90 research outputs found
Standards of rider comfort: Noise, vibration and age of rider as factors
Psychological responses of bus passengers to noise and vibration in terms of ride quality are studied in a field test. An attempt is made to correlate passenger comfort ratings with the age factor
Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array
15 pages, 11 figures. Accepted for publication in PASA. © Astronomical Society of Australia 2017The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science program, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programs for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky MWA (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20 % in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 x 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200 - 231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.Peer reviewedFinal Accepted Versio
The Commensal Real-time ASKAP Fast Transients (CRAFT) survey
We are developing a purely commensal survey experiment for fast (<5s)
transient radio sources. Short-timescale transients are associated with the
most energetic and brightest single events in the Universe. Our objective is to
cover the enormous volume of transients parameter space made available by
ASKAP, with an unprecedented combination of sensitivity and field of view. Fast
timescale transients open new vistas on the physics of high brightness
temperature emission, extreme states of matter and the physics of strong
gravitational fields. In addition, the detection of extragalactic objects
affords us an entirely new and extremely sensitive probe on the huge reservoir
of baryons present in the IGM. We outline here our approach to the considerable
challenge involved in detecting fast transients, particularly the development
of hardware fast enough to dedisperse and search the ASKAP data stream at or
near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of
the key technologies and survey modes proposed for high time resolution science
with the SKA.Comment: accepted for publication in PAS
The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array
Precursor telescopes and is located at the Murchison Radio-astronomy
Observatory in the Murchison Shire of the mid-west of Western Australia, a
location chosen for its extremely low levels of radio frequency interference.
The MWA operates at low radio frequencies, 80-300 MHz, with a processed
bandwidth of 30.72 MHz for both linear polarisations, and consists of 128
aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel
hybrid hardware/software correlation and a real-time imaging and calibration
systems comprise the MWA signal processing backend. In this paper the as-built
MWA is described both at a system and sub-system level, the expected
performance of the array is presented, and the science goals of the instrument
are summarised.Comment: Submitted to PASA. 11 figures, 2 table
Beam-forming errors in Murchison Widefield array phased array antennas and their effects on epoch of reionization science
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the "wedge"). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the "EOR window"), showing that foreground avoidance remains a viable strategy
Antiproliferation effect of sulforaphene isolated from radish (Raphanus sativus L.) seeds on A549 cells
Sulforaphene (SFE), a major isothiocyanate in radish seeds, is a close chemical relative of sulforaphane (SFA) isolated from broccoli seeds and florets. The anti-proliferative mechanisms of SFA against cancer cells have been well investigated, but little is known about the potential anti-proliferative effects of SFE. In this study, we showed that SFE purified from radish seeds inhibited the growth of six cancer cell lines (A549, CHO, HeLa, Hepa1c1c7, HT-29, and LnCaP), with relative half maximal inhibitory concentration values ranging from 1.37 to 3.31 μg/mL. Among the six cancer cell lines, SFE showed the greatest growth inhibition against A549 lung cancer cells, where it induced apoptosis by changing the levels of poly(ADP-ribose) polymerase and caspase-3, -8, and -9. Our results indicate that SFE from radish seeds may have significant anti-proliferative potency against a broad range of human cancer cells via induction of apoptosis
- …