17,342 research outputs found

    M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M<sub>4 </sub>muscarinic receptor knockout (M<sub>4</sub>R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M<sub>4</sub>R remain unclear.</p> <p>Results</p> <p>In this study, to further investigate precise functional roles of M<sub>4</sub>R in the CNS, M<sub>4</sub>R KO mice were subjected to a battery of behavioral tests. M<sub>4</sub>R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M<sub>4</sub>R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M<sub>4</sub>R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M<sub>4</sub>R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M<sub>4</sub>R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M<sub>4</sub>R KO mice demonstrated normal startle response. M<sub>4</sub>R KO mice also displayed normal performance in the Morris water maze test.</p> <p>Conclusions</p> <p>These findings indicate that M<sub>4</sub>R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia.</p

    The Role of BAFF-R Signaling in the Growth of Primary Central Nervous System Lymphoma

    Get PDF
    Primary CNS lymphoma (PCNSL) is an aggressive brain tumor. Despite improvements in therapeutic algorithms, long-term survival remains rare, illustrating an urgent need for novel therapeutic targets. BAFF-R is a pro-survival receptor expressed on most malignant B cells, including PCNSL. To date, its role in PCNSL growth remains elusive. Here, we have created a BAFF-R knockout lymphoma cell line (BAFF-R-KO) using CRISPR-Cas9. In serum-starved conditions, BAFF-R-KO cells exhibit decreased viability in vitro compared to BAFF-R+ cells. Combining an orthotopic mouse model of PCNSL with chronic cranial windows and intravital microscopy, we have demonstrated a significant delay in tumor growth in mice inoculated with BAFF-R-KO cells compared to BAFF-R+ PCNSL. Additionally, median survival of BAFF-R-KO mice was significantly prolonged. Altogether, our results indicate the high potential of BAFF-R as a novel treatment target for PCNSL

    Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways

    Get PDF
    BACKGROUND: In peripheral airways, acetylcholine induces contraction via activation of muscarinic M2-and M3-receptor subtypes (M(2)R and M(3)R). Cholinergic hypersensitivity is associated with chronic obstructive pulmonary disease and asthma, and therefore the identification of muscarinic signaling pathways are of great therapeutic interest. A pathway that has been shown to be activated via MR and to increase [Ca(2+)](i )includes the activation of sphingosine kinases (SPHK) and the generation of the bioactive sphingolipid sphingosine 1-phosphate (S1P). Whether the SPHK/S1P signaling pathway is integrated in the muscarinic control of peripheral airways is not known. METHODS: To address this issue, we studied precision cut lung slices derived from FVB and M(2)R-KO and M(3)R-KO mice. RESULTS: In peripheral airways of FVB, wild-type, and MR-deficient mice, SPHK1 was mainly localized to smooth muscle. Muscarine induced a constriction in all investigated mouse strains which was reduced by inhibition of SPHK using D, L-threo-dihydrosphingosine (DHS) and N, N-dimethyl-sphingosine (DMS) but not by N-acetylsphingosine (N-AcS), a structurally related agent that does not affect SPHK function. The initial phase of constriction was nearly absent in peripheral airways of M(3)R-KO mice when SPHK was inhibited by DHS and DMS but was unaffected in M(2)R-KO mice. Quantitative RT-PCR revealed that the disruption of the M(2)R and M(3)R genes had no significant effect on the expression levels of the SPHK1-isoform in peripheral airways. CONCLUSION: These results demonstrate that the SPHK/S1P signaling pathway contributes to cholinergic constriction of murine peripheral airways. In addition, our data strongly suggest that SPHK is activated via the M(2)R. Given the important role of muscarinic mechanisms in pulmonary disease, these findings should be of considerable therapeutic relevance

    Cannabinoid Receptor Subtype 2 (Cb2R) Agonist Gw405833 Reduces Agonist-Induced Ca2+ Oscillations In Mouse Pancreatic Acinar Cells

    Get PDF
    Emerging evidence demonstrates that the blockade of intracellular Ca 2+ signals may protect pancreatic acinar cells against Ca 2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB 2 R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB 2 Rs modulate intracellular Ca 2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB 2 R agonist, GW405833 (GW) in agonist-induced Ca 2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB 1 R-knockout (KO), and CB 2 R-KO mice. Immunohistochemical labeling revealed that CB 2 R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB 2 Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca 2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB 2 R antagonist, AM630, or was absent in CB 2 R-KO but not CB 1 R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca 2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB 2 Rs eliminates ACh-induced Ca 2+ oscillations and L-arginine-induced enhancement of Ca 2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB 2 R-mediated protection in acute pancreatitis

    EthA/R-Independent Killing of Mycobacterium tuberculosis by Ethionamide.

