497 research outputs found

    Disorder and Interaction in 2D: Exact diagonalization study of the Anderson-Hubbard-Mott model

    Full text link
    We investigate, by numerically calculating the charge stiffness, the effects of random diagonal disorder and electron-electron interaction on the nature of the ground state in the 2D Hubbard model through the finite size exact diagonalization technique. By comparing with the corresponding 1D Hubbard model results and by using heuristic arguments we conclude that it is \QTR{it}{unlikely} that there is a 2D metal-insulator quantum phase transition although the effect of interaction in some range of parameters is to substantially enhance the non-interacting charge stiffness.Comment: 13 pages, 2 figures Revised version. Accepted for publication in Phys. Rev. Let

    Robust Multi-Partite Multi-Level Quantum Protocols

    Full text link
    We present a tripartite three-level state that allows a secret sharing protocol among the three parties, or a quantum key distribution protocol between any two parties. The state used in this scheme contains entanglement even after one system is traced out. We show how to utilize this residual entanglement for quantum key distribution purposes, and propose a realization of the scheme using entanglement of orbital angular momentum states of photons.Comment: 9 pages, 2 figure

    Correlated charge polarization in a chain of coupled quantum dots

    Full text link
    Coherent charge transfer in a linear array of tunnel-coupled quantum dots, electrostatically coupled to external gates, is investigated using the Bethe ansatz for a symmetrically biased Hubbard chain. Charge polarization in this correlated system is shown to proceed via two distinct processes: formation of bound states in the metallic phase, and charge transfer processes corresponding to a superposition of antibound states at opposite ends of the chain in the Mott-insulating phase. The polarizability in the insulating phase of the chain exhibits a universal scaling behavior, while the polarization charge in the metallic phase of the model is shown to be quantized in units of e/2e/2.Comment: 9 pages, 3 figures, 1 tabl

    Mathematical model of the component mixture distribution in the molten cast iron during centrifugation (sedimentation)

    Get PDF
    © Published under licence by IOP Publishing Ltd. For the development and management of the manufacturing processes of axisymmetric articles with compositional structure by centrifugal casting method [1,2,3,4] is necessary to create a generalized mathematical model of the dynamics of component mixture in the molten cast iron during centrifugation. In article. based on the analysis of the dynamics of two-component mixture at sedimentation, a method of successive approximations to determine the distribution of a multicomponent mixture by centrifugation in a parabolic crucible is developed

    Synthesis and Functional Evaluation of DNA-Assembled Polyamidoamine Dendrimer Clusters for Cancer Cell-Specific Targeting

    Get PDF
    SummaryWe sought to produce dendrimers conjugated to different biofunctional moieties (fluorescein [FITC] and folic acid [FA]), and then link them together using complementary DNA oligonucleotides to produce clustered molecules that target cancer cells that overexpress the high-affinity folate receptor. Amine-terminated, generation 5 polyamidoamine (G5 PAMAM) dendrimers are first partially acetylated and then conjugated with FITC or FA, followed by the covalent attachment of complementary, 5′-phosphate-modified 34-base-long oligonucleotides. Hybridization of these oligonucleotide conjugates led to the self-assembly of the FITC- and FA-conjugated dendrimers. In vitro studies of the DNA-linked dendrimer clusters indicated specific binding to KB cells expressing the folate receptor. Confocal microscopy also showed the internalization of the dendrimer cluster. These results demonstrate the ability to design and produce supramolecular arrays of dendrimers using oligonucleotide bridges. This will also allow for further development of DNA-linked dendrimer clusters as imaging agents and therapeutics

    Systematic Identification of Oncogenic EGFR Interaction Partners

    Get PDF
    The Epidermal Growth Factor Receptor (EGFR) is a receptor tyrosine kinase that - once activated upon ligand binding - leads to receptor dimerization, recruitment of protein complexes and activation of multiple signaling cascades. The EGFR is frequently overexpressed or mutated in various cancers leading to aberrant signaling and tumor growth. Hence, identification of interaction partners that bind to mutated EGFR can help identify novel targets for drug discovery. Here, we used a systematic approach to identify novel proteins that are involved in cancerous EGFR-signaling. Using a combination of high-content imaging and a mammalian membrane two-hybrid protein-protein interaction (MaMTH) method, we identified 8 novel interaction partners of EGFR, out of which half strongly interacted with oncogenic, hyperactive EGFR variants. One of these, TACC3, stabilizes EGFR on the cell surface, which results in an increase in downstream signaling via the MAPK and AKT pathway. Depletion of TACC3 from cells using shRNA knockdown or small molecule targeting reduced mitogenic signaling in non-small cell lung cancer cell lines, suggesting that targeting TACC3 has potential as a new therapeutic approach for non-small cell lung cancer

    Deuteron disintegration in three dimensions

    Get PDF
    We compare results from the traditional partial wave treatment of deuteron electro-disintegration with a new approach that uses three dimensional formalism. The new framework for the two-nucleon (2N) system using a complete set of isospin - spin states made it possible to construct simple implementations that employ a very general operator form of the current operator and 2N states.Comment: 24 pages, 15 eps figure
    corecore