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Abstract: Water splitting by thermal cycling of a pyroelectric element acting as an external 

charge source offers an alternative method to produce hydrogen from low grade waste heat 

or natural temperature changes. In contrast to conventional energy harvesting, where the 

optimised load resistance is used to maximise the combination of current and voltage, for 

water splitting applications there is a need to optimise the system to achieve a sufficiently high 

potential difference for water electrolysis, whilst maintaining a high current output. For the 

thermal harvesting system examined here, a high impedance 0.5 M KOH electrolyte with 

working electrodes connected to a rectified pyroelectric harvester produced the highest 

voltage of 2.34 V, which was sufficient for H2 generation. In addition to electrolyte 

concentration, the frequency of the temperature oscillations was examined and reducing the 

heating-cooling frequency helped to produce a larger change in temperature to generate more 

pyroelectric charge and a higher potential difference for pyro-water splitting. Finally, in the 

absence of sacrificial reagents, cyclic production of H2 (0.654 mol/h) was demonstrated with 

the optimised processing parameters of electrolyte and thermal cycling frequency via the 

external pyroelectric water splitting route. 
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1. Introduction  

 

Carbon dioxide emission from traditional carbon based sources of energy such as coal, oil 

and natural gas has been a significant contributor to global warming and climate change. 

Therefore, interest in alternative and renewable fuels for energy sources has increased rapidly 

worldwide. In this regard, hydrogen fuel can contribute significantly to the future energy mix, 

since it has the attractive features of being a clean and sustainable energy source with a high 

energy density and no greenhouse gas emission when burned in the oxygen. However, over 

90% of hydrogen is currently produced from fossil fuels and biomass, which is high cost and 

the processing route produces further greenhouse gases as a by-product [1]. To address 

these problems, hydrogen generation by water electrolysis (or water splitting) using electricity 

or solar energy has attracted significant attention [2-5].  

 

A common approach to generate hydrogen by water splitting is to employ a wide band 

semiconductor [2, 4, 6] that can absorb sunlight and generate photo-excited carriers to electro-

chemically reduce and oxidize water. However, the range of potential materials is limited [7] 

and material lifetime and performance remains a challenge. As an alternative approach, 

exploiting the pyroelectric effect to produce hydrogen from time-temperature variations has 

emerged recently as potential approach to generate hydrogen from transient low grade waste 

heat (< 100 ˚C) or natural temperature changes [8-13], which can also be converted by the 

thermoelectric effect for static conditions [14]. Sunlight and wind have also been considered 

to generate temperature oscillations [15]. A pyroelectric material is highly polarised, and when 

the temperature of the material is increased the polarisation level falls, which releases 

electrical charge on its surface [16]. On cooling the polarization increases, reversing the 

electric current flow as charge is attracted to the more polarized surface.   

 

If we consider a water splitting application, the amount of available charge (Q) generated by 

a temperature change (ΔT) of a pyroelectric is given by; 

                                                         Q = p· A· ΔT                                                   (1) 

where p is the pyroelectric coefficient (C m-2 K-1) and A is the surface area (m2) of the material. 

While the amount of charge generated is related to the area of the pyroelectric, the potential 

(V) developed across a pyroelectric is dependent on its thickness (h), and is given by; 

      𝑉 =
𝑝·ℎ· 𝛥𝑇

𝜀0𝜀33
                                                             (2) 

where ε33 is the relative permittivity of the material and ε0 is the permittivity of free space. Since 

Q is proportional to the surface area (Eqn. 1) and V is proportional to thickness (Eqn. 2), there 

is potential to design the optimum geometry of the pyroelectric elements for electrolysis; where 
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the thickness can be used to ensure a sufficient potential is produced to initiate water splitting 

and the area should be maximized for harvesting the greatest amount of available surface 

charge. 

