research

Conceptual design study of a six-man solid electrolyte system for oxygen reclamation

Abstract

A six-man solid electrolyte oxygen regeneration system (SEORS) that will produce 12.5 lbs/day of oxygen has been designed. The SEORS will simultaneously electrolyze both carbon dioxide and water vapor and be suitable for coupling with a carbon dioxide concentration system of either molecular sieve, solid amine or hydrogen depolarized electrochemical type. The total system will occupy approximately 19 cu ft (34.5 in. x .26 in. x 36 in. high) and will weigh approximately 500 pounds. It is estimated that the total electrical power required will be 1783 watts. The system consists of three major components; electrolyzer, hydrogen diffuser, and carbon deposition reactor. There are 108 electrolysis stacks of 12 cells each in the electrolyzer. Only 2/3 of the 108 stacks will be operated at a time; the remainder will be held in reserve. The design calls for 96 palladium membranes for hydrogen removal to give 60 percent redundancy. Four carbon deposition reactors are employed. The iron catalyst tube in each reactor weighs 7.1 lb and 100 percent redundancy is allowed

    Similar works