
Productivity of Stream Definitions�

Jörg Endrullis1, Clemens Grabmayer3, Dimitri Hendriks1,
Ariya Isihara1, and Jan Willem Klop1,2

1 Vrije Universiteit Amsterdam, Department of Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{ariya,joerg}@few.vu.nl, {diem,klop}@cs.vu.nl
2 Radboud Universiteit Nijmegen, Department of Computer Science,

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
3 Universiteit Utrecht, Department of Philosophy,

Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
clemens@phil.uu.nl

Abstract. We give an algorithm for deciding productivity of a large
and natural class of recursive stream definitions. A stream definition is
called ‘productive’ if it can be evaluated continuously in such a way that
a uniquely determined stream is obtained as the limit. Whereas produc-
tivity is undecidable for stream definitions in general, we show that it can
be decided for ‘pure’ stream definitions. For every pure stream definition
the process of its evaluation can be modelled by the dataflow of abstract
stream elements, called ‘pebbles’, in a finite ‘pebbleflow net(work)’. And
the production of a pebbleflow net associated with a pure stream defi-
nition, that is, the amount of pebbles the net is able to produce at its
output port, can be calculated by reducing nets to trivial nets.

1 Introduction

In functional programming, term rewriting and λ-calculus, there is a wide arsenal
of methods for proving termination such as recursive path orders, dependency
pairs (for term rewriting systems, [15]) and the method of computability (for
λ-calculus, [13]). All of these methods pertain to finite data only. In the last two
decades interest has grown towards infinite data, as witnessed by the application
of type theory to infinite objects [2], and the emergence of coalgebraic techniques
for infinite data types like streams [11]. While termination cannot be expected
when infinite data are processed, infinitary notions of termination become rele-
vant. For example, in formal frameworks for the manipulation of infinite objects
such as infinitary rewriting [7] and infinitary λ-calculus [8], basic notions are the
properties WN∞ of infinitary weak normalisation and SN∞ of infinitary strong
normalisation [9].

In the functional programming literature the notion of ‘productivity’ has
arisen, initially in the pioneering work of Sijtsma [12], as a natural strengthening

� This research has been partially funded by the Netherlands Organisation for Scien-
tific Research (NWO) under FOCUS/BRICKS grant number 642.000.502.

E. Csuhaj-Varjú and Z. Ésik (Eds.): FCT 2007, LNCS 4639, pp. 274–287, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15453021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Productivity of Stream Definitions 275

of the property WN∞. A recursive stream definition is called productive if not
only can the definition be evaluated continuously to build up an infinite normal
form, but the resulting infinite expression is also meaningful in the sense that it
is a constructor normal form which allows to read off consecutively individual
elements of the stream. Since productivity of stream definitions is undecidable in
general, the challenge is to find increasingly larger classes of stream definitions
significant to programming practice for which productivity is decidable, or for
which at least a powerful method for proving productivity exists.

Contribution and Overview. We show that productivity is decidable for a rich
class of recursive stream definitions that hitherto could not be handled auto-
matically. In Section 2 we define ‘pure stream constant specifications’ (SCSs) as
orthogonal term rewriting systems, which are based on ‘weakly guarded stream
function specifications’ (SFSs). In Section 3 we develop a ‘pebbleflow calculus’
as a tool for computing the ‘degree of definedness’ of SCSs. The idea is that a
stream element is modelled by an abstract ‘pebble’, a stream definition by a finite
‘pebbleflow net’, and the process of evaluating a definition by the dataflow of
pebbles in the associated net. More precisely, we give a translation of SCSs into
‘rational’ pebbleflow nets, and prove that this translation is production preserv-
ing. Finally in Section 4, we show that the production of a ‘rational’ pebbleflow
net, that is, the amount of pebbles such a net is able to produce at its output
port, can be calculated by an algorithm that reduces nets to trivial nets. We
obtain that productivity is decidable for pure SCSs. We believe our approach
is natural because it is based on building a pebbleflow net corresponding to an
SCS as a model that is able to reflect the local consumption/production steps
during the evaluation of the definition in a quantitatively precise manner.

We follow [12] in describing the quantitative input/output behaviour of a
stream function f by a non-decreasing ‘production function’ βf : (N)r → N such
that the first βf (n1, . . . , nr) elements of f(t1, . . . , tr) can be computed whenever
the first ni elements of ti are defined. More specifically, we employ ‘rational’
production functions β : (N)r → N that, for r = 1, have eventually periodic dif-
ference functions Δβ(n) := β(n+1)−β(n), that is ∃n, p ∈ N.∀m ≥ n.Δβ(m) =
Δβ(m + p). This class is effectively closed under composition, and allows to cal-
culate fixed points of unary functions. Rational production functions generalise
those employed by [16], [5], [2], and [14], and enable us to precisely capture the
consumption/production behaviour of a large class of stream functions.