 

An overview of coupling energy harvesting devices to electro-chemical systems has been 

recently provided by Zhang et al [17]. To date, pyroelectric energy harvesting using thermal 

fluctuations or/and transient waste heat has been utilized for water related electro-chemical 

reactions, in terms of water treatment [9, 10, 18-28], and for water splitting applications only a 

small amount of work has been undertaken [8, 11, 12, 29, 30]. The first experimental evidence 

of pyroelectric water splitting was reported by the comparison of bulk lead zirconate titanate 

(PZT) and polymer ferroelectrics as an external charge source [30]. The materials were 

thermally cycled at a fixed frequency and electrolyte, and direct measurements of hydrogen 

and oxygen generation were not reported. Belitz et al. recently explored pyroelectric water 

splitting by placing a crushed and polarised BaTiO3 single crystal powder into direct contact 

with water, and thermal cycling the mixture from 40 to 70°C [12]. The advantage of this 

Internally Positioned Pyroelectric (IPP) approach is that using finely dispersed pyroelectric 

particulates suspended in the electrolyte enables the area of the pyroelectric to be increased, 

and therefore the available charge for hydrogen production; see Eqn. 1. In terms of modeling 

a pyroelectric induced water splitting process, Kakekhani et al. developed a density functional 

theory (DFT) model of a ferroelectric lead titanate (PbTiO3) material and examined the impact 

of thermal cycling of the ferroelectric as it is heated and cooled above below it Curie 

temperature (Tc) in the presence of water molecules [8]. The work showed that cycling 

between the low temperature ferroelectric state and high temperature paraelectric state 

provides scope to harvest thermal fluctuations and produce hydrogen. Xu et al. recently 

presented experimental data of Ba0.7Sr0.3TiO3 powders suspended in an electrolyte, achieving 

a hydrogen production of 46.89 mol per gram of the powder after 36 thermal cycles above and 

below its Curie temperature [11]. Pyroelectric two-dimensional black phosphorene has also 

been reported as a charge source under thermal cycling for both hydrogen generation and 

dye decomposition [10]. The charge generated by pyroelectrics subjected to hot-cold cycles 

has also been used for dye decomposition using BaTiO3 particles [9] and NaNbO3 nanofibers 

[20]. 

 

However, potential challenges for pyroelectric water splitting using a material in powder form 

that is suspended in the electrolyte for practical large-scale applications is the need to collect 

the dispersed powder and separate the hydrogen and oxygen gas when formed, leading to 

low efficiency of the water splitting process. In addition, due to the hydrolysis of the ceramic 

powder, pH changes during the process can affect kinetic behavior during water splitting. In 
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contrast, the use of an externally positioned pyro-electrolysis (EPP) is accompanied by the 

flow of a rectified electric current through an external circuit in the water splitting system. 

Compared to water splitting using suspensions in an electrolyte, the EPP system has the 

advantage that there is no need for gas separation because the generation of H2 and O2 is 

spatially separated from different electrode sides, which is beneficial for high hydrogen 

production and simplifying hydrogen and oxygen separation. Moreover, the external pyro-

charge provider can be easily collected compared with the internal powder form. 

 

Preliminary work has been undertaken on the potential of pyroelectric materials and 

geometries for externally pyroelectric water electrolysis, which demonstrated that thin layers 

of  lead zirconate titanate (PZT) are promising for H2 generation [30]. This work utilizes PZT 

as an external charge source that undergoes hot-cold thermal cycles for pyro-electric water 

splitting; the work has a focus on the optimization of system parameters, such as electrolyte 

impedance and heating-cooling cyclic frequency and its effect on the current, voltage and 

generated power were systematically examined. In addition, the resulting H2 production is 

detected, quantified and corresponding efficiency also evaluated. Finally, the resulting H2 

generation from the optimized conditions were explored and measured. This is the first time 

to understand and systematically examine the processing parameters (frequency and 

electrolyte impedance) for externally H2 generation based on the pyroelectric effect and to 

measure and quantify the amount of hydrogen and oxygen generated.  

 

2. Experimental section 

 

2.1 Material and heat source 

 

For the pyro-electrolysis water splitting, a commercial dense and thin PZT sheet (PSI-5H4E, 

