
West Chester University West Chester University 

Digital Commons @ West Chester University Digital Commons @ West Chester University 

Physics & Engineering College of the Sciences & Mathematics 

9-1-2021 

High shear stress enhances endothelial permeability in the High shear stress enhances endothelial permeability in the 

presence of the risk haplotype at 9p21.3 presence of the risk haplotype at 9p21.3 

Evan L. Tang 

Evan M. Masutami 

Benjamin Yeoman 

Jessica Fung 

Rachel Lian 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.wcupa.edu/phys_facpub 

 Part of the Biomedical Engineering and Bioengineering Commons, and the Cardiovascular Diseases 

Commons 

https://digitalcommons.wcupa.edu/
https://digitalcommons.wcupa.edu/phys_facpub
https://digitalcommons.wcupa.edu/cas
https://digitalcommons.wcupa.edu/phys_facpub?utm_source=digitalcommons.wcupa.edu%2Fphys_facpub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.wcupa.edu%2Fphys_facpub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/929?utm_source=digitalcommons.wcupa.edu%2Fphys_facpub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/929?utm_source=digitalcommons.wcupa.edu%2Fphys_facpub%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Evan L. Tang, Evan M. Masutami, Benjamin Yeoman, Jessica Fung, Rachel Lian, Brenda Ngo, Aditya 
Kumar, Jesse K. Placone, Valentina Lo Sardo, and Adam J. Engler 



APL Bioeng. 5, 036102 (2021); https://doi.org/10.1063/5.0054639 5, 036102

© 2021 Author(s).

High shear stress enhances endothelial
permeability in the presence of the risk
haplotype at 9p21.3 
Cite as: APL Bioeng. 5, 036102 (2021); https://doi.org/10.1063/5.0054639
Submitted: 20 April 2021 . Accepted: 09 July 2021 . Published Online: 26 July 2021

Evan L. Teng,  Evan M. Masutani, Benjamin Yeoman,  Jessica Fung,  Rachel Lian, Brenda Ngo,  Aditya

Kumar,  Jesse K. Placone,  Valentina Lo Sardo, and  Adam J. Engler

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of
cardiac development and disease
APL Bioengineering 5, 021504 (2021); https://doi.org/10.1063/5.0033710

Remodeling of an in vitro microvessel exposed to cyclic mechanical stretch
APL Bioengineering 5, 026102 (2021); https://doi.org/10.1063/5.0010159

Topological defects in the mesothelium suppress ovarian cancer cell clearance
APL Bioengineering 5, 036103 (2021); https://doi.org/10.1063/5.0047523

https://images.scitation.org/redirect.spark?MID=176720&plid=1557360&setID=406885&channelID=0&CID=567027&banID=520459198&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=54888ab85a1b9462cff5db62d00ada79f20ce8e8&location=
https://doi.org/10.1063/5.0054639
https://aip.scitation.org/topic/collections/featured?SeriesKey=apb
https://doi.org/10.1063/5.0054639
https://aip.scitation.org/author/Teng%2C+Evan+L
https://orcid.org/0000-0002-6743-5514
https://aip.scitation.org/author/Masutani%2C+Evan+M
https://aip.scitation.org/author/Yeoman%2C+Benjamin
https://orcid.org/0000-0002-6729-4651
https://aip.scitation.org/author/Fung%2C+Jessica
https://orcid.org/0000-0003-3938-1069
https://aip.scitation.org/author/Lian%2C+Rachel
https://aip.scitation.org/author/Ngo%2C+Brenda
https://orcid.org/0000-0001-9580-8245
https://aip.scitation.org/author/Kumar%2C+Aditya
https://aip.scitation.org/author/Kumar%2C+Aditya
https://orcid.org/0000-0002-3464-8177
https://aip.scitation.org/author/Placone%2C+Jesse+K
https://orcid.org/0000-0003-0573-9878
https://aip.scitation.org/author/Lo+Sardo%2C+Valentina
https://orcid.org/0000-0003-1642-5380
https://aip.scitation.org/author/Engler%2C+Adam+J
https://aip.scitation.org/topic/collections/featured?SeriesKey=apb
https://doi.org/10.1063/5.0054639
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0054639
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0054639&domain=aip.scitation.org&date_stamp=2021-07-26
https://aip.scitation.org/doi/10.1063/5.0033710
https://aip.scitation.org/doi/10.1063/5.0033710
https://doi.org/10.1063/5.0033710
https://aip.scitation.org/doi/10.1063/5.0010159
https://doi.org/10.1063/5.0010159
https://aip.scitation.org/doi/10.1063/5.0047523
https://doi.org/10.1063/5.0047523