Related Work. It is well-known that networks are devices for computing least
fixed points of systems of equations [6]. The notion of ‘productivity’ (some-
times also referred to as ‘liveness’) was first mentioned by Dijkstra [3]. Since
then several papers [16,12,2,5,14,1] have been devoted to criteria ensuring pro-
ductivity. The common essence of these approaches is a quantitative analy-
sis. In [16], Wadge uses dataflow networks to model fixed points of equations.
He devises a so-called cyclic sum test, using production functions of the form
βf (n1, . . . , nr) = min(n1 +af,1, . . . , nr +af,r) with af,i ∈ Z, i.e. the output leads
or lags the input by a fixed value af,i. Sijtsma [12] points out that this class
of production functions is too restrictive to capture the behaviour of commonly

276 J. Endrullis et al.

used stream operations like even, dup, zip and so forth. Therefore he develops an
approach allowing arbitrary production functions βf : N

r → N, having the only
drawback of not being automatable in full generality. Coquand [2] defines a syn-
tactic criterion called ‘guardedness’ for ensuring productivity. This criterion is
too restrictive for programming practice, because it disallows function applica-
tions to recursive calls. Telford and Turner [14] extend the notion of guardedness
with a method in the flavour of Wadge. However, their approach does not over-
come Sijtsma’s criticism. Hughes, Pareto and Sabry [5] introduce a type system
using production functions with the property that βf (a ·x+b) = c ·x+d for some
a, b, c, d ∈ N. This class of functions is not closed under composition, leading to
the need of approximations and a loss of power. Moreover their typing system
rejects definitions like M = a :b :tail(M), where ‘:’ is the infix stream constructor,
because tail is applied to the recursive call. Buchholz [1] presents a formal type
system for proving productivity, whose basic ingredients are, closely connected
to [12], unrestricted production functions βf : N

r → N. In order to obtain an
automatable method, Buchholz also devises a syntactic criterion to ensure pro-
ductivity. This criterion easily handles all the examples of [14], but fails to deal
with functions that have a negative effect ‘worse than tail’.

2 Recursive Stream Specifications

In this section the concepts of ‘stream constant specification’ (SCS) and ‘stream
function specification’ (SFS) are introduced. We use a two-layered set-up, which
is illustrated by the well-known definition M = 0:1:zip(tail(M), inv(tail(M))) of the
Thue–Morse sequence. This corecursive definition employs separate definitions of
the stream functions zip and tail, contained in Ex. 1 below, and of the definition
inv(x:σ) = (1−x):inv(σ) of the stream function inv. Stream constants are written
using uppercase letters, stream and data functions are written lowercase.

In order to distinguish between data terms and streams we use the framework
of many-sorted term rewriting. Let S be a finite set of sorts. An S-sorted set A is a
family of sets (As)s∈S . An S-sorted signature Σ is a set of function symbols, each
having a fixed arity ar(f) ∈ S∗×S. Let X be an S-sorted set of variables. The S-
sorted set of terms Ter(Σ, X) is inductively defined by: Xs ⊆ Ter(Σ, X)s for all
s ∈ S and f(t1, . . . , tn) ∈ Ter(Σ, X)s whenever f ∈ Σ with arity 〈s1 · · · sn, s〉
and ti ∈ Ter(Σ, X)si . An S-sorted term rewriting system (TRS) over an S-
sorted signature Σ is an S-sorted set R where Rs ⊆ Ter(Σ, X)s × Ter(Σ, X)s

for all s ∈ S, satisfying the standard TRS requirements for rules. An S-sorted
TRS is called finite if both its signature and the set of all of its rules are finite.

In the sequel let S = {d , s} where d is the sort of data terms and s is the sort
of streams. We say that a {d , s}-sorted TRS 〈Σ, R〉 is a stream TRS if there
exists a partition of the signature Σ = Σd
 Σsf
 Σsc
 {:} such that the arity
of the symbols from Σd is in 〈d∗, d〉, for Σsf in 〈{s , d}∗, s〉, for Σsc in 〈ε, s〉
and ‘:’ has arity 〈ds , s〉. Accordingly, the symbols in Σd are referred to as the
data symbols, ‘:’ as the stream constructor symbol, the symbols in Σsf as the
stream function symbols and the symbols in Σsc as the stream constant symbols.

Productivity of Stream Definitions 277

Without loss of generality we assume that for all f ∈ Σsf the stream arguments
are in front. That is, f has arity 〈srsdrd , s〉 for some rs, rd ∈ N; we say that f has
arity 〈rs, rd〉 for short.