Piezo system, inc. USA) with a thickness of 127 m and surface area of 49 cm2 was utilised 

as the external pyroelectric charge source that is subjected to thermal cycles outside of the 

electrolyte [30]. The surface of both sides of the PZT sheet were covered by the vacuum 

sputtered nickel electrode. For the electrolyte, KOH solutions with a variety of concentrations 

of 0.5, 1, 2, 3 M were employed for H2 generation to examine the influence of electrolyte 

impedance on output voltage and current (4 M KOH was also prepared for the impedance 

analysis). During the pyroelectric initiated water splitting reaction, the PZT sheet was heated 

by irradiating with an infrared heat lamp whose maximum light intensity of ~370 mW/cm2, 

which was placed at a fixed distance of 13 cm from the PZT surface. Varying heating cycles 

at frequencies of 0.05, 0.1, 0.2 and 0.3 Hz were used to examine the impact of frequency on 
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voltage and current. At the same time a thermoelectric Peltier cooling system was also 

supplied to cool down the PZT sheet in a periodic fashion. This combination of heating and 

cooling provided a continuous and controlled periodic heating and cooling cycles to achieve a 

pyroelectric response for the PZT sheet, while in a harvesting application the material may be 

subjected to a range of waste heat or natural thermal transients. A Type K thermocouple was 

used to monitor the temperature of the surface of the pyroelectric element. As another 

alternative way to provide the thermal fluctuation, a fan was coupled to the pyroelectric energy 

harvesting system, where the heat from the sunlight can be periodic applied to provide the 

thermal fluctuation on the pyroelectric element [15]. 

 

2.2 Electrical characterisation and H2 detection 

 

The polarisation-field hysteresis loop of the PZT sheet was measured by a Radiant RT66B-

HVi ferroelectric test system to confirm its ferroelectric response. The impedance of the KOH 

electrolytes from 1 Hz to 1 MHz was measured by an impedance analyzer (Solartron 1260, 

Hampshire, UK) at room temperature. The current levels produced by different concentrations 

of the electrolytes under the applied DC voltages from -4 V to 4 V were performed with a 

commercial potentiostat (Compact Stat, Ivium Technologies) to characterise the cell used for 

the water splitting which consisted of counter electrode, working electrode, the I/E converter, 

the control amplifier, and the signal. 

 

During thermal cycling of the pyroelectric element for water splitting an ac-dc converter 

composed of a rectifier bridge circuit was used to provide a unipolar output so that hydrogen 

and oxygen were produced at different electrodes. An electrometer (Model 6517B, Keithley 

Instruments, Cleveland, OH) was used to measure the voltage and current in the circuit 

accurately. Before applying the thermal fluctuation, ultra-pure N2 gas was introduced to purge 

the electrolysis cell by bubbling through the electrolyte for 0.5 h to remove residual air. The 

produced hydrogen and oxygen gases were evolved and analysed by the gas chromatography 

(GC) system (GC, Vairan3800), using ultra-pure Ar (99.9995 vol.%) as carrier gas and a 

thermal conductivity detector (TCD). 

 

 

 

 

 

3. Results and discussion 
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3.1 Basic mechanism involved in pyroelectric water splitting 

 

Fig. 1(A) shows a schematic of the setup utilised to carry out the water splitting reaction with 

the pyroelectric material externally positioned. The mechanism consists of three main steps 

where, firstly, charges with negative and positive signs are separately generated on the 

surface of the pyroelectric element (inset of Fig. 1(A)) that is subjected to thermal fluctuations. 

The AC electrical output from the pyroelectric generator is then rectified through an external 

circuit to act as the DC input to the electrolysis cell where electrons move to the cathode in 

the cell. The H+ in the water is then reduced to produce H2 on the cathode surface, where O2 

is simultaneously produced at the anode. The change of the polarisation (dP/dt) of the 

ferroelectric during thermal cycling with time is the driving force for the pyroelectric charge 

generation during hot-cold fluctuations. Fig. 1 (B) shows the PZT sheet used in this experiment 

whose remnant polarisation, saturation polarisation and coercive field are ~20 C/cm2, 28 

C/cm2 and 26 kV/cm observed from the hysteresis loop shown in Fig. 1(C). This high 

polarisation is the primary reason for the excellent piezo-, pyro- and ferro-electric properties 

of PZT compared with ferroelectric polymers and lead-free materials [31]. This is a widely-

used piezo-material, which is a Type 5H (Navy Type VI) piezoelectric ceramic, with typical 

pyroelectric coefficients of ~450 μC m-2 K-1 [32]. In this work, under cyclic hot-cold fluctuations 

at a frequency of 0.1 Hz, the change of the temperature T on the surface of the PZT sheet 

was ~3 °C, with a corresponding rate of change of temperature with time, dT/dt ~ 0.16 °C/s. 