High shear stress enhances endothelial
permeability in the presence of the risk
haplotype at 9p21.3

Cite as: APL Bioeng. 5, 036102 (2021); doi: 10.1063/5.0054639
Submitted: 20 April 2021 . Accepted: 9 July 2021 .
Published Online: 26 July 2021

Evan L. Teng,1 Evan M. Masutani,1 Benjamin Yeoman,1 Jessica Fung,1 Rachel Lian,1 Brenda Ngo,1

Aditya Kumar,1 Jesse K. Placone,1,a) Valentina Lo Sardo,2,b) and Adam J. Engler1,3,4,c)

AFFILIATIONS
1Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
2Department of Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
3Biomedical Sciences Program, University of California, San Diego, La Jolla, California 92093, USA
4Sanford Consortium for Regenerative Medicine, La Jolla, California 92037, USA

a)Present address: Department of Physics and Engineering, West Chester University, West Chester, PA 19383, USA.
b)Present address: Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
c)Author to whom correspondence should be addressed: aengler@ucsd.edu. Tel.: 858-246-0678. Fax: 858-534-5722

ABSTRACT

Single nucleotide polymorphisms (SNPs) are exceedingly common in non-coding loci, and while they are significantly associated with a
myriad of diseases, their specific impact on cellular dysfunction remains unclear. Here, we show that when exposed to external stressors, the
presence of risk SNPs in the 9p21.3 coronary artery disease (CAD) risk locus increases endothelial monolayer and microvessel dysfunction.
Endothelial cells (ECs) derived from induced pluripotent stem cells of patients carrying the risk haplotype (R/R WT) differentiated similarly
to their non-risk and isogenic knockout (R/R KO) counterparts. Monolayers exhibited greater permeability and reactive oxygen species sig-
naling when the risk haplotype was present. Addition of the inflammatory cytokine TNFa further enhanced EC monolayer permeability but
independent of risk haplotype; TNFa also did not substantially alter haplotype transcriptomes. Conversely, when wall shear stress was
applied to ECs in a microfluidic vessel, R/R WT vessels were more permeable at lower shear stresses than R/R KO vessels. Transcriptomes of
sheared cells clustered more by risk haplotype than by patient or clone, resulting in significant differential regulation of EC adhesion and
extracellular matrix genes vs static conditions. A subset of previously identified CAD risk genes invert expression patterns in the presence of
high shear concomitant with altered cell adhesion genes, vessel permeability, and endothelial erosion in the presence of the risk haplotype,
suggesting that shear stress could be a regulator of non-coding loci with a key impact on CAD.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0054639

INTRODUCTION

Heart disease remains the leading cause of death in the United
States1 and, in particular, coronary artery disease (CAD) is the most
prevalent form worldwide.2 While significant risk for CAD is associ-
ated with lifestyle, there is growing recognition that genetics has a pro-
found influence on risk. Genome wide association studies (GWASs)
have identified a number of single nucleotide polymorphisms (SNPs)
within the 9p21.3 locus with extremely high correlation to increased
risk of acquiring CAD and myocardial infarction.3,4 This region con-
tains an antisense noncoding RNA called ANRIL (CDNK2B-AS1) and
borders the CDKN2A and CDKN2B genes,5,6 whose function is not