Definition 1. Let T = 〈Σ, R〉 be a finite stream TRS with Σ = Σd
Σsf
{:}
and a partition R = Rd
 Rsf of its set of rules. Then T (together with these
partitions) is called a weakly guarded stream function specification (SFS) if:

(i) T is orthogonal (i.e. left-linear, non-overlapping redex patterns, see [15]).
(ii) 〈Σd , Rd 〉 is a strongly normalising TRS.
(iii) For every stream function symbol f ∈ Σsf there is precisely one rule in Rsf ,

denoted by ρ f , the defining rule for f. Furthermore, for all f ∈ Σsf with
arity 〈rs, rd〉, the rule ρ f ∈ Rsf has the form:

f((x1 : σ1), . . . , (xrs : σrs), y1, . . . , yrd) → u

where xi : σi stands for xi,1 : . . . : xi,ni : σi, and u is one of the following
forms:

u ≡ t1 : . . . : tm f
: g(σπ f(1), . . . , σπ f(r′

s), t
′
1, . . . , t

′
r′
d
), (1)

u ≡ t1 : . . . : tm f
: σi (2)

Here, the terms t1, . . . , tm f
∈ Ter(Σd) are called guards of f. Furthermore,

g ∈ Σsf with arity 〈r′s, r′d〉, π f : {1, . . . , r′s} → {1, . . . , rs} is an injection used
to permute stream arguments, n1, . . . , nrs , m f ∈ N, and 1 ≤ i ≤ rs. In
case (1) we write f � g, and say f ‘depends on’ g.

(iv) Every stream function symbol f ∈ Σsf is weakly guarded in T , i.e. on every
dependency cycle f � g � · · · � f there is at least one guard.

It is easy to show that every function symbol f ∈ Σsf in an SFS defines a unique
function that maps stream arguments and data arguments to a stream, which can
be computed, for given infinite stream terms u1, . . . , urs in constructor normal
form (that is, being of the form s0 :s1 :s2 :. . .) and data terms t1, . . . , trd , by infini-
tary rewriting as the infinite normal form of the term f(u1, . . . , urs , t1, . . . , trd).
Note that the definition covers a large class of stream functions including tail,
even, odd, zip, add. However, the function head defined by head(x :σ) = x, possi-
bly creating ‘look-ahead’ as in the well-defined example S = 0 : head(tail2(S)) : S
from [12], is not included.

Now we are ready to define the concept of ‘stream constant specification’.

Definition 2. Let T = 〈Σ, R〉 be a finite stream TRS with a partition Σ =
Σd
 Σsf
 Σsc
 {:} of its signature and a partition R = Rd
 Rsf
 Rsc of
its set of rules. Then T (together with these partitions) is called a pure stream
constant specification (SCS) if the following conditions hold:

(i) 〈Σd
 Σsf
 {:}, Rd
 Rsf 〉 is an SFS.
(ii) Σsc = {M1, . . . , Mn} is a non-empty set of constant symbols, and Rsc =

{Mi → rhs Mi | 1 ≤ i ≤ n, rhs Mi ∈ Ter(Σ)s}. The rule ρMi := Mi → rhs Mi

is called the defining rule for Mi in T .

278 J. Endrullis et al.

Note that an SCS T is orthogonal as a consequence of (i) and (ii).
An SCS is called productive if every M ∈ Σsc has a stream of data terms as

infinite normal form (an infinite constructor normal form). Note that orthogo-
nality implies that infinite normal forms are unique.

Example 1. Let TD = 〈Σd
 Σsf
 Σsc
 {:}, Rd
 Rsf
 Rsc〉 be the SCS with
Σd = {s, 0, a}, Σsf = {tail, even, odd, zip, add}, Σsc = {D}, and Rsc consists of

D → 0 : 1 : 1 : zip(add(tail(D), tail(tail(D))), even(tail(D))),

Rsf consists of the rules

tail(x : σ) → σ even(x : σ) → x : odd(σ) odd(x : σ) → even(σ)

zip(x : σ, τ) → x : zip(τ, σ) add(x : σ, y : τ) → a(x, y) : add(σ, τ)

and Rd = {a(x, s(y)) → s(a(x, y)), a(x, 0) → x}. Note that D has the infinite
constructor normal form 0 :1 : 1 : 2 :1 : 3 :2 : 3 : 3 :4 : 3 : 5 :4 : 5 : 5 :6 : 5 :7 : 6 : 7 :7 : . . . ,
and hence is productive in TD.

Example 2. Consider the rule J → 0 : 1 : even(J) together with Σ, Rd , Rsf as in
Ex. 1. The infinite normal form of J is 0 : 1 : 0 : 0 : even(even(. . .)), which is not a
constructor normal form. Hence J is WN∞ (in fact SN∞), but not productive.

3 Modelling with Nets

We introduce nets as a means to model SCSs and to visualise the flow of stream
elements. As our focus is on productivity of SCSs, we are interested in the
production of such a net, that is, the number of stream elements produced by
a net. Therefore, stream elements are abstracted from in favour of occurrences
of the symbol •, which we call pebble. The nets we study are called pebbleflow
nets ; they are inspired by interaction nets [10], and could be implemented in the
framework of interaction nets with little effort.

