3,200 research outputs found
He energies and radii by the coupled-cluster method with many-body average potential
The reformulated coupled-cluster method (CCM), in which average many-body
potentials are introduced, provides a useful framework to organize numerous
terms appearing in CCM equations, which enables us to clarify the structure of
the CCM theory and physical importance of various terms more easily. We
explicitly apply this framework to He, retaining one-body and two-body
correlations as the first illustrating attempt. Numerical results with using
two modern nucleon-nucleon interactions (AV18 and CD-Bonn) and their
low-momentum interactions are presented. The characters of short-range and
many-body correlations are discussed. Although not considered explicitly, the
expression of the ground-state energy in the presence of a three-nucleon force
is given.Comment: 12 pages, 11 figures, accepted for publication in PR
NMA Survey of CO and HCN Emission from Nearby Active Galaxies
High resolution (a few arcseconds) observations of CO(1-0) and HCN(1-0)
emission from nearby Seyfert galaxies have been conducted with the Nobeyama
Millimeter Array. Based on the observed CO distributions and kinematics,we
suggest that a small scale (a few 100 pc - a few kpc) distortion of the
underlying potential seems to be necessary for Seyfert activity, although it is
not a sufficient condition. We also find that the Toomre's Q values in the
centers of Seyfert galaxies tend to be larger than unity, indicating the
circumnuclear molecular gas disks around Seyfert nuclei would be
gravitationally stable. The HCN/CO integrated intensity ratios (R_HCN/CO) range
over an order of magnitude, from 0.086 to 0.6. The Seyfert galaxies with high
R_HCN/CO may have an extended (r ~ 100 pc scale) envelope of obscuring
material. The presence of kpc scale jet/ outflow might be also related to the
extremely high R_HCN/CO.Comment: To appear in the Proceedings of the 3rd Cologne-Zermatt Symposium,
``The Physics and Chemistry of the Interstellar Medium'
Equivalent hyperon-nucleon interactions in low-momentum space
Equivalent interactions in a low-momentum space for the , and interactions are calculated, using the SU quark model
potential as well as the Nijmegen OBEP model as the input bare interaction.
Because the two-body scattering data has not been accumulated sufficiently to
determine the hyperon-nucleon interactions unambiguously, the construction of
the potential even in low-energy regions has to rely on a theoretical model.
The equivalent interaction after removing high-momentum components is still
model dependent. Because this model dependence reflects the character of the
underlying potential model, it is instructive for better understanding of
baryon-baryon interactions in the strangeness sector to study the low-momentum
space interactions.Comment: 9 pages, 13 figures, accepted for publication in Phys. Rev.
Effect of Spin Current on Uniform Ferromagnetism: Domain Nucleation
Large spin current applied to a uniform ferromagnet leads to a spin-wave
instability as pointed out recently.
In this paper, it is shown that such spin-wave instability is absent in a
state containing a domain wall, which indicates that nucleation of magnetic
domains occurs above a certain critical spin current.
This scenario is supported also by an explicit energy comparison of the two
states under spin current.Comment: 4 pages, 1 figure, REVTeX, rivised version, to appear in Physical
Review Letter
Addendum: Triton and hypertriton binding energies calculated from SU_6 quark-model baryon-baryon interactions
Previously we calculated the binding energies of the triton and hypertriton,
using an SU_6 quark-model interaction derived from a resonating-group method of
two baryon clusters. In contrast to the previous calculations employing the
energy-dependent interaction kernel, we present new results using a
renormalized interaction, which is now energy independent and reserves all the
two-baryon data. The new binding energies are slightly smaller than the
previous values. In particular the triton binding energy turns out to be 8.14
MeV with a charge-dependence correction of the two-nucleon force, 190 keV,
being included. This indicates that about 350 keV is left for the energy which
is to be accounted for by three-body forces.Comment: 4 pages, 1 figur
Dense and Warm Molecular Gas between Double Nuclei of the Luminous Infrared Galaxy NGC 6240
High spatial resolution observations of the 12CO(1-0), HCN(1-0), HCO+(1-0),
and 13CO(1-0) molecular lines toward the luminous infrared merger NGC 6240 have
been performed using the Nobeyama Millimeter Array and the RAINBOW
Interferometer. All of the observed molecular emission lines are concentrated
in the region between the double nuclei of the galaxy. However, the
distributions of both HCN and HCO+ emissions are more compact compared with
that of 12CO, and they are not coincident with the star-forming regions. The
HCN/12CO line intensity ratio is 0.25; this suggests that most of the molecular
gas between the double nuclei is dense. A comparison of the observed high
HCN/13CO intensity ratio, 5.9, with large velocity gradient calculations
suggests that the molecular gas is dense [n(H_2)=10^{4-6} cm^-3] and warm
(T_kin>50 K). The observed structure in NGC 6240 may be explained by time
evolution of the molecular gas and star formation, which was induced by an
almost head-on collision or very close encounter of the two galactic nuclei
accompanied with the dense gas and star-forming regions.Comment: 25 pages, 8 figures, To be appeared in PASJ 57, No.4 (August 25,
2005) issu
CO(J=6-5) Observations of the Quasar SDSS1044-0125 at z = 5.8
We present a result of the quasar CO(J=6-5) observations of SDSSp
J104433.04-012502.2 at z = 5.8. Ten-days observations with the Nobeyama
Millimeter Array yielded an rms noise level of ~ 2.1 mJy/beam in a frequency
range from 101.28 GHz to 101.99 GHz at a velocity resolution of 120 km/s. No
significant clear emission line was detected in the observed field and
frequency range. Three sigma upper limit on the CO(J=6-5) luminosity of the
object is 2.8 x 10^10 K km/s pc^2, corresponding to a molecular gas mass of 1.2
x 10^11 Solar Mass, if a conversion factor of 4.5 Solar Mass /(K km/s pc^2) is
adopted. The obtained upper limit on CO luminosity is slightly smaller than
those observed in quasars at z=4-5 toward which CO emissions are detected.Comment: 4 pages, 3 figures, LaTeX2e, to appear in Publication of Astronomical
Society of Japan (PASJ), Postscript file available at
ftp://ftp.kusastro.kyoto-u.ac.jp/pub/iwata/preprint/sdss1044/sdss.ps.g
Tracing star formation in galaxies with molecular line and continuum observations
We report our recent progress on extragalactic spectroscopic and continuum
observations, including HCN(J=1-0), HCO(J=1-0), and CN(N=1-0) imaging
surveys of local Seyfert and starburst galaxies using the Nobeyama Millimeter
Array, high-J CO observations (J=3-2 observations using the Atacama
Submillimeter Telescope Experiment (ASTE) and J=2-1 observations with the
Submillimeter Array) of galaxies, and 1.1 mm continuum observations
of high-z violent starburst galaxies using the bolometer camera AzTEC mounted
on ASTE.Comment: 6 pages, 5 figures, To appear in proceedings of "Far-Infrared and
Submillimeter Emission of the Interstellar Medium", EAS Publication Series,
Bad Honnef, November 2007, Eds. C. Kramer, S. Aalto, R. Simon. See
http://www.nro.nao.ac.jp/~f0212kk/FIR07/kk-ver20.pdf for a version with high
resolution figure
- …