well understood. Notably, this particular locus is found only within
close evolutionary relatives of humans, e.g., chimpanzees and
Rhesus macaques; it is not found in commonly studied rodent spe-
cies,7,8 and hence orthologous knockout studies of the syntenic
mouse region9 yielded results with unclear human relevance. Given
the challenges involved in human and primate research, patient-
derived induced pluripotent stem cells (iPSCs) offer a suitable alter-
native means of interrogating the 9p21.3 CAD risk locus effects at
the cellular level.10 Indeed, recent evidence suggests that the haplo-
type’s presence significantly impairs the function of iPSC-derived
cardiovascular progeny.11,12
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The process of CAD-associated injury and plaque buildup within
arterial walls involves several different cell types,13 including resident
endothelial cells (ECs) and smooth muscle cells as well as immune
response cells such as macrophages. With the presence of stressors
within the blood, excessive tunica intima permeability from leaky tight
junctions leads to fatty build up, expanded foam cell presence, and
smooth muscle invasion, which decrease lumen area and restrict blood
flow.14 While CAD progression is well studied, how this downward
cascade of vessel health begins in relation to endothelial cell dysfunc-
tion is less understood. ECs reside in the innermost layer of the blood
vessel, separating the lumen from the vessel wall and regulating nutri-
ent and molecular transport beyond the vessel. In addition, ECs also
are critical in mediating macrophage attachment and entry into the
blood vessel via extravasation, which can exacerbate vessel injury.15

Like their cardiomyocyte counterparts,12 external factors—either
chemical or physical—can influence how ECs are able to fulfill these
functions.16 For example, EC barrier function is susceptible to inflam-
matory cytokines, notably Tissue Necrosis Factor alpha (TNFa) and
Interleukin 6 (IL-6), which are typically present in cases of injury and
inflammation.17 Hemodynamic shear stress also influences EC func-
tion.16,18 For example, laminar shear stress as well as low magnitude
pulsatile flow are atheroprotective.18 However, disturbed or turbulent
flow increases inflammation and cellular damage,19 in which high,
pathological shear stress can reverse beneficial effects due to increased
blood parameters of pressure, flow, or vessel tightening.20

The myriad of genetic, biochemical, and physical effects on ECs
demonstrate a complex environment whose holistic effects are not
fully understood. To better understand the role that the 9p21 region
has on EC physiology and regulation of vessel integrity, we character-
ized iPSC-derived EC21 morphology and function in the presence of
the risk haplotype. To introduce fluidic stress effects into the equation,
we built a 3D microfluidic device comprised of an iPSC-derived EC
microvessel within a collagen scaffold, and determined laminar shear
effects on the EC microvessel, its permeability, and its structural integ-
rity with relation to the 9p21 risk haplotype presence. These observa-
tions further suggest that the interaction between the 9p21 risk locus
and environmental stress represents a key factor in CAD onset and
progression.

RESULTS
9p21.3 CAD risk haplotype does not impair iPSC-EC
differentiation

iPSCs carrying the homozygous risk haplotype (R/R assessed by
genotyping at rs1333049, rs2383207, and r10757278), the knockout
isogenic lines edited by TALENs (R/R KO), or those carrying the non-
risk haplotype (N/N)11 were verified for their pluripotency via staining
of Sox2, Nanog, and Oct4 [Fig. S1(A)], for which all lines and clones
showed similar positive expression. The differentiation of iPSCs to
ECs—through mesoderm and subsequently endothelial specification21

[Fig. S1(B)]—resulted in endothelial populations of 95þ% purity via
vascular endothelial cadherin (VE-Cadherin) expression across single
non-risk, risk wildtype, and risk knockout lines [Fig. S1(C)] when
assessed by flow cytometry. Moreover, staining for junctional proteins
ZO1 and VE-Cadherin showed appropriate localization [Fig. 1(a)] and
no noticeable morphological differences in circularity independent of
the haplotype (Fig. S2). To ensure that basic EC lipid uptake was not
affected by haplotype, iPSC-ECs were assessed for acetylated-LDL

uptake, and we found that population percentage uptake was
not impacted by the presence or absence of the polymorphisms
[Fig. S1(D)].