First we give an operational description of pebbleflow nets, explaining what
the components of nets are and the way how the components process pebbles. To
ease manipulation of and reasoning about nets, we employ term representations.
Term constructs corresponding to net components, as well as the rules governing
the flow of pebbles through a net, are given on the fly. Their formal definitions
are given in Subsec. 3.2. Finally, in Subsec. 3.3, we define a production preserving
translation of pure stream specifications into rational nets.

We denote the set of coinductive natural numbers by N = N ∪ {∞} and the
numerals representing the elements of N by n = sn(0) for n ∈ N, and ∞ = sω.

3.1 Nets

Wires. The directed edges of a net, along which pebbles travel, are called
wires. Wires are idealised in the sense that there is no upper bound on the num-
ber of pebbles they can store; arbitrarily long queues are allowed. Wires have

Productivity of Stream Definitions 279

N2 N1 N2N1

Fig. 1. �(•(N1), •(N2)) → •(�(N1, N2))

N N

Fig. 2. μx.•(N(x)) → •(μx.N(•(x)))

no counterpart on the term level; in this sense they are akin to the edges of a
term tree. Wires connect boxes, meets, fans, and sources, that we describe next.

Meets. A meet is waiting for a pebble at each of its input ports and only then
produces one pebble at its output port, see Fig. 1. Put differently, the number of
pebbles a meet produces equals the minimum of the numbers of pebbles available
at each of its input ports. Meets enable explicit branching; they are used to model
stream functions of arity > 1, as will be explained in the part “Boxes and gates”
below. A meet with an arbitrary number n ≥ 1 of input ports is implemented
by using a single wire in case n = 1, and if n = k + 1 with k ≥ 1, by connecting
the output port of a ‘k-ary meet’ to one of the input ports of a (binary) meet.

Fans. The behaviour of a fan is dual to that of a meet: a pebble at its input
port is duplicated along its output ports. A fan can be seen as an explicit sharing
device, and thus enables the construction of cyclic nets. More specifically, we use
fans only to implement feedback when drawing nets; there is no explicit term
representation for the fan in our term calculus. In Fig. 2 a pebble is sent over the
output wire of the net and at the same time is fed back to the ‘recursion wire(s)’.
Turning a cyclic net into a term (tree) means to introduce a notion of binding;
certain nodes need to be labelled by a name (μx) so that a wire pointing to that
node is replaced by a name (x) referring to the labelled node.

Sources. A source has an output port only, contains a number k ∈ N of pebbles,
and can fire if k > 0. In Sec. 4 we show how to reduce ‘closed’ nets to sources.

Boxes and Gates. A box consumes pebbles at its input port and produces
pebbles at its output port, controlled by an infinite sequence σ ∈ {+,−}ω asso-
ciated with the box. This consumption/production behaviour of the box is then
also be expressed by the ‘production function’ βσ : N → N of the box, see Fig. 5.
For example, consider the unary stream function dup, defined as follows, and its
corresponding ‘I/O sequence’:

dup(x : σ) = x : x : dup(σ) −++−++−++ . . .

which is to be thought of as: for dup to produce two outputs, it first has to
consume one input, and this process repeats indefinitely. Intuitively, the symbol −
represents a requirement for an input pebble, and + represents a ready state for
an output pebble. Pebbleflow through boxes is visualised in Figs. 3 and 4.

280 J. Endrullis et al.

N N

σ+σ

Fig. 3. box(+σ, N) → •(box(σ, N))

N N

σ−σ

Fig. 4. box(−σ, •(N)) → box(σ, N)

Definition 3. The set ±ω of I/O sequences is defined as the set of infinite
sequences over the alphabet {+,−} that contain an infinite number of +’s:

±ω := {σ ∈ {+,−}ω | ∀n. ∃m. σ(n + m) = +}

Further, we define the set ±ω
rat ⊆ ±ω of rational I/O sequences. A sequence

σ ∈ ±ω is called rational if there exist lists α, γ ∈ {+,−}∗ such that σ = αγ,
where γ is not the empty list and γ denotes the infinite sequence γγγ The
pair 〈α, γ〉 is called a rational representation of σ.

To model stream functions of arbitrary arity, we introduce gates. Gates are
compounded of meets and boxes, as depicted in Fig. 6. The precise construction
of a gate corresponding to a given stream function is described in Subsec. 3.3.

N N

}
n

σ′

βσ(n)
{

σ

Fig. 5. box(σ, •n(N)) → •βσ(n)(box(σ′, N))

σrsσ1

Fig. 6. A gate for modelling rs-ary
stream functions

Definition 4. The production function βσ : N → N of (a box containing) a
sequence σ ∈ ±ω is corecursively defined, for all n ∈ N, by βσ(n) := β(σ, n):

β(+σ, n) = s(β(σ, n)) β(−σ, 0) = 0 β(−σ, s(n)) = β(σ, n)

Intuitively, βσ(n) is the number of outputs of a box containing sequence σ when
fed n inputs. Note that production functions are well-defined due to our require-
ment on I/O sequences.