    Get PDF
    Ethionamide (ETH) is part of the drug arsenal available to treat multi-drug resistant tuberculosis. The current paradigm of this pro-drug activation involves the mycobacterial enzyme EthA and the transcriptional repressor, EthR. However, several lines of evidence suggest the involvement of additional players. The ethA/R locus was deleted in Mycobacterium bovis BCG and three Mycobacterium tuberculosis (MTB) strains. While complete resistance to ETH was observed with BCG ethA/R KO, drug susceptibility and dose-dependent killing were retained in the ethA/R KO MTB mutants, suggesting the existence of an alternative pathway of ETH bio-activation in MTB. We further demonstrated that this alternative pathway is EthR-independent, whereby re-introduction of ethR in ethA/R KO MTB did not lead to increased resistance to ETH. Consistently, ethA KO MTB (with intact ethR expression) displayed similar ETH susceptibility profile as their ethA/R KO counterparts. To identify the alternative ETH bio-activator, spontaneous ETH-resistant mutants were obtained from ethA/R KO MTB and whole genome sequencing identified single nucleotide polymorphisms in mshA, involved in mycothiol biosynthesis and previously linked to ETH resistance. Deletion of mshA in ethA/R KO MTB led to complete ETH resistance, supporting that the role of MshA in ETH killing is EthA/R-independent. Furthermore mshA single KO MTB displayed levels of ETH resistance similar or greater than those obtained with ethA/R KO strains, supporting that mshA is as critical as ethA/R for ETH killing efficacy

    A transformation of business process models into software-executable models using MDA

    Get PDF
    Traditional software development projects for process-oriented organizations are time consuming and do not always guarantee the fulfillment of the functional requirements of the client organization, and thus the quality of the resulting software product. To reduce the time spent for developing software and improve its quality, we adopt the inclusion of automation in some parts of the software development process. Thus, in this paper, we propose a model transformation approach to derive an executable model for the business processes of a given organization. We execute a mapping between processes (described with a business process execution language) and software components. We also propose a supporting software architecture based on an Enterprise Service Bus and on Java Business Integration, and we use an already defined methodology to execute the model transformation project.FEDER, FC

    Effect of nuclear interactions of neutral kaons on CP asymmetry measurements

    Full text link
    We examine the effect of the difference in nuclear interactions of K0{K}^0 and Kˉ0\bar{K}^0 mesons on the measurement of CP asymmetry for experiments at e+ee^+e^- colliders - charm and BB-meson factories. We find that this effect on CP asymmetry can be as large as 0.3%, and therefore sufficiently significant in interpreting measurements of CP asymmetry when neutral kaons are present in the final state.Comment: accepted to PR

    Effector mechanisms of interleukin-17 in collagen-induced arthritis in the absence of interferon-γ and counteraction by interferon-γ