The generated bipolar voltage and current outputs were shown in Fig. S1(C) and S1(E). After 

rectification, the resultant unipolar peak-peak voltage and current were 8.36 V and 11.25 A, 

while the peak voltage and current were 9.58 V and 13.21 A, respectively, as shown in Fig. 

S1(D) and S1(F). Moreover, a range of PZT sheets with a constant thickness of 127 m but 

different surface areas (A) were utilised to explore the current in the electrolyte and the voltage 

between cathode and anode produced from PZT sheet, shown in Fig. S2. With the increase 

of the surface area, the voltage was unchanged at ~2.3 V, since the thickness is unchanged 

(see Eqn. 2). However, the peak current increased almost linearly from 1.75 µA to 14.21 µA 

on increasing the surface area from 12.25 cm2 to 98 cm2, due to the linear relationship between 

the pyroelectric current (I) and surface area (A) of I=P·A·dT/dt [33] at a specific rate of the 

temperature change dT/dt. 

 

When an externally positioned pyro-electrolysis process is utilized for H2 generation, the whole 

system can be considered as an analogue of a series RC circuit where the pyroelectric 

element can be regarded as the power source and the capacitance (C), while the electrolyte 
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acts as the external resistance load (R). The voltage created by the pyroelectric generator in 

response to a temperature change can be divided into two parts, where one part is used for 

triggering the electrolysis process for H2 and the other is acting as a normal resistor in the 

circuit. The critical voltage for the oxidation potential of H2O to H2 is ~1.23 V, where an 

overpotential is also required to overcome the kinetic barrier for the hydrogen evolution 

reaction [34]. When subjected to the thermal excitation, the speed of the thermal cycling 

(frequency) will influence the total temperature change (ΔT) of the pyroelectric material that 

leads to a change of polarisation, since dP = p·ΔT. In this case, the higher the change in 

polarisation, the larger the driving force to generate a potential difference (see equation 2). 

Moreover, a larger ΔT is advantageous to achieve more charge based on the equation (1). 

Therefore, in this EPP system for H2 generation, there is a balance between the high voltage 

necessary to split the water molecule (a high ΔT) and a high current (high dT/dt and more total 

charge) for hydrogen ion (H+) reduction. This can be adjusted by changing either the 

concentration of the electrolyte or the frequency of the hot-cold fluctuation, which will be 

discussed later in detail. 
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Figure 1 (A) Schematic of pyroelectric as an external source for water splitting, (B) photo of the PZT 

film, (C) polarisation-electric field loop of PZT sheet and schematic of the surface pyroelectric 

charges (inset). 

 

Figure 2 (A) shows the current-voltage (I-V) curves of different concentrations of KOH 

electrolytes, without a pyroelectric element or rectifier attached to the cell. A plateau exists at 

all the ranges of KOH concentrations with a potential difference of approximately -1.2 V to 1.2 

V where there is no current flow between the electrodes. When the absolute value of voltage 

was higher than 1.2 V, the current increased where small potential changes lead to large 

changes in current and bubbles are observed at each electrode. A rapid increase is especially 

observed when the potential was higher than 2.2 V, as shown in Fig. 2 (B), demonstrating the 

electrolysis of water. Clearly, any pyroelectric generator must also generate such potentials (> 

2.0 V) to achieve water splitting. Figure 2 (C) shows the frequency dependence of electrical 
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impedance of different concentrations of KOH electrolytes (0.5, 1, 2, 3 M). The impedance of 

the KOH solutions for all concentrations decreased with an increase of frequency, due to 

concentration polarisation at low frequencies. As expected, the electrolyte impedance 

decreased with increasing KOH concentration at a particular frequency; since the thermal 

cycles to be employed later in this paper are typically ~ 0.1 Hz the gradual reduction in 

impedance with increasing KOH concentration is shown in Fig. 2 (D). When the pyroelectric 

generator is coupled to the electrochemical cell and subjected to thermal cycling, the resulting 

peak voltage and current obtained during periodic heating are summarised in Fig. 2 (E). 

