytosol was added back without ( - )  or with 
60 nM (+) and 600 nM (+++) of affinity-purified anti-anxl3b an- 
tibodies (final conc.). (b) Control experiments. Cytosol was added 
back to the cells without ( - )  or with (+++) 600 nM of affinity- 
purified anti-anxl3b antibodies. In the apical transport assay 
anxl3b peptide was used at a concentration of 20 #M and the 
amount of mock affinity-purified preimmune serum added was 
equivalent to a concentration of 600 nM of affinity-purified anti- 
anxl3b antibodies. All samples were analyzed by 10% SDS-PAGE, 
autoradiographed, scanned with a Phosphorimager (Molecular Dy- 
namics, Sunnyvale, CA) and the band intensities were calculated 
with Image Quant software. The values are mean + standard errors 
from three experiments performed with duplicate filters. In vitro 
transport of influenza HA was done on basolaterally permeabilized 
and cytosol-depleted MDCK cells. Arrival of HA at the plasma 
membrane was measured by its sensitivity to cleavage with trypsin. 
The% transport of HA was calculated as 2 x HA2/(HA + 2 × 
HA2) × 100. The in vitro transport of VSV-G was performed on 
apically permeabilized, cytosol-depleted MDCK cells. The amount 
of VSV-G transported to the basolateral surface was determined 
from the fraction of VSV-G bound tO protein A-Sepharose after 
surface immunoprecipitation with VSV-G specific antibodies. 
The% transport of VSV-G was calculated as VSV-G bound/VSV-G 
total × 100. Cytosol-dependent transport is presented as 100% 
(transport in the presence of cytosol-transport in the absence of 
added cytosol). For the experiments shown in a, the result was 
reproducibly obtained with two and three preparations of afffinity- 
purified anti-anxl 3b antibodies for the basolateral and apical trans- 
port, respectively, and for the experiments shown in b with two 
different batches of affinity-purified antibodies. 

main. Annexins are a large family of proteins that are charac- 
terized by 4 or 8 repeats of an •70--amino acid domain with 
17 highly conserved amino acids, termed the endonexin fold. 
A hallmark of the annexin family is their Ca2*-dependent 
lipid-binding activity which may be directly related to their 
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function (Crompton, 1988; Creutz, 1992; Moss, 1992). An- 
nexins have been implicated in a number of processes includ- 
ing the metabolism of lipid-derived inositol-phosphates, the 
formation or modulation of ion channels, the membrane at- 
tachment of the cytoskeleton, protein kinase C inhibition 
and membrane-membrane interactions. Surprisingly, an- 
nexins have also been proposed to have extracellular func- 
tions as anti-inflammatory agents, phospholipase A2 inhibi- 
tors, and inhibitors of blood coagulation and to be involved 
in cell-matrix interactions (Raynal and Pollard, 1994). 
Whether all of these activities are physiological functions of 
annexins remains to be investigated. 

The involvement of annexins in membrane-membrane in- 
teractions has been well documented and originally stems 
from studies on annexin VII (synexin). Annexin VII was 
found to promote aggregation of secretory granules in a 
Ca2+-dependent fashion (Creutz et al., 1978). Granule fu- 
sion required arachidonic acid or other cis-unsaturated fatty 
acids as cofactors (Creutz, 1981), and was suggested to be 
mediated by annexin VII providing a hydrophobic bridge for 
the flow of lipids between membrane bilayers in the fusion 
process (Pollard et al., 1992). More recently annexin II was 
shown to be directly involved in Ca2+-dependent exocytosis 
in chromattin cells (Ali et al., 1989). Annexin II was also 
found to be a major component of endosomes as well as of 
plasma membrane (Emans et al., 1993) and to regulate en- 
dosorne distribution in MDCK cells (Harder and Gerke, 
1993). A role for annexin II in basolateral to canalicular 
transcytosis in hepatocytes was suggested based on the 
finding that its subeellular distribution relocalizes from 
basolateral to perinuclear and finally to apical concomitant 
with the transcytosis of cholestatic bile salts (Wilton et al., 
1994). Annexin I has been localized to late endosomes and 
was postulated to be involved in multivesicular body forma- 
tion (Futter et al., 1993). Evidence has also been provided 
suggesting that annexin VI is involved in the budding of 
clathrin-coated vesicles (Lin et al., 1992) but the sig- 
nificance of this observation has been questioned (Smythe et 
al., 1994). 