3.2 A Rewrite System for Pebbleflow

We define terms representing nets, and a rewrite system to model pebbleflow.

Definition 5. Let V be a set of variables. The set N of terms for pebbleflow
nets is generated by:

N ::= src(k) | x | •(N) | box(σ, N) | μx.N | �(N, N)

Productivity of Stream Definitions 281

where k ∈ N, x ∈ V , and σ ∈ ±ω. Furthermore, the set Nrat of terms for
rational pebbleflow nets is defined by the same inductive clauses, but now with
the restriction σ ∈ ±ω

rat .

The importance of identifying the subset of rational nets will become evident
in Sec. 4, where we introduce a rewrite system for reducing nets to trivial nets
(pebble sources). That system will be terminating for rational nets, and will
enable us to determine the total production of a rational net.

The rules that govern pebbleflow are listed in Def. 6.

Definition 6. The pebbleflow rewrite relation →P is defined as the compatible
closure of the union of the following rules:

�(•(N1), •(N2)) → •(�(N1, N2)) (P1)
μx.•(N(x)) → •(μx.N(•(x))) (P2)

box((+σ), N) → •(box(σ, N)) (P3)
box((−σ), •(N)) → box(σ, N) (P4)

src(s(k)) → •(src(k)) (P5)

The first four rewrite rules in the definition above are visualised in Figures 1, 2,
3, and 4, respectively. In rule (P2) the feedback of pebbles along the recursion
wire(s) of the net N is accomplished by substituting •(x) for all free occurrences
x of N . Observe that →P constitutes an orthogonal CRS [15], hence:

Theorem 1. The relation →P is confluent.

3.3 Translating Pure Stream Specifications

First we give a translation of the stream function symbols in an SFS into rational
gates (gates with boxes containing rational I/O sequences) that precisely model
their quantitative consumption/production behaviour. The idea is to define, for
a stream function symbol f, a rational gate by keeping track of the ‘production’
(sequence of guards encountered) and the ‘consumption’ of the rules applied,
during the finite or eventually periodic dependency sequence on f.

Definition 7. Let T = 〈Σd
 Σsf
 {:}, Rd
 Rsf 〉 be an SFS. Then, for each
f ∈ Σsf with arity 〈rs, rd〉 the translation of f is a rational gate [f] : N rs → N as
defined by:

[f](N1, . . . , Nrs) = �rs(box([f]1, N1), . . . , box([f]rs , Nrs))

where [f]i ∈ ±ω
rat is defined as follows. We distinguish the two formats a rule

ρ f ∈ Rsf can have. Let xi : σi stand for xi,1 : . . . : xi,ni : σi. If ρ f has the form:
f(x1 : σ1, . . . , xrs : σrs , y1, . . . , yrd) → t1 : . . . : tm f

: u, where:

(a) u ≡ g(σπ f (1), . . . , σπ f(r′
s), t

′
1, . . . , t

′
r′
d
), then (b) u ≡ σj , then

[f]i =

{
−ni+m f [g]j if π f(j) = i

−ni+ if ¬∃j. π f(j) = i
[f]i =

{
−ni+m f−+ if i = j

−ni+ if i �= j

282 J. Endrullis et al.

In the second step, we define a translation of the stream constants in an SCS into
rational nets. Here the idea is that the recursive definition of a stream constant
M is unfolded step by step; the terms thus arising are translated according to
their structure by making use of the translation of the stream function symbols
encountered; whenever a stream constant is met that has been unfolded before,
the translation stops after establishing a binding to a μ-binder created earlier.

Definition 8. Let T = 〈Σd
Σsf
Σsc
{:}, Rd
Rsf
Rsc〉 be an SCS. Then,
for each M ∈ Σsc with rule ρM ≡ M → rhs M the translation [M] := [M]∅ of M to
a pebbleflow net is recursively defined by (α a set of stream constant symbols):

[M]α =

{
μM.[rhs M]α∪{M} if M �∈ α

M if M ∈ α

[t : u]α = •([u]α)
[f(u1, . . . , urs , t1, . . . , trd)]α = [f]([u1]α, . . . , [urs]α)

Example 3. Reconsider the SCS defined in Example 1. The translation of the
stream function symbols tail, zip ∈ Σsf is carried out as follows:

[tail](N) = �1(box([tail]1, N)) [zip](N1, N2) = �2(box([zip]1, N1), box([zip]2, N2))

= box([tail]1, N) [zip]1 = −+[zip]2 = −++[zip]1 = −++

[tail]1 = −−+ [zip]2 = +[zip]1 = +−+[zip]2 = +−+

(Note that to obtain rational representations of the translated stream functions
we use loop checking on top of Def. 7.) Then, the stream constant D is translated
to the following pebbleflow net, depicted in Fig. 7:

[D] = μD.•(•(•([zip]([add]([tail](D), [tail]([tail](D))), [even]([tail](D)))))) .