Examples of typical generated voltage and current profiles with time obtained for the different 

concentrations of KOH are shown in Fig. 3. Figure 3(B), (D), (F), (H) show that when there is 

a decrease in KOH concentration, the peak voltage increases since it is more difficult for the 

pyroelectric element to discharge due to the high impedance of the electrolyte. This also 

resulted in the current decreasing with decreasing KOH concentration; see Figure 3(A), (C), 

(E), (G). In theory, when the energetic requirements are met, namely the critical potential of 

~1.23 V, the water splitting reaction will occur. However, the practical potential will be higher 

due to the existence of overpotential and/or other system losses [35]. Based on the 

observation from the I-V curves presented in Fig. 2(A) and (B), a voltage higher than 2.2 V 

was beneficial to achieve water splitting, and a voltage of 2.34 V was generated by the 

pyroelectric element coupled to the higher impedance 0.5 M KOH solution. 

 

In conventional energy harvesting systems coupled to an electrical load, such as a simple 

resistor, it is common to calculate the peak power and match the electrical load (RL) to the 

capacitive impedance of the energy harvester; for example by achieving the condition 

2fCp=1/RL where Cp is the capacitance of the pyroelectric element and f is the frequency. The 

peak power (Pout) of the pyroelectric element was calculated with the standard power 

relationships (Pout = VI) of voltage and current, shown in Fig. 2(E), where the resistive load is 

the electrolyte resistance. It can be seen in Fig. 2(F) that as the KOH concentration increased 

from 0.5 M to 3 M, the peak power and peak power density increased from 16.9 μW (27.2 

μW/cm3) to 19.2 μW (30.8 μW/cm3) followed by a decrease to 16.9 μW (27.2 μW/cm3) at the 

highest concentration 4 M KOH; where a heating-cooling frequency of 0.1 Hz was utilised. In 

an R-C circuit, by matching the load and generator impedances at 2fCp=1/RL the power 

generated reaches a maximum value since this provide a good combination of voltage and 

current. Based on a frequency of 0.1Hz and a capacitance of 650 nF for the pyroelectric 

element the optimum resistance was calculated to be approximately 2.5 M, which is 

comparable to that of the 3 M KOH electrolyte (see Figure 2(D)). For a harvester coupled to 

an electrochemical system, optimisation of the system is different to a simple electrical load. 



 10 

While the peak power was obtained at 3 M KOH (Fig. 2(F)) with a rectified peak voltage of 

1.58 V (Fig. 2(E)) and high current of ~12 μA (Fig. 2(B)), the need for a sufficiently high voltage 

plays a more important role for water splitting (Fig 2(A)), therefore the 0.5 M KOH with the 

ability to generate the highest voltage (2.34 V) and micro-level current (~7 μA) from the PZT 

during thermal cycling was chosen as the electrolyte for periodic heating-cooling frequency 

exploration. This also correlated with visual observation of hydrogen bubbles generated within 

the cell during thermal cycling. 
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 Figure 2 (A) Current-voltage characteristics with different concentrations of KOH, (B) a zoom-in 

current-voltage curve of (A), impedance of the KOH solutions (C) with the frequency sweeping from 

0.1 Hz to1 MHz and (D) fixed at 0.1 Hz, (E) peak voltage and current measured from different 

concentrations of KOH produced by the pyroelectric PZT sheet, (F) the corresponding peak power 

and peak power density calculated based on (E). 
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Figure 3 Effect of different concentrations on the rectified current (A) 0.5 M, (C) 1.0 M, (E) 

2.0 M, (G) 3.0 M, and voltage (B) 0.5 M, (D) 1.0 M, (F) 2.0 M, (H) 3.0 M of the KOH 

electrolyte, with periodic heating and cooling at a frequency of 0.1 Hz. 

 

Figure 4 shows the change of the temperature (T) on the PZT surface and the resultant peak 

voltage and current in the 0.5 M KOH electrolyte with periodic heating-cooling frequencies 

ranging from 0.05 to 0.3 Hz. As can be seen from Fig. 4(A)-(D), the change of temperature 

decreased with an increase in frequency. It is noted that T obtained from 0.1 Hz (2.9 °C) has 

a small drop compared to that of 0.05 Hz (3 °C) while large decreases were found in those of 

0.2 Hz (2.1 °C) and 0.3 Hz (1.3 °C), shown in Fig. 4(E). At a low frequency, the pyroelectric 

element was exposed to the heat source for longer period of time, allowing greater heat 

transfer through its thickness, which leads to a more homogeneous temperature distribution. 

