From extensive numerical simulations, we find that periodic polygonal
billiard channels with angles which are irrational multiples of pi generically
exhibit normal diffusion (linear growth of the mean squared displacement) when
they have a finite horizon, i.e. when no particle can travel arbitrarily far
without colliding. For the infinite horizon case we present numerical tests
showing that the mean squared displacement instead grows asymptotically as t
log t. When the unit cell contains accessible parallel scatterers, however, we
always find anomalous super-diffusion, i.e. power-law growth with an exponent
larger than 1. This behavior cannot be accounted for quantitatively by a simple
continuous-time random walk model. Instead, we argue that anomalous diffusion
correlates with the existence of families of propagating periodic orbits.
Finally we show that when a configuration with parallel scatterers is
approached there is a crossover from normal to anomalous diffusion, with the
diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures,
additional comments. Some higher quality figures available at
http://www.fis.unam.mx/~dsander