One interesting feature of annexin XIIIb is its localization. 
By iramunofluorescence microscopy annexin Xmb was ex- 
clusively localized to the apical cell surface and to underly- 
ing punctate structures in MDCK cells. It also has a very re- 
stricted tissue expression being exclusively found in intestine 
and kidney. To further confirm the presence of annexin XIIIb 
in apical carrier vesicles, we used affinity-purified anti- 
armexin Xmb antibodies to immunoprecipitate armexin 
XIIIb from an immunoisolated apical vesicle preparation. 
The possibility that the immunoprecipitated protein was de- 
rived from a potential contamination of apical plasma mem- 
brane present in the vesicle fraction can be excluded since 
annexin XIIIa and annexin H, a very abundant MDCK cell 
protein localized to endosomes as well as to the apical and 
basolateral plasma membrane (Harder and Gerke, 1993; 
Parton, R. G., unpublished), were not present in irnmuno- 
isolated apical vesicles. It seems likely that the feature dis- 
tinguishing annexin XIIIb from annexin XIIIa, the additional 
NH2-terminal 41 amino acids, are responsible for the spec- 
ificity of the association with apical exocytic carder vesicles. 

Aunexin IV is also preferentially expressed in tissues 
abundant in epithelial cells (Kaetzel et al., 1989) and was 
localized to the apical cell surface in renal cells and epithelial 

cells of the uterus (Kojima et al., 1994; Kaetzel et al., 1994) 
but found at the basolateral cell surface in enterocytes and 
hepatocytes (Massey et al., 1991a,b). Since annexin IV 
shows a similar tissue distribution to annexin XIIIb but con- 
tains only a very short NH~-terminal domain, we analyzed 
whether the COOH-terminal domains of annexins IV and 
XIII would show any unique features that would distinguish 
them from other annexins. However, this was not the case as 
judged by the sequence comparison of representatives of all 
known annexin family members. The analysis showed that 
annexins IV and XIII could not be subgrouped into a distinct 
phylogenetic branch of the annexin family. 

Annexin XIIIb behaved as a membrane protein in phase 
partitioning in Triton X-114 (in the absence of added Ca2+; 
Wandinger-Ness et al., 1990) which is not usually observed 
for members of the annexin family. In this respect it is in- 
teresting to note that a feature unique to annexin XIIIa is its 
NH2-terminal myristoylation (Wice and Gordon, 1992). 
Wice and Gordon reported a protein immunologically 
related to annexin XKIa with an apparent molecular mass of 
42 kD which was also myristoylated and is now known to 
represent human armexin XIIIb (Gordon, J., personal com- 
munication). Since canine annexin XIIIb contains a potential 
NH~-terminal myristoylation site, it is likely to be myris- 
toylated in MDCK cells as well. What is the function of an- 
nexin XlIIb? The specific inhibition of transport of influenza 
HA from the TGN to the apical plasma membrane by the ad- 
dition of antibodies against annexin XIIIb to the in vitro 
transport assay, suggests that annexin XIIIb is involved in 
this delivery process. For annexin XIIlb this might involve 
a cycle of dissociation and association with the membrane of 
apical exocytic carder vesicles. Alternatively, a recycling 
from the apical cell surface back to the TGN (Brfindli and 
Simons, 1989) and a rapid inclusion into newly formed car- 
rier vesicles would explain the negligible steady-state level 
of armexin XIIIb observed in the TGN. The antibodies, 
specifically binding to part of the 41 NH2-terminal amino 
acids unique to annexin XIIIb, presumably exert their effect 
by preventing the interaction of annexin XIIIb with a putative 
receptor on the vesicular surface and hence the binding to 
the vesicles. Alternatively, they may sterically block the in- 
teraction of annexin XIIIb with other essential components 
involved in membrane-membrane interactions in vesicle 
budding, docking, or fusion such as NSF, SNAPs, and 
SNAREs (Stllner et al., 1993; Rothman, 1994) or rab 
GTPases (Zerial and Stenmark, 1993; Novick and Brenn- 
wald, 1993). The observed lack of complete inhibition might 
be due to the inaccessibility of annexin Xmb already bound 
to the carrier vesicles or could result from part of the deliv- 
ered HA having already passed the site of action of annexin 
XILlb in the transport process. Clearly, more work is neces- 
sary to demonstrate the exact function of annexin Xmb and 
it will be interesting to see how annexin-mediated mem- 
brane-membrane interactions play a role in apical transport. 

The integration of all vesicular components into a coher- 
ent mechanistic scheme remains a major challenge. Al- 
though NSF has been implicated in a number of membrane 
fusion events, it is possible that NSF- or SNAP-independent 
membrane docking and fusion processes exist that might be 
mediated by annexins. To date, no apical specific SNAREs 
or rab proteins have been identified in epithelial cells. To the 
contrary, evidence is now accumulating that the apical trans- 
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port pathway, unlike the basolateral route, does not entail the 
general factors NSF and a-SNAP (Ikonen, E., M. Tagaya, 
C. Montecucco, O. Ullrich, and K. Simons, manuscript sub- 
mitted for publication) and may thus involve isoforms of 
these molecules or a different mechanism for vesicle docking 
and membrane fusion. The involvement of annexin XIIIb in 
transport to the apical plasma membrane in MDCK cells 
may now facilitate the identification of other epithelial or ap- 
ical specific components of the vesicular transport ma- 
chinery. 
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