3,983 research outputs found

    Why the Universe Started from a Low Entropy State

    Get PDF
    We show that the inclusion of backreaction of massive long wavelengths imposes dynamical constraints on the allowed phase space of initial conditions for inflation, which results in a superselection rule for the initial conditions. Only high energy inflation is stable against collapse due to the gravitational instability of massive perturbations. We present arguments to the effect that the initial conditions problem {\it cannot} be meaningfully addressed by thermostatistics as far as the gravitational degrees of freedom are concerned. Rather, the choice of the initial conditions for the universe in the phase space and the emergence of an arrow of time have to be treated as a dynamic selection.Comment: 12 pages, 2 figs. Final version; agrees with accepted version in Phys. Rev.

    Cosmological Avatars of the Landscape II: CMB and LSS Signatures

    Get PDF
    This is the second paper in the series that confronts predictions of a model of the landscape with cosmological observations. We show here how the modifications of the Friedmann equation due to the decohering effects of long wavelength modes on the wavefunction of the Universe defined on the landscape leave unique signatures on the CMB spectra and large scale structure (LSS). We show that the effect of the string corrections is to suppress σ8\sigma_8 and the CMB TTTT spectrum at large angles, thereby bringing WMAP and SDSS data for σ8\sigma_8 into agreement. We find interesting features imprinted on the matter power spectrum P(k)P(k): power is suppressed at large scales indicating the possibility of primordial voids competing with the ISW effect. Furthermore, power is enhanced at structure and substructure scales, k≃10−2−0h Mpc−1k\simeq 10^{-2-0} h~{\rm Mpc}^{-1}. Our smoking gun for discriminating this proposal from others with similar CMB and LSS predictions come from correlations between cosmic shear and temperature anisotropies, which here indicate a noninflationary channel of contribution to LSS, with unique ringing features of nonlocal entanglement displayed at structure and substructure scales.Comment: 7 pages, 4 figure

    Cosmological Avatars of the Landscape I: Bracketing the SUSY Breaking Scale

    Get PDF
    We investigate the effects of quantum entanglement between our horizon patch and others due to the tracing out of long wavelength modes in the wavefunction of the Universe as defined on a particular model of the landscape. In this, the first of two papers devoted to this topic, we find that the SUSY breaking scale is bounded both above {\em and} below: 10−10MP≤MSUSY≤10−8MP10^{-10} M_{\rm P}\leq M_{\rm SUSY}\leq 10^{-8} M_{\rm P} for GUTGUT scale inflation. The lower bound is at least five orders of magnitude larger than the expected value of this parameter and can be tested by LHC physics.Comment: 7 pages, 1 figur

    A low-altitude satellite interaction study

    Get PDF
    Two computer programs calculate interaction effects of high speed spacecraft on the environment at altitudes from 90 km to 150 km. EXT program determines fluid field in bodies of arbitrary geometries in transient flow regime. INT program uses EXT output and measures flow conditions inside spacecraft body

    'Tilting' the Universe with the Landscape Multiverse: The 'Dark' Flow

    Full text link
    The theory for the selection of the initial state of the universe from the landscape multiverse predicts superhorizon inhomogeneities induced by nonlocal entanglement of our Hubble volume with modes and domains beyond the horizon. Here we show these naturally give rise to a bulk flow with correlation length of order horizon size. The modification to the gravitational potential has a characteristic scale L1≃103H−1L_{1} \simeq 10^{3} H^{-1}, and it originates from the preinflationary remnants of the landscape. The 'tilt' in the potential induces power to the lowest CMB multipoles, with the dominant contribution being the dipole and next, the quadrupole. The induced multipoles l≤2l \le 2 are aligned with an axis normal to their alignment plane being oriented along the preferred frame determined by the dipole. The preferred direction is displayed by the velocity field of the bulk flow relative to the expansion frame of the universe. The parameters are tightly constrained thus the derived modifications lead to robust predictions for testing our theory. The 'dark' flow was recently discovered by Kashlinsky et al. to be about 700km/s700 km/s which seems in good agreement with our predictions for the induced dipole of order 3μK3 \mu K. Placed in this context, the discovery of the bulk flow by Kashlinsky et al. becomes even more interesting as it may provide a probe of the preinflationary physics and a window onto the landscape multiverse.Comment: 7 pgs, 2 fig