Morphological and functional assessments suggest that maturity
is haplotype independent, but to ensure that this extends to the tran-
scriptional level, we performed RNA-sequencing on iPSC-ECs, specifi-
cally of R/R WT and KO lines from two patients (C512 and C021),
i.e., two clones from one patient (R/RWT clones 1–5 and 2–3 and iso-
genic R/R KO clones 1–9 andWB46) and one from the second patient
(R/R WT clone ED2–70 and R/R KO clone ED2–65), and two differ-
entiation batches of one isogenic clone pair (e.g., 1–5 and 1–9). A
Pearson correlation plot of the entire transcriptome showed greatest
clustering by patient and then by clone with consistent clustering of
haplotype pairs with multiple differentiations under static conditions
[Fig. 1(b)]; indeed, 3D principal component analysis (PCA) of the
transcriptome groups by haplotype revealed little overall sorting
[Fig. 1(c)]. Closer inspection of transcriptional differences indicated
only 13 genes were differentially expressed genes (DEGs) for WT vs
KO, i.e., those with an adjusted p-value threshold of 0.1 and an expres-
sion difference of>2-fold. However, when including genes with statis-
tically different expression regardless of magnitude (86 total) with the
same p-value threshold, we observed small fold-changes under static
conditions [Figs. 1(d) and 1(e); supplementary Table 1]. Consistent
with these observations, the most significant 20 gene ontology (GO)
terms via Fisher’s exact test included broad cardiovascular response
categories [Fig. 1(f), red; supplementary Table 2]; those terms related
to blood flow and forces (open arrowheads) and to inflammation
(closed arrowheads) are highlighted and suggest that they are possible
signaling mechanisms.

Inflammatory signaling impairs iPSC-EC function but
not transcription based on haplotype

The presence of inflammation GO terms and prior implication of
inflammation in 9p21 pathogenesis5 led us to first assess the role that
inflammatory cytokines, e.g., TNFa, could have on iPSC-EC haplotype-
dependent function. iPSC-ECs cultured in 2D on transwell inserts were
challenged after monolayer formation by exposure to TNFa, and
apparent permeability was assessed. We found that risk cells were the
most permeable with highest transmission of a 70 kD fluorescent dex-
tran between chambers; removal of the locus partially restored barrier
function [Fig. 2(a), red vs yellow]. Treatment with TNFa for 12h
increased permeability independent of haplotype, but cells containing
the risk haplotype remained most permeable with removal of the locus
partially restoring function relative to non-risk cells [Fig. 2(a),þTNFa].
GO terms for untreated cells were suggestive of a mechanism involving
reactive oxygen species (ROS) secretion, and immunofluorescent
assessment indicated reduced signaling when the locus was deleted
[Fig. 2(b)]. These data suggested that the haplotype could be mediating
transcriptional regulation induced by stress, e.g., inflammation, as we
previously observed in other cell types with stress.11,12