[tail]1

[even]1

[zip]1 [zip]2

[zip] [add]1 [add]2

[add]

[tail]1

[tail]1

[tail]1

Fig. 7. The pebbleflow net [D] corresponding to the stream D

Productivity of Stream Definitions 283

The theorem below is the basis of our decision algorithm. It states that the
translation is ‘production preserving’, based on the following terminology: The
production π(N) of a pebbleflow net N is the supremum of the number of pebbles
the net can ‘produce’: π(N) := sup{n ∈ N | N �P •n(N ′)}, where �P denotes
the reflexive–transitive closure of →P. Likewise for an SCS T = 〈Σ, R〉 the
production πT (t) of a term t ∈ Ter(Σ) is the supremum of the number of data
elements t can ‘produce’: πT (t) := sup{n ∈ N | t � s1 : . . . : sn : t′}.

Theorem 2. Let T be a pure SCS. Then, π([M]) = πT (M) for all M ∈ Σsc.

4 Deciding Productivity

We define a rewriting system for pebbleflow nets that, for every net N , allows
to reduce N to a single source while preserving the production of N .

Definition 9. We define the net reduction relation →R on closed pebbleflow nets
by the compatible closure of the following rule schemata:

•(N) → box((+−+), N) (R1)
box(σ, box(τ, N)) → box((σ · τ), N) (R2)

box(σ,�(N1, N2)) → �(box(σ, N1), box(σ, N2)) (R3)
μx.�(N1, N2) → �(μx.N1, μx.N2) (R4)

μx.N → N if x �∈ FV(N) (R5)
μx.box(σ, x) → src(fix(σ)) (R6)

�(src(k1), src(k2)) → src(min(k1, k2)) (R7)

box(σ, src(k)) → src(βσ(k)) (R8)

μx.x → src(0) (R9)

where σ, τ ∈ ±ω, k, k1, k2 ∈ N, and min(n, m), βσ(k), σ · τ (see Def. 10) and
fix(σ) (see Def. 11) are term representations of operation results.

Definition 10. The operation composition · : ±ω ×±ω → ±ω, 〈σ, τ〉 �→ σ · τ of
I/O sequences is defined corecursively by the following equations:

(+σ) · τ = +(σ · τ) (−σ) · (+τ) = σ · τ (−σ) · (−τ) = −((−σ) · τ)

Composition of sequences σ · τ ∈ ±ω exhibits analogous properties as composi-
tion of functions over natural numbers: it is associative, but not commutative.
Furthermore, for all σ, τ ∈ ±ω, n ∈ N we have βσ·τ (n) = βσ(βτ (n)). Because
we formalised the I/O behaviour of boxes by sequences and because we are
interested in (dis)proving productivity, for the formalisation of the pebbleflow
rewrite relation in Def. 6 the choice has been made to give output priority over
input. This becomes apparent in the definition of composition above: the net
box(+−+, box(−−+, x)) is able to consume an input pebble at its free input
port x as well as to produce an output pebble, whereas the result box(+−−+, x)
of the composition can only consume input after having fired.

284 J. Endrullis et al.

The fixed point of a box is the production of the box when fed its own output.

Definition 11. The operations fixed point fix : ±ω → N and requirement re-
moval δ : ±ω → ±ω on I/O sequences are corecursively defined as follows:

fix(+σ) = s(fix(δ(σ))) δ(+σ) = +δ(σ)

fix(−σ) = 0 δ(−σ) = σ

For all σ ∈ ±ω, we have βσ(fix(σ)) = fix(σ). Moreover, fix(σ) is the least fixed
point of βσ. Observe that βσ·σ·σ·... = βσ(βσ(βσ(. . .))) = fix(σ). Therefore, the
infinite self-composition box(σ, box(σ, box(σ, . . .))) is ‘production equivalent’ to
src(fix(σ)).

Lemma 1. The net reduction relation →R is production preserving, that is,
N →R N ′ implies π(N) = π(N ′), for all nets N, N ′ ∈ N . Furthermore, →R is
terminating and every closed net normalises to a unique normal form, a source.

Observe that net reduction employs infinitary rewriting for fixed point compu-
tation and composition (Def. 10 and 11). To compute normal forms in finite
time we make use of finite representations of rational sequences and exchange
the numeral sω with a constant ∞. The reader may confer [4] for further details.

Lemma 2. There is an algorithm that, if N ∈ Nrat and rational representations
of the sequences σ ∈ ±ω

rat in N are given, computes the →R-normal form of N .

Proof (Hint). Note that composition preserves rationality, that is, σ · τ ∈ ±ω
rat

whenever σ, τ ∈ ±ω
rat . Similarly, it is straightforward to show that for sequences

σ, τ ∈ ±ω
rat with given rational representations the fixed point fix(σ) and a ratio-

nal representation of the composition σ · τ can be computed in finite time. ��

Theorem 3. Productivity is decidable for pure stream constant specifications.

