Previously we calculated the binding energies of the triton and hypertriton,
using an SU_6 quark-model interaction derived from a resonating-group method of
two baryon clusters. In contrast to the previous calculations employing the
energy-dependent interaction kernel, we present new results using a
renormalized interaction, which is now energy independent and reserves all the
two-baryon data. The new binding energies are slightly smaller than the
previous values. In particular the triton binding energy turns out to be 8.14
MeV with a charge-dependence correction of the two-nucleon force, 190 keV,
being included. This indicates that about 350 keV is left for the energy which
is to be accounted for by three-body forces.Comment: 4 pages, 1 figur