85 research outputs found

    Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing

    Get PDF
    Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of sixteen novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modelled the residues affected by missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of hypertrophic cardiomyopathy and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism

    Dystonia Linked to EIF4A2 Haploinsufficiency: A Disorder of Protein Translation Dysfunction

    Get PDF
    Background: Protein synthesis is a tightly controlled process, involving a host of translation-initiation factors and microRNA-associated repressors. Variants in the translational regulator EIF2AK2 were first linked to neurodevelopmental-delay phenotypes, followed by their implication in dystonia. Recently, de novo variants in EIF4A2, encoding eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), have been described in pediatric cases with developmental delay and intellectual disability. Objective: We sought to characterize the role of EIF4A2 variants in dystonic conditions. Methods: We undertook an unbiased search for likely deleterious variants in mutation-constrained genes among 1100 families studied with dystonia. Independent cohorts were screened for EIF4A2 variants. Western blotting and immunocytochemical studies were performed in patient-derived fibroblasts. Results: We report the discovery of a novel heterozygous EIF4A2 frameshift deletion (c.896_897del) in seven patients from two unrelated families. The disease was characterized by adolescence- to adulthood-onset dystonia with tremor. In patient-derived fibroblasts, eIF4A2 production amounted to only 50% of the normal quantity. Reduction of eIF4A2 was associated with abnormally increased levels of IMP1, a target of Ccr4-Not, the complex that interacts with eIF4A2 to mediate microRNA-dependent translational repression. By complementing the analyses with fibroblasts bearing EIF4A2 biallelic mutations, we established a correlation between IMP1 expression alterations and eIF4A2 functional dosage. Moreover, eIF4A2 and Ccr4-Not displayed significantly diminished colocalization in dystonia patient cells. Review of international databases identified EIF4A2 deletion variants (c.470_472del, c.1144_1145del) in another two dystonia-affected pedigrees. Conclusions: Our findings demonstrate that EIF4A2 haploinsufficiency underlies a previously unrecognized dominant dystonia-tremor syndrome. The data imply that translational deregulation is more broadly linked to both early neurodevelopmental phenotypes and later-onset dystonic conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Genotypic diversity and phenotypic spectrum of infantile liver failure syndrome type 1 due to variants inLARS1

    Get PDF
    Purpose: Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings. Methods: Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients. Clinical variables were analyzed and functional studies were performed in patient-derived fibroblasts. Results: Twenty-five individuals from 15 families were ascertained including 12 novel patients with eight previously unreported variants. The most prominent clinical findings are recurrent elevation of liver transaminases up to liver failure and encephalopathic episodes, both triggered by febrile illness. Magnetic resonance image (MRI) changes during an encephalopathic episode can be consistent with metabolic stroke. Furthermore, growth retardation, microcytic anemia, neurodevelopmental delay, muscular hypotonia, and infection-related seizures are prevalent. Aminoacylation activity is significantly decreased in all patient cells studied upon temperature elevation in vitro. Conclusion: ILFS1 is characterized by recurrent elevation of liver transaminases up to liver failure in conjunction with abnormalities of growth, blood, nervous system, and musculature. Encephalopathic episodes with seizures can occur independently from liver crises and may present with metabolic stroke

    Impaired complex I repair causes recessive Leber's hereditary optic neuropathy

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits

    Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies

    Get PDF
    Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp(-/-) mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp(-/-) MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.This study was supported by the German BMBF and Horizon2020 through E-Rare project GENOMIT (01GM1603 and 01GM1207 to H.P.; FWF-I 2741-B26 to J.A.M.); Vereinigung zur Förderung Pädiatrischer Forschung Salzburg; EU FP7 MEET Project (317433 to H.P. and J.A.M.); Horizon2020 Project SOUND (633974 to H.P.); Marie Skłodowska-Curie Actions Reintegration Fellowship (Mitobiopath-705560 to C.G.); UK NHS Highly Specialised Mitochondrial Service (R.W.T.); Wellcome Centre for Mitochondrial Research (203105/Z/16 to Z.M.C.-L., R.N.L., and R.W.T.); MRC Centre for Neuromuscular Diseases (G0601943 to R.W.T. and P.F.C.); Lily Foundation (R.W.T. and K.T.); UK NIHR fellowship (NIHR-HCS-D12-03-04 to C.L.A.); Wellcome Senior Fellowship (101876/Z/13/Z to P.F.C.); UK NIHR award and MRC Mitochondrial Biology Unit (MC_UP_1501/2 to P.F.C.); NIH (R01 GM0077465 and R35 GM122455 to V.K.M.); EMBO fellowship (ALTF 554-2015 to A.A.J.); UK MRC core funding for the Mitochondrial Biology Unit of the University of Cambridge (MC_U105697135 to A.R.D., P.R.G., and M. Minczuk); Portuguese Fundação para a Ciência e a Tecnologia (PD/BD/105750/2014 to P.R.G.); Italian Telethon (GSP16001 to G.P.C.); Fondazione Cariplo (2014-1010 to D.R.); Strategic Research Center in Private Universities from MEXT; and Practical Research Project for Rare/Intractable Diseases from AMED

    Analysis of mitochondrial RNA-processing defects in patient-derived tissues by qRT-PCR and RNAseq.

    No full text
    Transcription of the mitochondrial genome yields three large polycistronic transcripts that undergo multiple endonucleolytic processing steps, before resulting in functional mRNAs, tRNAs, and rRNAs. Cleavage of the large precursor transcripts is mainly performed by the RNase P complex and RNase Z that cleave mitochondrial pre-tRNAs at their 5′ and 3′ ends respectively. Most likely there are additional enzymes involved that still await identification and characterization. Defects in mitochondrial RNA processing have been associated with human disease. There are published cases of patients carrying mutations in either HSD17B10/MRPP2 (encoding a subunit of RNase P complex) or ELAC2 (coding for RNase Z). In addition, several mtDNA mutations within tRNA genes have been shown to affect RNA processing. Here, we describe detailed protocols for analyzing RNA processing of mitochondrial tRNAs, in particular their 3′-ends that are processed by RNase Z. These protocols should serve as a guide to extract RNA for quantitative real-time PCR and RNAseq analysis

    Curr. Biol.

    No full text

    Nat. Cell Biol.

    No full text

    Curr. Biol.

    No full text
    Dynactin is a multisubunit protein complex required for the activity of dynein in diverse intracellular motility processes, including membrane transport [1-3]. Dynactin can bind to vesicles and liposomes containing acidic phospholipids [4], but general properties such as this are unlikely to explain the regulated recruitment of dynactin to specific sites on organelle membranes [5]. Additional factors must therefore exist to control this process. Candidates for these factors are the Rab GTPases, which function in the tethering of vesicles to their target organelle prior to membrane fusion [6]. In particular, Rab27a tethers melanosomes to the actin cytoskeleton [7-9]. Other Rabs have been implicated in microtubule-dependent organelle motility; Rab7 controls lysosomal transport, and Rab6 is involved in microtubule- dependent transport pathways through the Golgi and from endosomes to the Golgi [10-16]. We demonstrate that dynactin binds to Rab6 and shows a Rab6-dependent recruitment to Golgi membranes. Other Golgi Rabs do not bind to dynactin and are unable to support its recruitment to membranes. Rab6 therefore functions as a specificity or tethering factor controlling the recruitment of dynactin to membranes
    corecore