Proof. The following steps describe a decision algorithm for productivity of a
stream constant M in an SCS T : First, the translation [M] of M into a pebbleflow
net is built according to Def. 8. It is easy to verify that [M] is in fact a rational
net. Second, by the algorithm stated by Lem. 2, [M] is collapsed to a source
src(n) with n ∈ N. By Thm. 2 it follows that [M] has the same production as M
in T , and by Lem. 1 that the production of [M] is n. Consequently, πT (M) = n.
Hence the answers “T is productive for M” and “T is not productive for M” are
obtained if n = ∞ and if n ∈ N, respectively. ��

5 Examples

We give three examples to show how our algorithm decides productivity of SCSs.
First we recognise our running example (Ex. 1) to be productive. Next, we give
a simple example of an SCS that is not productive. Finally, we illustrate that
productivity is sensitive to the precise definitions of the stream functions used.

Productivity of Stream Definitions 285

Example 4. We revisit Ex. 3 where we calculated the pebbleflow net [D] for D
and show the last five steps of the reduction to →R-normal form.

[D] �R �(�(μD.box(+++−−++, D), μD.box(+++−−++, box(−−+, D))), src(∞))

→R6 �(�(src(∞), μD.box(+++−−++, box(−−+, D))), src(∞))

→R2 �(�(src(∞), μD.box(+++−−−++, D)), src(∞))

→R6 �(�(src(∞), src(∞)), src(∞)) →R7 �(src(∞), src(∞)) →R7 src(∞) .

Hence D is productive in the SCS of Ex. 1.

Example 5. For the definition of J from Ex. 2 we get:

[J] = μJ.•(•(box(−+−, J))) →2
R1 μJ.box(+−+, box(+−+, box(−+−, J)))

→R2 μJ.box(++−+, box(−+−, J)) →R2 μJ.box(++−+−, J) →R6 src(4) ,

proving that J is not productive (only 4 elements can be evaluated).

Example 6. Let T = 〈Σd
 Σsf
 Σsc
 {:}, Rd
 Rsf
 Rsc〉 be an SCS where
Σd = {0}, Σsf = {zip, tail, even, odd}, Σsc = {C}, Rd = ∅, Rsc consists of:

C → 0 : zip(C, even(tail(C))) ,

and Rsf consists of the rules:

tail(x : σ) → σ zip(x : σ, τ) → x : zip(τ, σ)
even(x : σ) → x : odd(σ) odd(x : σ) → even(σ) .

Then, we obtain the following translations:

[zip](N1, N2) = �2(box(−++, N1), box(+−+, N2))

[even](N) = box(−+−, N)

[tail](N) = box(−−+, N)

[C] = μC.•(�(box(−++, C), box(+−+, box(−+−, box(−−+, C))))) .

Now by rewriting [C] with parallel outermost rewriting (except that composition
of boxes is preferred to reduce the size of the terms) according to →R we get:

[C] →R2 μC.•(�(box(−++, C), box(+−++−, box(−−+, C))))

→R2 μC.•(�(box(−++, C), box(+−−+, C)))

→R1 μC.box(+−+,�(box(−++, C), box(+−−+, C)))

→R3 μC.�(box(+−+, box(−++, C)), box(+−+, box(+−−+, C)))

→2
R2 μC.�(box(+−+, C), box(++−−, C))

→R4 �(μC.box(+−+, C), μC.box(++−−, C))

→2
R6 �(src(∞), src(∞))

→R7 src(∞)

witnessing productivity of C in T . Note that the ‘fine’ definitions of zip and even
are crucial in this setting. If we replace the definition of zip in T by the ‘coarser’
one: zip∗(x : σ, y : τ) → x : y : zip∗(σ, τ), we obtain an SCS T ∗ where:

[zip∗](N1, N2) = �2(box(−++, N1), box(−++, N2))

286 J. Endrullis et al.

[C] = μC.•(�(box(−++, C), box(−++, box(−+−, box(−−+, C)))))

→R2 μC.•(�(box(−++, C), box(−++−, box(−−+, C))))

→R2 μC.•(�(box(−++, C), box(−−++, C)))

→R1 μC.box(+−+,�(box(−++, C), box(−−++, C)))

→R3 μC.�(box(+−+, box(−++, C)), box(+−+, box(−−++, C)))

→2
R2 μC.�(box(+−+, C), box(+−−+, C))

→R4 �(μC.box(+−+, C), μC.box(+−−+, C))

→2
R6 �(src(∞), src(1))

→R7 src(1) .

Hence C is not productive in T ∗ (here it produces only one element).
Similarly, if we change the definition of even to even(x : y : σ) → x : even(σ),

giving rise to the translation [even](N) = box(−−+, N), then only the first two
elements of C can be evaluated.

