3,389 research outputs found

    Paramagnetic-diamagnetic interplay in quantum dots for non-zero temperatures

    Full text link
    In the usual Fock-and Darwin-formalism with parabolic potential characterized by the confining energy \eps_o := \hbar\omega_o= 3.37 meV, but including explicitly also the Zeeman coupling between spin and magnetic field, we study the combined orbital and spin magnetic properties of quantum dots in a two-dimensional electron gas with parameters for GaAs, for N =1 and N >> 1 electrons on the dot. For N=1 the magnetization M(T,B) consists of a paramagnetic spin contribution and a diamagnetic orbital contribution, which dominate in a non-trivial way at low temperature and fields rsp. high temperature and fields. For N >> 1, where orbital and spin effects are intrinsically coupled in a subtle way and cannot be separated, we find in a simplified Hartree approximation that at N=m^2, i.e. at a half-filled last shell, M(T,B,N) is parallel (antiparallel) to the magnetic field, if temperatures and fields are low enough (high enough), whereas for N\ne m^2 the magnetization oscillates with B and N as a T-dependent periodic function of the variable x:=\sqrt{N}eB/(2m^*c\omega_o), with T-independent period \Delta x =1 (where m^* := 0.067 m_o is the small effective mass of GaAs, while m_o is the electron mass). Correspondingly, by an adiabatic demagnetization process, which should only be fast enough with respect to the slow transient time of the magnetic properties of the dot, the temperature of the dot diminishes rsp. increases with decreasing magnetic field, and in some cases we obtain quite pronounced effects.Comment: LaTeX, 28 pages; including three .eps-figures; final version accepted by J. Phys. CM, with minimal changes w.r.to v

    Cross Section Ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity

    Get PDF
    The staged increase of the LHC beam energy provides a new class of interesting observables, namely ratios and double ratios of cross sections of various hard processes. The large degree of correlation of theoretical systematics in the cross section calculations at different energies leads to highly precise predictions for such ratios. We present in this letter few examples of such ratios, and discuss their possible implications, both in terms of opportunities for precision measurements and in terms of sensitivity to Beyond the Standard Model dynamics.Comment: 19 pages, 9 figure

    Attack transient of a flue organ pipe

    Get PDF

    Разработка методов тепловой дефектоскопии и дефектометрии авиационных композитов

    Get PDF
    Диссертация посвящена разработке методов дефектометрии в рамках импульсного теплового контроля авиационных композитов. Проведён сравнительный анализ существующих термографических методов количественной оценки глубины дефектов. Выявлены их преимущества и недостатки и обозначены существующие проблемы в этой сфере. Представлен термографический метод количественной оценки глубины дефектов в материалах, обладающих свойством оптической полупрозрачности. Разработан метод количественной оценки глубины дефектов, характеризующихся малым отношением поперечных размеров к глубине. Разработан метод оценки толщины тонких покрытий основанный на пороговой отсечке кажущейся тепловой инерции.This study is focused on quantitative estimation of defect depth by applying pulsed thermal nondestructive testing. A novel method for estimating defect depth is proposed by taking into account the phenomenon of 3D heat diffusion finite lateral size of defects and thermal reflection coefficient at the boundary between a host material and defects. The method is based on the combination of a known analytical model and non-linear fitting (NLF) procedure. The apparent effusivity method for the quantitative evaluation of coating thickness in a one-sided thermal NDT procedure is presented. And the depth prediction method based on neural networks is presented

    Improvements to the APBS biomolecular solvation software suite

    Full text link
    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKaK_a values, and an improved web-based visualization tool for viewing electrostatics

    Effects of small surface tension in Hele-Shaw multifinger dynamics: an analytical and numerical study

    Get PDF
    We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described in [S. Tanveer, Phil. Trans. R. Soc. Lond. A 343, 155 (1993)]and [M. Siegel, and S. Tanveer, Phys. Rev. Lett. 76, 419 (1996)] as well as direct numerical computation, following the numerical scheme of [T. Hou, J. Lowengrub, and M. Shelley,J. Comp. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (non-singular) zero surface tension solutions. The effect is present even when the relevant zero surface tension solution has asymptotic behavior consistent with selection theory.Such singular effects therefore cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structually unstable flow, restoring the hyperbolicity of multifinger fixed points.Comment: 16 pages, 15 figures, submitted to Phys. Rev

    HERA Physics Beyond the Standard Model

    Get PDF
    The prospects of physics beyond the standard model in deep inelastic scattering are reviewed, emphasizing some scenarios which attained attention after the observation of an excess of events with large momentum transfer at HERA.Comment: 8 pages, LaTeX, uses iop style files and axodraw.sty, Talk presented at the 3rd UK Phenomenology Workshop on HERA Physics, September 1998, Durha
    corecore