31,128 research outputs found

    The International Halley Watch: A program of coordination, cooperation and advocacy

    Get PDF
    To prevent a repetition of the lack of reporting and dissemination of the data obtained during the 1910 observations of Comet Halley, a mechanism is proposed for coordinating the work of scientists and amateurs, including government, industrials, and academic personnel during the 1985-86 apparition of Comet Halley. Specialists from each discipline, in consultation with other experts in the field, would recommend specific objectives, standards, data format, and priorities for observations in that discipline. Following time for individual publication, scientists would be invited to contribute results to a multivolume compilation containing as complete as possible a record of the apparition. It is suggested that the discipline specialists be selected jointly by the IHW leader an by an international steering group with members from COSPAR, the IAU, etc., perhaps in response to some form of international announcement of opportunity

    Calculation of compressible flow about three-dimensional inlets with auxiliary inlets, slats and vanes by means of a panel method

    Get PDF
    An efficient and user oriented method was constructed for calculating flow in and about complex inlet configurations. Efficiency is attained by: (1) the use of a panel method; (2) a technique of superposition for obtaining solutions at any inlet operating condition; and (3) employment of an advanced matrix iteration technique for solving large full systems of equations, including the nonlinear equations for the Kutta condition. User concerns are addressed by the provision of several novel graphical output options that yield a more complete comprehension of the flowfield than was possible previously

    Bagging ensemble selection for regression

    Get PDF
    Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classification, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles

    Collisionless shocks in plasmas

    Get PDF
    Collisionless shocks in plasmas, dissipation and dispersion in determining shock structur

    Effect of cessation of late-night landing noise on sleep electrophysiology in the home

    Get PDF
    Simultaneous measurements of noise exposure and sleep electrophysiology were made in homes before and after cessation of nighttime aircraft landing noise. Six people were tested, all of whom had been exposed to intense aircraft noise for at least two years. Noise measurements indicated a large reduction in the hourly noise level during nighttime hours, but no charge during the daytime hours. Sleep measures indicated no dramatic changes in sleep patterns either immediately after a marked change in nocturnal noise exposure or approximately a month thereafter. No strong relationship was observed between noise level and sleep disturbances over the range from 60 to 90 db(A)

    Urban solar photovoltaics potential: An inventory and modelling study applied to the San Fernando Valley region of Los Angeles

    Get PDF
    Procedures for analyzing the potential of solar photovoltaic collectors to meet energy requirements in a metropolitan region are described and a modeling effort is applied to the San Fernando Valley region of Los Angeles. The procedure involves a series of steps designed to produce maps and tabulations revealing the amount of rooftop area available for establishing solar collectors and the proportion of energy requirement that could be potentially supplied by solar photovoltaics within each of the 533 mainline feeder service areas in the study area. For the sixty five square mile study area, the results showed that, with half the available flat and south facing roofs used and assuming the availability of energy storage, 52.7 percent of the actual kWh energy requirements could have been met in 1978 using photovoltaic collectors. Hourly, daily, weekly, and monthly fluctuations in potential supply and actual loads and recommendations of avenues for further research are discussed. Some further potential applications of the modeling technique are suggested

    Occurrence of normal and anomalous diffusion in polygonal billiard channels

    Full text link
    From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e. when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t log t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e. power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures, additional comments. Some higher quality figures available at http://www.fis.unam.mx/~dsander

    Suspension systems for ground testing large space structures

    Get PDF
    A research program is documented for the development of improved suspension techniques for ground vibration testing of large, flexible space structures. The suspension system must support the weight of the structure and simultaneously allow simulation of the unconstrained rigid-body movement as in the space environment. Exploratory analytical and experimental studies were conducted for suspension systems designed to provide minimum vertical, horizontal, and rotational degrees of freedom. The effects of active feedback control added to the passive system were also investigated. An experimental suspension apparatus was designed, fabricated, and tested. This test apparatus included a zero spring rate mechanism (ZSRM) designed to support a range of weights from 50 to 300 lbs and provide vertical suspension mode frequencies less than 0.1 Hz. The lateral suspension consisted of a pendulum suspended from a moving cart (linear bearing) which served to increase the effective length of the pendulum. The torsion suspension concept involved dual pendulum cables attached from above to a pivoting support (bicycle wheel). A simple test structure having variable weight and stiffness characteristics was used to simulate the vibration characteristics of a large space structure. The suspension hardware for the individual degrees of freedom was analyzed and tested separately and then combined to achieve a 3 degree of freedom suspension system. Results from the exploratory studies should provide useful guidelines for the development of future suspension systems for ground vibration testing of large space structures

    Models of helically symmetric binary systems

    Full text link
    Results from helically symmetric scalar field models and first results from a convergent helically symmetric binary neutron star code are reported here; these are models stationary in the rotating frame of a source with constant angular velocity omega. In the scalar field models and the neutron star code, helical symmetry leads to a system of mixed elliptic-hyperbolic character. The scalar field models involve nonlinear terms that mimic nonlinear terms of the Einstein equation. Convergence is strikingly different for different signs of each nonlinear term; it is typically insensitive to the iterative method used; and it improves with an outer boundary in the near zone. In the neutron star code, one has no control on the sign of the source, and convergence has been achieved only for an outer boundary less than approximately 1 wavelength from the source or for a code that imposes helical symmetry only inside a near zone of that size. The inaccuracy of helically symmetric solutions with appropriate boundary conditions should be comparable to the inaccuracy of a waveless formalism that neglects gravitational waves; and the (near zone) solutions we obtain for waveless and helically symmetric BNS codes with the same boundary conditions nearly coincide.Comment: 19 pages, 7 figures. Expanded version of article to be published in Class. Quantum Grav. special issue on Numerical Relativit
    corecore