50,482 research outputs found

    Geometrical estimators as a test of Gaussianity in the CMB

    Get PDF
    We investigate the power of geometrical estimators on detecting non-Gaussianity in the cosmic microwave background. In particular the number, eccentricity and Gaussian curvature of excursion sets above (and below) a threshold are studied. We compare their different performance when applied to non-Gaussian simulated maps of small patches of the sky, which take into account the angular resolution and instrumental noise of the Planck satellite. These non-Gaussian simulations are obtained as perturbations of a Gaussian field in two different ways which introduce a small level of skewness or kurtosis in the distribution. A comparison with a classical estimator, the genus, is also shown. We find that the Gaussian curvature is the best of our estimators in all the considered cases. Therefore we propose the use of this quantity as a particularly useful test to look for non-Gaussianity in the CMB.Comment: 9 pages, 6 postscript figures, submitted to MNRA

    The effect of a planet on the dust distribution in a 3D protoplanetary disk

    Get PDF
    Aims: We investigate the behaviour of dust in protoplanetary disks under the action of gas drag in the presence of a planet. Our goal is twofold: to determine the spatial distribution of dust depending on grain size and planet mass, and therefore to provide a framework for interpretation of coming observations and future studies of planetesimal growth. Method: We numerically model the evolution of dust in a protoplanetary disk using a two-fluid (gas + dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a minimum mass solar nebula (MMSN) disk comprising 1% dust by mass in the presence of an embedded planet. We run a series of simulations which vary the grain size and planetary mass to see how they affect the resulting disk structure. Results: We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a completely different appearance depending on the grain size. For low mass planets in our MMSN disk, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may enhance the formation of a second planet by facilitating the growth of planetesimals in this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Spatiotemporal chaotic dynamics of solitons with internal structure in the presence of finite-width inhomogeneities

    Full text link
    We present an analytical and numerical study of the Klein-Gordon kink-soliton dynamics in inhomogeneous media. In particular, we study an external field that is almost constant for the whole system but that changes its sign at the center of coordinates and a localized impurity with finite-width. The soliton solution of the Klein-Gordon-like equations is usually treated as a structureless point-like particle. A richer dynamics is unveiled when the extended character of the soliton is taken into account. We show that interesting spatiotemporal phenomena appear when the structure of the soliton interacts with finite-width inhomogeneities. We solve an inverse problem in order to have external perturbations which are generic and topologically equivalent to well-known bifurcation models and such that the stability problem can be solved exactly. We also show the different quasiperiodic and chaotic motions the soliton undergoes as a time-dependent force pumps energy into the traslational mode of the kink and relate these dynamics with the excitation of the shape modes of the soliton.Comment: 10 pages Revtex style article, 22 gziped postscript figures and 5 jpg figure

    Sidebranching induced by external noise in solutal dendritic growth

    Get PDF
    We have studied sidebranching induced by fluctuations in dendritic growth. The amplitude of sidebranching induced by internal (equilibrium) concentration fluctuations in the case of solidification with solutal diffusion is computed. This amplitude turns out to be significantly smaller than values reported in previous experiments.The effects of other possible sources of fluctuations (of an external origin)are examined by introducing non-conserved noise in a phase-field model. This reproduces the characteristics of sidebranching found in experiments. Results also show that sidebranching induced by external noise is qualitatively similar to that of internal noise, and it is only distinguished by its amplitude.Comment: 13 pages, 5 figure

    Wavelets Applied to CMB Maps: a Multiresolution Analysis for Denoising

    Get PDF
    Analysis and denoising of Cosmic Microwave Background (CMB) maps are performed using wavelet multiresolution techniques. The method is tested on 12∘.8×12∘.812^{\circ}.8\times 12^{\circ}.8 maps with resolution resembling the experimental one expected for future high resolution space observations. Semianalytic formulae of the variance of wavelet coefficients are given for the Haar and Mexican Hat wavelet bases. Results are presented for the standard Cold Dark Matter (CDM) model. Denoising of simulated maps is carried out by removal of wavelet coefficients dominated by instrumental noise. CMB maps with a signal-to-noise, S/N∼1S/N \sim 1, are denoised with an error improvement factor between 3 and 5. Moreover we have also tested how well the CMB temperature power spectrum is recovered after denoising. We are able to reconstruct the CℓC_{\ell}'s up to l∼1500l\sim 1500 with errors always below 2020% in cases with S/N≥1S/N \ge 1.Comment: latex file 9 pages + 5 postscript figures + 1 gif figure (figure 6), to be published in MNRA
    • …
    corecore