    Get PDF
    Introduction Interleukin (IL)-17 is a pro-inflammatory cytokine in rheumatoid arthritis (RA) and collagen-induced arthritis ( CIA). Since interferon (IFN)-gamma inhibits Th17 cell development, IFN-gamma receptor knockout (IFN-gamma R KO) mice develop CIA more readily. We took advantage of this model to analyse the mechanisms of action of IL-17 in arthritis. The role of IFN-gamma on the effector mechanisms of IL-17 in an in vitro system was also investigated. Methods IFN-gamma R KO mice induced for CIA were treated with anti-IL-17 or control antibody. The collagen type II (CII)-specific humoral and cellular autoimmune responses, myelopoiesis, osteoclastogenesis, and systemic cytokine production were determined. Mouse embryo fibroblasts (MEF) were stimulated with IL-17, tumor necrosis factor (TNF)-alpha and the expression of cytokines and chemokines were determined. Results A preventive anti-IL-17 antibody treatment inhibited CIA in IFN gamma R KO mice. In the joints of anti-IL-17-treated mice, neutrophil influx and bone destruction were absent. Treatment reduced the cellular autoimmune response as well as the splenic expansion of CD11b(+) cells, and production of myelopoietic cytokines such as granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-6. IL-17 and TNF-alpha synergistically induced granulocyte chemotactic protein-2 (GCP-2), IL-6 and receptor activator of NF kappa B ligand (RANKL) in MEF. This induction was profoundly inhibited by IFN-gamma in a STAT-1 (signal transducer and activator of transcription-1)dependent way. Conclusions In the absence of IFN-gamma, IL-17 mediates its proinflammatory effects mainly through stimulatory effects on granulopoiesis, neutrophil infiltration and bone destruction. In vitro IFN-gamma profoundly inhibits the effector function of IL-17. Thus, aside from the well-known inhibition of the development of Th17 cells by IFN-gamma, this may be an additional mechanism through which IFN-gamma attenuates autoimmune diseases

    High shear stress enhances endothelial permeability in the presence of the risk haplotype at 9p21.3

    Get PDF
    Single nucleotide polymorphisms (SNPs) are exceedingly common in non-coding loci, and while they are significantly associated with a myriad of diseases, their specific impact on cellular dysfunction remains unclear. Here, we show that when exposed to external stressors, the presence of risk SNPs in the 9p21.3 coronary artery disease (CAD) risk locus increases endothelial monolayer and microvessel dysfunction. Endothelial cells (ECs) derived from induced pluripotent stem cells of patients carrying the risk haplotype (R/R WT) differentiated similarly to their non-risk and isogenic knockout (R/R KO) counterparts. Monolayers exhibited greater permeability and reactive oxygen species signaling when the risk haplotype was present. Addition of the inflammatory cytokine TNF alpha further enhanced EC monolayer permeability but independent of risk haplotype; TNF alpha also did not substantially alter haplotype transcriptomes. Conversely, when wall shear stress was applied to ECs in a microfluidic vessel, R/R WT vessels were more permeable at lower shear stresses than R/R KO vessels. Transcriptomes of sheared cells clustered more by risk haplotype than by patient or clone, resulting in significant differential regulation of EC adhesion and extracellular matrix genes vs static conditions. A subset of previously identified CAD risk genes invert expression patterns in the presence of high shear concomitant with altered cell adhesion genes, vessel permeability, and endothelial erosion in the presence of the risk haplotype, suggesting that shear stress could be a regulator of non-coding loci with a key impact on CAD

    Hungarian meat sector restructuration in the post-EU accession period

    Get PDF
    other Hungarian food industry sectors and also compared to the concentration level in West European countries. In the sector the share of foreign capital is also very low (17%). Because of the low share of foreign capital and relatively small concentration, structural and ownership changes were to be expected, resulting in a more concentrated and competitive sector. The restructuring process involved a number of steps. First of all, Sándor Csányi acquired Délhús and then later acquired Pick Szeged, and in 2005 these two corporations’ sectoral share was about 25%. As for the other two large corporations – R-KO-N and Carnex – in late 2005 the latter weakened significantly causing a loss in market share and the bankruptcy of two companies within its industrial group. Currently the meat sector is undergoing rationalisation of costs and activities, coordination, and an elimination process, all brought on by increasing competition. Pork consumption tends to run counter to the rising standard of living as consumption has been stagnating for years. Domestic production of pork is going down but imports (mainly live pigs) are shooting up. Now a portion of produced pork (mainly carcass meat) can be sold in Hungarian’s export markets at the re-accession level. Even today the elimination process is affecting numerous abattoirs. Changes in ownership structure could hasten the elimination process, leading to a reduction in the large surplus capacities. For example, in 2003 50% of pig slaughtering capacities were used, similar to the capacity used in salami and sausage production.Pig, food industry, EU Accession, trade, Food Consumption/Nutrition/Food Safety, Industrial Organization, International Relations/Trade,
    corecore