From the Eqn. (1) and (2), the larger the temperature change (T) of the pyroelectric, the 

greater the generated charge (Q) and potential difference (V) produced, leading to the more 

electrons to reduce the H+ in the electrolyte and higher potential as the driving force to split 
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water. This was in agreement with the obtained peak voltage and current in the 0.5 M KOH 

electrolyte, shown in Fig. 4(F). A small decrease of the peak voltage (2.35 V/ 2.34 V) and 

current (7.27 A/ 7.23 A) was found on increasing the frequency from 0.05 Hz to 0.1 Hz, 

while a sharp drop was observed for the 0.5 M KOH electrolyte on increasing the frequency 

from 0.2 Hz to 0.3 Hz, e.g. a fall to 1.11 V and 2.21 A when an oscillation frequency of 0.3 

Hz applied. The voltage/current generation profiles obtained via a range of periodic heating-

cooling frequencies are shown in Fig. S3 and the corresponding power and power density are 

shown in Fig. S4. Understanding the frequency dependence of change in polarisation would 

be of interest for further studies for this application, for example by laser intensity modulation 

method (LIMM) which has been used to characterise pyroelectric materials [36]. In this work 

we have selected a relatively low frequency of 0.1Hz for the final detection of H2 an 

quantification since it is the highest frequency that is able to achieve a change in temperature 

which is sufficient to produce a voltage >2 V for water splitting. There is also a small difference 

of the generated voltage and current in the electrolyte between the frequencies of 0.05 and 

0.1 Hz, see Fig 4(F). 
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Figure 4 Change of temperature (T) with different heating-cooling frequencies in terms of (A) 0.05 

Hz, (B) 0.1 Hz, (C) 0.2 Hz, and (D) 0.3 Hz, and (E) the relationship between T and frequency, (F) 

produced peak current and voltage. 

 

Figure 5 shows the production of oxygen and hydrogen from the pyroelectric induced electro-

chemical reaction using a KOH concentration of 0.5 M, with periodic heating and cooling at a 

frequency of 0.1 Hz. In terms of the charge Q, the higher the temperature the more it will be 

produced (see Eqn.1). However the total charge per time is also related to the frequency of the 

temperature fluctuations and the output voltage. Therefore where using thermal cycling via the 

lamp, there is a balance between the frequency of thermal cycles, the achievable temperature 

change and achieving a sufficient potential difference for water splitting (2.34 V). For example, 

see Figure 4 where increasing the frequency leads to a reduction in the achievable temperature. 

As a result, in this work we have selected a relatively low frequency of 0.1 Hz since it is the 

highest frequency that is able to achieve a change in temperature which is sufficient to produce 

a voltage >2 V for water splitting. Lower frequencies e.g. 0.05 Hz (see Figure 4) could achieve 

only slightly high temperature changes (and therefore charge per cycle) but at this low 

frequencies the total charge over time is lower.  As an example of real-time water splitting 

process during thermal cycling is shown in the video (Video. S1). As can be seen from Fig. 5(A), 

the degree of H2 evolution increased from 0.38 mol to 3.93 mol with increasing build-up time 

(1-6 h). The H2 evolution production increased slowly from 1 to 3 hours with the slope of 0.38 

µmol/h, with an increase of the H2 production with the slope of 1.06 µmol/h was achieved at 

longer times from 4 to 6 hours. The change in production rate is thought to be due a surface 

conditioning phenomenon where the physical roughness, adsorbed impurities and surface 

oxides on the surface of the electrode are changing with time, which is commonly observed for 

plantinum elctrodes [37]. The production of continuous bubbles of hydrogen and oxygen during 

each thermal cycle from the electrodes and the corresponding amount of H2 and O2 and 
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evolution rate after 6 h is presented in Fig. 5(B); the ratio of H2 and O2 is approximately 2:1, as 

would be expected for the reaction 2H2O → 2H2 + O2. In this system, the pyroelectric induce 

water-splitting produced both hydrogen and oxygen simultaneously on separate electrodes, 

without the consumption of the sacrificial reagents or hole scavengers [10, 11]. According to 

