239 research outputs found

    Modelling water infiltration into macroporous hill slopes using special boundary conditions

    Get PDF
    The formulation of suitable boundary conditions is a very crucial task when modeling water infiltration into macroporous hill slopes. The processes of water infiltration and exfiltration vary in space and time and depend on the flow on the surface as well as in the subsurface. In this contribution we have purposed special system process dependent boundary conditions can be formulated for a two-phase dual-permeability model to simulate infiltration and exfiltration processes. The presented formulation analyses the saturation conditions of the dual-permeability model (e.g. saturation) at the boundary nodes and adopts the boundary conditions depending on the processes at the soil surface such as rainfall intensity. Using a simplified macroporous hill slope and a heavy rainfall event we demonstrate the functionality of our formulation

    Muon Catalyzed Fusion in 3 K Solid Deuterium

    Full text link
    Muon catalyzed fusion in deuterium has traditionally been studied in gaseous and liquid targets. The TRIUMF solid-hydrogen-layer target system has been used to study the fusion reaction rates in the solid phase of D_2 at a target temperature of 3 K. Products of two distinct branches of the reaction were observed; neutrons by a liquid organic scintillator, and protons by a silicon detector located inside the target system. The effective molecular formation rate from the upper hyperfine state of μd\mu d and the hyperfine transition rate have been measured: λ~(3/2)=2.71(7)stat.(32)syst.μ/s\tilde{\lambda}_(3/2)=2.71(7)_{stat.}(32)_{syst.} \mu/s, and λ~(3/2)(1/2)=34.2(8)stat.(1)syst.μ/s\tilde{\lambda}_{(3/2)(1/2)} =34.2(8)_{stat.}(1)_{syst.} \mu /s. The molecular formation rate is consistent with other recent measurements, but not with the theory for isolated molecules. The discrepancy may be due to incomplete thermalization, an effect which was investigated by Monte Carlo calculations. Information on branching ratio parameters for the s and p wave d+d nuclear interaction has been extracted.Comment: 19 pages, 11 figures, submitted to PRA Feb 20, 199

    Measurement of the Resonant dμtd\mu t Molecular Formation Rate in Solid HD

    Get PDF
    Measurements of muon-catalyzed dt fusion (dμt4He+n+μd\mu t \to ^4He+n+\mu^-) in solid HD have been performed. The theory describing the energy dependent resonant molecular formation rate for the reaction μt\mu t + HD [(dμt)pee]\to [(d\mu t)pee]^* is compared to experimental results in a pure solid HD target. Constraints on the rates are inferred through the use of a Monte Carlo model developed specifically for the experiment. From the time-of- flight analysis of fusion events in 16 and 37 μgcm2\mu g\cdot cm^{-2} targets, an average formation rate consistent with 0.897±\pm(0.046)stat±_{stat}\pm (0.166)syst_{syst} times the theoretical prediction was obtained.Comment: 4 pages, 5 figure

    Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization

    Get PDF
    The high precision measurement of the hyperfine splitting of the muonic-hydrogen atom ground state with pulsed and intense muon beam requires careful technological choices both in the construction of a gas target and of the detectors. In June 2014, the pressurized gas target of the FAMU experiment was exposed to the low energy pulsed muon beam at the RIKEN RAL muon facility. The objectives of the test were the characterization of the target, the hodoscope and the X-ray detectors. The apparatus consisted of a beam hodoscope and X-rays detectors made with high purity Germanium and Lanthanum Bromide crystals. In this paper the experimental setup is described and the results of the detector characterization are presented.Comment: 22 pages, 14 figures, published and open access on JINS

    Theory of muonic hydrogen - muonic deuterium isotope shift

    Full text link
    We calculate the corrections of orders alpha^3, alpha^4 and alpha^5 to the Lamb shift of the 1S and 2S energy levels of muonic hydrogen (mu p) and muonic deuterium (mu d). The nuclear structure effects are taken into account in terms of the proton r_p and deuteron r_d charge radii for the one-photon interaction and by means of the proton and deuteron electromagnetic form factors in the case of one-loop amplitudes. The obtained numerical value of the isotope shift (mu d) - (mu p) for the splitting (1S-2S) 101003.3495 meV can be considered as a reliable estimation for corresponding experiment with the accuracy 10^{-6}. The fine structure interval E(1S)-8E(2S) in muonic hydrogen and muonic deuterium are calculated.Comment: 22 pages, 7 figure

    Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen

    Full text link
    While measurements of the hyperfine structure of hydrogen-like atoms are traditionally regarded as test of bound-state QED, we assume that theoretical QED predictions are accurate and discuss the information about the electromagnetic structure of protons that could be extracted from the experimental values of the ground state hyperfine splitting in hydrogen and muonic hydrogen. Using recent theoretical results on the proton polarizability effects and the experimental hydrogen hyperfine splitting we obtain for the Zemach radius of the proton the value 1.040(16) fm. We compare it to the various theoretical estimates the uncertainty of which is shown to be larger that 0.016 fm. This point of view gives quite convincing arguments in support of projects to measure the hyperfine splitting of muonic hydrogen.Comment: Submitted to Phys. Rev.
    corecore