50,482 research outputs found
Geometrical estimators as a test of Gaussianity in the CMB
We investigate the power of geometrical estimators on detecting
non-Gaussianity in the cosmic microwave background. In particular the number,
eccentricity and Gaussian curvature of excursion sets above (and below) a
threshold are studied. We compare their different performance when applied to
non-Gaussian simulated maps of small patches of the sky, which take into
account the angular resolution and instrumental noise of the Planck satellite.
These non-Gaussian simulations are obtained as perturbations of a Gaussian
field in two different ways which introduce a small level of skewness or
kurtosis in the distribution. A comparison with a classical estimator, the
genus, is also shown. We find that the Gaussian curvature is the best of our
estimators in all the considered cases. Therefore we propose the use of this
quantity as a particularly useful test to look for non-Gaussianity in the CMB.Comment: 9 pages, 6 postscript figures, submitted to MNRA
The effect of a planet on the dust distribution in a 3D protoplanetary disk
Aims: We investigate the behaviour of dust in protoplanetary disks under the
action of gas drag in the presence of a planet. Our goal is twofold: to
determine the spatial distribution of dust depending on grain size and planet
mass, and therefore to provide a framework for interpretation of coming
observations and future studies of planetesimal growth. Method: We numerically
model the evolution of dust in a protoplanetary disk using a two-fluid (gas +
dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating
and locally isothermal. The code follows the three dimensional distribution of
dust in a protoplanetary disk as it interacts with the gas via aerodynamic
drag. In this work, we present the evolution of a minimum mass solar nebula
(MMSN) disk comprising 1% dust by mass in the presence of an embedded planet.
We run a series of simulations which vary the grain size and planetary mass to
see how they affect the resulting disk structure. Results: We find that gap
formation is much more rapid and striking in the dust layer than in the gaseous
disk and that a system with a given stellar, disk and planetary mass will have
a completely different appearance depending on the grain size. For low mass
planets in our MMSN disk, a gap can open in the dust disk while not in the gas
disk. We also note that dust accumulates at the external edge of the planetary
gap and speculate that the presence of a planet in the disk may enhance the
formation of a second planet by facilitating the growth of planetesimals in
this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy &
Astrophysic
Spatiotemporal chaotic dynamics of solitons with internal structure in the presence of finite-width inhomogeneities
We present an analytical and numerical study of the Klein-Gordon kink-soliton
dynamics in inhomogeneous media. In particular, we study an external field that
is almost constant for the whole system but that changes its sign at the center
of coordinates and a localized impurity with finite-width. The soliton solution
of the Klein-Gordon-like equations is usually treated as a structureless
point-like particle. A richer dynamics is unveiled when the extended character
of the soliton is taken into account. We show that interesting spatiotemporal
phenomena appear when the structure of the soliton interacts with finite-width
inhomogeneities. We solve an inverse problem in order to have external
perturbations which are generic and topologically equivalent to well-known
bifurcation models and such that the stability problem can be solved exactly.
We also show the different quasiperiodic and chaotic motions the soliton
undergoes as a time-dependent force pumps energy into the traslational mode of
the kink and relate these dynamics with the excitation of the shape modes of
the soliton.Comment: 10 pages Revtex style article, 22 gziped postscript figures and 5 jpg
figure
Sidebranching induced by external noise in solutal dendritic growth
We have studied sidebranching induced by fluctuations in dendritic growth.
The amplitude of sidebranching induced by internal (equilibrium) concentration
fluctuations in the case of solidification with solutal diffusion is computed.
This amplitude turns out to be significantly smaller than values reported in
previous experiments.The effects of other possible sources of fluctuations (of
an external origin)are examined by introducing non-conserved noise in a
phase-field model. This reproduces the characteristics of sidebranching found
in experiments. Results also show that sidebranching induced by external noise
is qualitatively similar to that of internal noise, and it is only
distinguished by its amplitude.Comment: 13 pages, 5 figure
Wavelets Applied to CMB Maps: a Multiresolution Analysis for Denoising
Analysis and denoising of Cosmic Microwave Background (CMB) maps are
performed using wavelet multiresolution techniques. The method is tested on
maps with resolution resembling the
experimental one expected for future high resolution space observations.
Semianalytic formulae of the variance of wavelet coefficients are given for the
Haar and Mexican Hat wavelet bases. Results are presented for the standard Cold
Dark Matter (CDM) model. Denoising of simulated maps is carried out by removal
of wavelet coefficients dominated by instrumental noise. CMB maps with a
signal-to-noise, , are denoised with an error improvement factor
between 3 and 5. Moreover we have also tested how well the CMB temperature
power spectrum is recovered after denoising. We are able to reconstruct the
's up to with errors always below in cases with
.Comment: latex file 9 pages + 5 postscript figures + 1 gif figure (figure 6),
to be published in MNRA
- …