198 research outputs found
Weighing the Milky Way
We describe an experiment to measure the mass of the Milky Way galaxy. The
experiment is based on calculated light travel times along orthogonal
directions in the Schwarzschild metric of the Galactic center. We show that the
difference is proportional to the Galactic mass. We apply the result to light
travel times in a 10cm Michelson type interferometer located on Earth. The mass
of the Galactic center is shown to contribute 10^-6 to the flat space component
of the metric. An experiment is proposed to measure the effect.Comment: 10 pages, 1 figur
A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos
Further refinement of culture media is needed to improve the quality of embryos generated in vitro. Previous results from our laboratory demonstrated that uptake of nutrients by the embryo is significantly less than what is supplied in traditional culture media. Our objective was to determine the impact of reduced nutrient concentrations in culture medium on mouse embryo development, metabolism, and quality as a possible platform for next generation medium formulation. Concentrations of carbohydrates, amino acids, and vitamins could be reduced by 50% with no detrimental effects, but blastocyst development was impaired at 25% of standard nutrient provision (reduced nutrient medium; RN). Addition of pyruvate and L-lactate (+PL) to RN at 50% of standard concentrations restored blastocyst development, hatching, and cell number. In addition, blastocysts produced in RN\u2009+PL contained more ICM cells and ATP than blastocysts cultured in our control (100% nutrient) medium; however, metabolic activity was altered. Similarly, embryos produced in the RN medium with elevated (50% control) concentrations of pyruvate and lactate in the first step medium and EAA and Glu in the second step medium were competent to implant and develop into fetuses at
a similar rate as embryos produced in the control medium. This novel approach to culture medium formulation could help define the optimal nutrient requirements of embryos in culture and provide a means of shifting metabolic activity towards the utilization of specific metabolic pathways that may be beneficial for embryo viability
A New Test of the Einstein Equivalence Principle and the Isotropy of Space
Recent research has established that nonsymmetric gravitation theories like
Moffat's NGT predict that a gravitational field singles out an orthogonal pair
of polarization states of light that propagate with different phase velocities.
We show that a much wider class of nonmetric theories encompassed by the formalism predict such violations of the Einstein equivalence principle.
This gravity-induced birefringence of space implies that propagation through a
gravitational field can alter the polarization of light. We use data from
polarization measurements of extragalactic sources to constrain birefringence
induced by the field of the Galaxy. Our new constraint is times sharper
than previous ones.Comment: 21 pages, Latex, 3 Postscript figure
Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards
We present a simple method to stabilize the optical path length of an optical
fiber to an accuracy of about 1/100 of the laser wavelength. We study the
dynamic response of the path length to modulation of an electrically conductive
heater layer of the fiber. The path length is measured against the laser
wavelength by use of the Pound-Drever-Hall method; negative feedback is applied
via the heater. We apply the method in the context of a cryogenic resonator
frequency standard.Comment: Expanded introduction and outlook. 9 pages, 5 figure
Experimental feasibility of measuring the gravitational redshift of light using dispersion in optical fibers
This paper describes a new class of experiments that use dispersion in
optical fibers to convert the gravitational frequency shift of light into a
measurable phase shift or time delay. Two conceptual models are explored. In
the first model, long counter-propagating pulses are used in a vertical fiber
optic Sagnac interferometer. The second model uses optical solitons in
vertically separated fiber optic storage rings. We discuss the feasibility of
using such an instrument to make a high precision measurement of the
gravitational frequency shift of light.Comment: 11 pages, 12 figure
Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle
It is shown that the gravitational ultrarelativistic spin-orbit interaction
violates the weak equivalence principle in the traditional sense. This fact is
a direct consequence of the Mathisson-Papapetrou equations in the frame of
reference comoving with a spinning test particle. The widely held assumption
that the deviation of a spinning test body from a geodesic trajectory is caused
by tidal forces is not correctComment: 12 page
Millimeter-wave Signature of Strange Matter Stars
One of the most important questions in the study of compact objects is the
nature of pulsars, including whether they consist of neutron matter or strange
quark matter (SQM). However, few mechanisms for distinguishing between these
two possibilities have been proposed. The purpose of this paper is to show that
a strange star (one made of SQM) will have a vibratory mode with an oscillation
frequency of approximately 250 GHz (millimeter wave). This mode corresponds to
motion of the center of the expected crust of normal matter relative to the
center of the strange quark core, without distortion of either. Radiation from
currents generated in the crust at the mode frequency would be a SQM signature.
We also consider effects of stellar rotation, estimate power emission and
signal-to-noise ratio, and discuss briefly possible mechanisms for exciting the
mode.Comment: 13 pages, Latex, one figur
High-precision optical-frequency dissemination on branching optical-fiber networks
We present a technique for the simultaneous dissemination of high-precision optical-frequency signals to multiple independent remote sites on a branching optical-fiber network. The technique corrects optical-fiber length fluctuations at the output of the link, rather than at the input as is conventional. As the transmitted optical signal remains unaltered until it reaches the remote site, it can be transmitted simultaneously to multiple remote sites on an arbitrarily complex branching network. This technique maintains the same servo-loop bandwidth limit as in conventional techniques and is compatible with active telecommunication links.Sascha W. Schediwy, David Gozzard, Kenneth G. H. Baldwin, Brian J. Orr, R. Bruce Warrington, Guido Aben and Andre N. Luite
Dynamics of Trophoblast Differentiation in Peri-Implantation–Stage Human Embryos
Single-cell RNA sequencing of cells from cultured human blastocysts has enabled us to define the transcriptomic landscape of placental trophoblast (TB) that surrounds the epiblast and associated embryonic tissues during the enigmatic day 8 (D8) to D12 peri-implantation period before the villous placenta forms. We analyzed the transcriptomes of 3 early placental cell types, cytoTB (CTB), syncytioTB (STB), and migratoryTB (MTB), picked manually from cultured embryos dissociated with trypsin and were able to follow sublineages that emerged from proliferating CTB at the periphery of the conceptus. A unique form of CTB with some features of STB was detectable at D8, while mature STB was at its zenith at D10. A form of MTB with a mixed MTB/CTB phenotype arose around D10. By D12, STB generation was in decline, CTB had entered a new phase of proliferation, and mature MTB cells had begun to move from the main body of the conceptus. Notably, the MTB transcriptome at D12 indicated enrichment of transcripts associated with IFN signaling, migration, and invasion and upregulation of HLA-C, HLA-E, and HLA-G. The STB, which is distinct from the STB of later villous STB, had a phenotype consistent with intense protein export and placental hormone production, as well as migration and invasion. The studies show that TB associated with human embryos is in rapid developmental flux during periimplantation period when it must invade, signal robustly to the mother to ensure that the pregnancy continues, and make first contact with the maternal immune system
- …