Faraday’s law, 𝑚 =
𝑄𝑀

𝐹𝑧
 , where m is the mass of the substance altered at an electrode which is 

H2 in this work, Q is the total electric charge passed through the substance, F = 96.485 C mol−1 

is the Faraday constant, M is the molar mass of the substance, and z is the valance number of 

ions of the substance, the theoretical mole (m/M) of generated H2 can be predicted based on 

the charge generated from the pyroelectric PZT sheet under thermal fluctuation, and the 

comparison with the experimental measured date is shown in Fig. 5(C). The Faradic efficiency 

of pyro-electrolytic water splitting was calculated as ~ 10%, which was enhanced to ~15% at six 

hours due to surface conditioning, shown in Fig. 5(A). Table 1 summarizes the main parameters 

and final H2 production between the internal (suspended pyroelectric particles in the electrolyte) 

and the external pyroelectric water splitting of this work. In this work, thermal fluctuations were 

conducted well below the Curie temperature of 350 °C to avoid the loss of remnant polarisation 

and to generate a continuous voltage and current, e.g. as in Fig. 3. Despite a bulk material being 

used, with a total PZT surface area much smaller than nano-powders [38], and a relatively small 

change of temperature (T ~3 °C; see Table 1), pyroelectric induced water splitting using an 

externally source had comparable [10] or higher [11] H2 generation performance than using the 

internal positioned route. Since the charge Q and potential V for pyro-water splitting are directly 

proportional to the area and thickness (Eqn. 1 and 2), future work could be focused on 

pyroelectric sheet with high pyroelectric response, high thermal conductivity or high heat transfer 

configurations, reduced permittivity and low Curie temperature for the external pyro-electrolytic 

water splitting. 
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Figure 5 (A) H2 evolution from external pyroelectric water splitting with sampling time ranging from 1 

to 6 h, (B) the amount and evolution rate of H2 and O2 after 6 h detected from the gas chromatography 

and (C) comparison of the theoretical results and experimental data on the H2 production generated 

with the 0.5 M of the KOH electrolyte and 0.1 Hz of the cyclic thermal fluctuation. 

 

Table 1 Comparison of the internal and external positioned pyroelectric for water splitting. 

 

Material Dimension T (K) Time Sacrificial reagent H2 evolution rate Ref 

BaTiO3 single crystals 100 m 30  Few cycles (2 

min/cycle) 

No 300 Vol.-ppb (part 

per billion) 

[12] 

Nano Ba0.7Sr0.3TiO3 

powders 

10 mg, 200 nm, cubed shape 

 

25  6 h Yes 0.075 mol/h 1 [11] 

No 1.25 x 10-3 mol/h 1 

Nano 2D black 

phosphorene powders 

1 mg, thickness of 0.35 nm, 

surface area of 9 cm2 

 

50  1 thermal cycle Yes 22.5 mol/g [10] 

PZT sheet 4.85 g, thickness of 170 m, 

surface area of 49 cm2 

3  6 h No 0.654 mol/h This work 

 

 1 calculated data based on relative parameter reported in the reference. 

 

 

4. Conclusions 

 

Hydrogen production via pyro-electrolytic water splitting is a promising green process where 

fluctuating thermal energy, such as transient low grade waste heat and natural temperature 

changes can be converted into chemical energy. In this study, the effects of the electrolyte 

concentration and heating-cooling frequency were investigated to explore the pyroelectric H2 

generation performance. The low impedance KOH electrolyte with a concentration of 0.5 M 

had the maximum voltage (2.34 V) and micro-level current (~7 μA) among all the 

concentrations explored for a PZT element with an area of 49 cm2; the differences in 
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optimisation of the electrochemical system compared to conventional electrical systems are 

discussed. With an increase of the heating-cooling frequency from 0.05-0.3 Hz, the change of 

the surface temperature of the pyroelectric decreased from 2.9 to 1.3 C. Without the aid of 

the sacrificial reagents, the pyro-electrolytic water splitting with the pyroelectric externally 

positioned configuration was able to produce continuous H2 gas, which was detected as 3.93 

mol in 6 h. Future work could be focused on the formation of pyroelectric nano-structures to 

increase the surface area of the pyroelectric element, which is proportional to the generated 

charge.  
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