6 Conclusion and Ongoing Research

We have shown that productivity is decidable for stream definitions that belong
to the format of SCSs. The class of SCSs contains definitions that cannot be
recognised automatically to be productive by the methods of [16,12,2,5,14,1] (e.g.
the stream constant definition in Ex. 1). These previous approaches established
criteria for productivity that are not applicable for disproving productivity; fur-
thermore, these methods are either applicable to general stream definitions, but
cannot be mechanised fully, or can be automated, but give a ‘productive’/‘don’t
know’ answer only for a very restricted subclass. Our approach combines the
features of being automatable and of obtaining a definite ‘productive’/‘not pro-
ductive’ decision for a rich class of stream definitions.

Note that we obtain decidability of productivity by restricting only the stream
function definition part of a stream definition (formalised as an orthogonal TRS),
while imposing no conditions on how the stream constant definition part makes
use of the stream functions. The restriction to weakly guarded stream function
definitions in SCSs is motivated by the wish to formulate an effectively recog-
nisable format of stream definitions for which productivity is decidable. More
general recognisable formats to which our method can be applied are possible.
If the requirement of a recognisable format is dropped, our approach allows to
show decidability of productivity for stream definitions that are based on stream
function specifications which can (quantitatively) faithfully be described by ‘ra-
tional’ I/O sequences. Finally, also lower and upper ‘rational’ bounds on the
production of stream functions can be considered to obtain computable crite-
ria for productivity and its complement. This will allow us to deal with stream
functions that depend quantitatively on the value of stream elements and data
parameters. All of these extensions of the result presented here are the subject
of ongoing research (see also [4]).

Productivity of Stream Definitions 287

The reader may want to visit http://infinity.few.vu.nl/productivity/ for
additional material. There, an implementation of the decision algorithm for pro-
ductivity of SCSs as well as an animation tool for pebbleflow nets can be found.
We have tested the usefulness and feasibility of the implementation of our deci-
sion algorithm on various SCSs from the literature, and so far have not encoun-
tered excessive run-times. However, a precise analysis of the run-time complexity
of our algorithm remains to be carried out.

Acknowledgement. For useful discussions we want to thank Clemens Kupke, Mi-
lad Niqui, Vincent van Oostrom, Femke van Raamsdonk, and Jan Rutten. Also,
we would like to thank the anonymous referees for their encouraging comments.

References

1. Buchholz, W.: A term calculus for (co-)recursive definitions on streamlike data
structures. Annals of Pure and Applied Logic 136(1-2), 75–90 (2005)

2. Coquand, Th.: Infinite Objects in Type Theory. In: Barendregt, H., Nipkow, T.
(eds.) TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)

3. Dijkstra, E.W.: On the productivity of recursive definitions, EWD749 (1980)
4. Endrullis, J., Grabmayer, C., Hendriks, D.: Productivity of stream definitions.

Technical report, Vrije Universiteit Amsterdam (2007), available via
http://infinity.few.vu.nl/productivity/

5. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL ’96, pp. 410–423 (1996)

6. Kahn, G.: The semantics of a simple language for parallel programming. Informa-
tion Processing, 471–475 (1974)

7. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.-J.: Transfinite reductions in
orthogonal term rewriting systems. Inf. and Comput. 119(1), 18–38 (1995)

8. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.-J.: Infinitary lambda calculus.
TCS 175(1), 93–125 (1997)

9. Klop, J.W., de Vrijer, R.: Infinitary normalization. In: We Will Show Them: Essays
in Honour of Dov Gabbay (2). College Publications, pp. 169–192 (2005), Item 95
at http://web.mac.com/janwillemklop/iWeb/Site/Bibliography.html

10. Lafont, Y.: Interaction nets. In: POPL ’90, pp. 95–108. ACM Press, New York
(1990)

11. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. TCS 308(1-3), 1–53 (2003)

12. Sijtsma, B.A.: On the productivity of recursive list definitions. ACM Transactions
on Programming Languages and Systems 11(4), 633–649 (1989)

13. Tait, W.W.: Intentional interpretations of functionals of finite type I. Journal of
Symbolic Logic 32(2) (1967)

14. Telford, A., Turner, D.: Ensuring the Productivity of infinite structures. Technical
Report 14-97, The Computing Laboratory, Univ. of Kent at Canterbury (1997)

15. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

16. Wadge, W.W.: An extensional treatment of dataflow deadlock. TCS 13, 3–15 (1981)

http://infinity.few.vu.nl/productivity/
http://infinity.few.vu.nl/productivity/
http://web.mac.com/janwillemklop/iWeb/Site/Bibliography.html

	Productivity of Stream Definitions
	Introduction
	Recursive Stream Specifications
	Modelling with Nets
	Nets
	A Rewrite System for Pebbleflow
	Translating Pure Stream Specifications

	Deciding Productivity
	Examples
	Conclusion and Ongoing Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