    Conceptual design study of a six-man solid electrolyte system for oxygen reclamation

    Get PDF
    A six-man solid electrolyte oxygen regeneration system (SEORS) that will produce 12.5 lbs/day of oxygen has been designed. The SEORS will simultaneously electrolyze both carbon dioxide and water vapor and be suitable for coupling with a carbon dioxide concentration system of either molecular sieve, solid amine or hydrogen depolarized electrochemical type. The total system will occupy approximately 19 cu ft (34.5 in. x .26 in. x 36 in. high) and will weigh approximately 500 pounds. It is estimated that the total electrical power required will be 1783 watts. The system consists of three major components; electrolyzer, hydrogen diffuser, and carbon deposition reactor. There are 108 electrolysis stacks of 12 cells each in the electrolyzer. Only 2/3 of the 108 stacks will be operated at a time; the remainder will be held in reserve. The design calls for 96 palladium membranes for hydrogen removal to give 60 percent redundancy. Four carbon deposition reactors are employed. The iron catalyst tube in each reactor weighs 7.1 lb and 100 percent redundancy is allowed

    Inflaton Decay in an Alpha Vacuum

    Full text link
    We study the alpha vacua of de Sitter space by considering the decay rate of the inflaton field coupled to a scalar field placed in an alpha vacuum. We find an {\em alpha dependent} Bose enhancement relative to the Bunch-Davies vacuum and, surprisingly, no non-renormalizable divergences. We also consider a modified alpha dependent time ordering prescription for the Feynman propagator and show that it leads to an alpha independent result. This result suggests that it may be possible to calculate in any alpha vacuum if we employ the appropriate causality preserving prescription.Comment: 16 pages, 1 figure, Revtex 4 preprin

    The Size Distribution of Trans-Neptunian Bodies

    Get PDF
    [Condensed] We search 0.02 deg^2 for trans-Neptunian objects (TNOs) with m<=29.2 (diameter ~15 km) using the ACS on HST. Three new objects are discovered, roughly 25 times fewer than expected from extrapolation of the differential sky density Sigma(m) of brighter objects. The ACS and other recent TNO surveys show departures from a power law size distribution. Division of the TNO sample into ``classical Kuiper belt'' (CKB) and ``Excited'' samples reveals that Sigma(m) differs for the two populations at 96% confidence. A double power law adequately fits all data. Implications include: The total mass of the CKB is ~0.010 M_Earth, only a few times Pluto's mass, and is predominately in the form of ~100 km bodies. The mass of Excited objects is perhaps a few times larger. The Excited class has a shallower bright-end size distribution; the largest objects, including Pluto, comprise tens of percent of the total mass whereas the largest CKBOs are only ~2% of its mass. The predicted mass of the largest Excited body is close to the Pluto mass; the largest CKBO is ~60 times less massive. The deficit of small TNOs occurs for sizes subject to disruption by present-day collisions, suggesting extensive depletion by collisions. Both accretion and erosion appearing to have proceeded to more advanced stages in the Excited class than the CKB. The absence of distant TNOs implies that any distant (60 AU) population must have less than the CKB mass in the form of objects 40 km or larger. The CKB population is sparser than theoretical estimates of the required precursor population for short period comets, but the Excited population could be a viable precursor population.Comment: Revised version accepted to the Astronomical Journal. Numerical results are very slightly revised. Implications for the origins of short-period comets are substantially revised, and tedious material on statistical tests has been collected into a new Appendi
    • …
    corecore