To further understand the extent that TNFa caused haplotype-
dependent transcriptional changes, we performed RNAseq on TNFa-
treated iPSC-ECs. While the transcriptomes of unstimulated cells were
sorted based on patient, clone, and then haplotype, a Pearson correla-
tion plot of all transcripts from TNFa-treated cells indicated only sub-
tle variation [Fig. 2(c)], consistent with functional observations, and
not by patient or clone as with untreated cells in Fig. 1. While 2D PCA
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FIG. 1. 9p21 CAD risk haplotype does not impact EC commitment but does prescribe some transcriptome differences. (a) Images of nuclei (DAPI; blue), VE-cadherin (yellow),
and ZO1 (green) for cells of the indicated haplotypes. Arrowheads indicate positive staining of proteins at the cell-cell junctions. Scale bar is 10 lm. (b) Pearson’s correlation
plot is shown for patient iPSC-derived ECs based on the whole transcriptome sequenced from the patients, clones, and haplotypes indicated at right. Dendrogram indicates
sample clustering; the color map is plotted between 0 and 1 as consistent with other figures. (C) Independent of patient and clonality, a 3D PCA plot is shown for transcrip-
tomes from R/R WT (red) and R/R KO (yellow) ECs. Individual samples are shown as smaller spheres, whereas sample averages are indicated by a larger sphere noting its
linkage via identically colored lines. The contribution of each PCA axis is noted alongside the axis itself. (d) Volcano plot and (e) heatmap of 86 DEGs for transcriptomic com-
parisons of R/R WT (red) and R/R KO (yellow) ECs with p< 0.1. Colors indicate in which haplotype were the genes upregulated. Color map also indicates the strength of
expression in terms of fragments per kilobase of transcript per million (FPKM) mapped reads. (f) Top 20 gene ontological terms are plotted with their statistical significance and
colored based on their association to cardiovascular stress; open and closed arrowheads correspond to ontologies related to blood flow and forces and to inflammation,
respectively.
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does indicate modest haplotype clustering [Fig. 2(d)], TNFa treatment
resulted in fewer DEGs when comparing WT to KO cells [Fig. 2(e),
red] to the same comparison with untreated cells; there were no statis-
tically significant GO terms with this dataset. The lack of

transcriptional changes with TNFa treatment while simultaneously
having observed permeability changes suggested that regulation by the
haplotype might not be transcriptional, unlike what we previously
observed in other cell types when stressed.11,12 Since prior studies

FIG. 2. Inflammatory cytokine impact on the EC barrier function depends on risk haplotype. (a) Apparent permeability is plotted as a function of risk haplotype and the pres-
ence or absence of TNFa for 12 h at 1 ng/ml concentration. ����p< 0.0001 for indicated comparisons via one way ANOVA with multiple comparisons Tukey test. n¼ 18–24.
(b) Representative immunofluorescence images stained for ROS for the indicated risk haplotypes. At right, average cell intensity is quantified for n¼ 16–17 cell fields of view
over triplicate experiments for R/R WT and KO, respectively. ��p< 0.01 for indicated comparisons via the unpaired t-test. (c) Pearson’s correlation plot is shown based on the
whole transcriptome sequenced from patient iPSC-derived ECs treated with TNF and of the haplotypes indicated at right. Dendrogram indicates sample clustering; color map
is plotted between 0 and 1 as consistent with other figures. (d) A 2D PCA plot is shown for transcriptomes from R/R WT (red) and R/R KO (yellow) ECs; patient origin is noted
by an outline around each data point. The contribution of each PCA axis is noted alongside the axis itself. (E) Mean transcript expression is plotted as a function of the log ratio
of change between WT and KO for all transcripts. Data in red represent genes with statistically significant (p< 0.1) differential expression based on DESeq2.
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examined mechanical stresses, we next sought to understand how and
to what extent iPSC-ECs respond in a more physiologically relevant
niche to fluidic stress.

Acute shear stress impairs iPSC-EC function via
haplotype-based transcriptome regulation

Endothelial cells are constantly exposed to shear stress in vivo.
Under these conditions, the increased susceptibility to CAD due to
9p21 risk SNPs in vivo22–24 and subsequent mechanisms may be more
pronounced in iPSC-ECs when exposed to shear stress. Thus, we con-
structed a microfluidic device consisting of a single-channel 3D micro-
vessel [Fig. S3(A)], which exposes cells to laminar shear stress based on
Poiseuille flow.25 iPSC-ECs were seeded within the media-filled colla-
gen scaffold and allowed to form a monolayer within the microvessel
channel under <1 dynes/cm2 fluid flow [Figs. 3(a) and 3(a0);
Figs. S3(B)–S3(D)]; this simple design enabled us to perfuse vessels
with 70 kD fluorescent dextran and measure apparent permeability in
3D via radial diffusion through the microvessel monolayer outwards to
the lumen [Fig. S3(E)]. For iPSC-ECs derived from R/R WT and
R/R KO lines, we measured permeabilities when exposed to a range
from 1, 30, 60, or 100 dynes/cm2 for 24 h. Overall, both risk haplotype
and shear stress were statistically significant variables by two-way anal-
ysis of variance (ANOVA) (p< 0.0001). More specifically, at physio-
logical shear (<30 dynes/cm2),26–28 apparent permeability was
significantly increased for the risk haplotype compared to their KO iso-
genic counterpart microvessels. However, permeability was insensitive
to changes in shear in this range [Fig. 3(b)]. On the other hand, above
30 dynes/cm2, apparent permeability increased more at intermediate
shear for R/R WT than their isogenic counterpart R/R KO cells
[Fig. 3(b0)]; in this pathological shear range for CAD,28 monolayer
integrity was lost [Fig. S3(F)]. Much above this range at 100 dynes/cm2,
apparent permeability differences were lost (p¼ 0.99) as was monolayer
integrity for both haplotypes. These data suggest that the microvessels
of risk haplotype are more susceptible to vessel dysfunction at patholog-
ical shear but that deletion of the haplotype rescues the phenotype.

To determine the transcriptional changes associated with the
onset of risk haplotype dysfunction, we performed RNA-sequencing
on iPSC-ECs exposed to 30 dynes/cm2, which is the point of patholog-
ical shear onset for CAD,28 where we observed significant differences
in permeability despite having an intact monolayer (avoiding selection
bias). A Pearson correlation plot of the entire transcriptome under
acute shear showed stronger clustering by patient and clone than hap-
lotype [Fig. 3(c)] vs static conditions. However, when clustering by
haplotype alone in a 3D PCA plot and unlike with static conditions,
we still observed substantial separation based on the entire transcrip-
tome [Fig. 3(d)]. These data suggest that shear stress actives haplotype
regulation on the transcriptome. What could result from such regula-
tion is an increase in the number of DEGs between WT and KO cells;
thus, we also examined DEGs under shear, defined here as an adjusted
p-value of 0.1 and an expression difference of>2-fold. With these cut-
offs, we detected 135 DEGs between WT and KO cells as a result of
shear (supplementary Table 3). The number of DEGs when cultured
with shear is nearly 10-fold higher [Fig. 3(e)] than without.

To investigate potential shear-mediated haplotype-specific mech-
anism, we next plotted the most significant gene ontological terms by
Fisher’s exact test, finding that of the top terms, those associated with
extracellular matrix (ECM) and cell adhesion were most abundant

[Fig. 4(a); supplementary Table 4], suggesting that loss of monolayer
integrity at even higher shear could be a result of haplotype-specific
transcriptional silencing of cell adhesion receptors. To further confirm
the effects of shear on adhesion and ECM and eliminate underlying
variance from the haplotype alone, we compared transcriptome differ-
ences between isogenic WT and KO pairs in shear and static condi-
tions. As shown in Fig. 4(b), overall variance was greater with shear,
hence the elongated distribution. Genes differentially expressed in the
shearedWT/KO ratio (red) tended to show larger and more numerous
effects than in static conditions (blue). This was especially pronounced
for transcripts associated with adhesion and ECM (green outlined
data); genes within these ontologies largely changed from down- to
up-regulated with shear, perhaps to counteract haplotype effects
resulting in monolayer loss. However, to interpret these data in a net-
work context, we next mapped isogenic WT and KO pairs in shear vs
static conditions onto common CAD pathways present in ingenuity
pathway analysis (IPA). A diagram of signaling connections [Fig. 4(c)]
illustrates potential haplotype signals; pathways that positively regulate
cell adhesion appear to increase with shear in KO cells (green),
whereas those that negatively regulate cell adhesion appear increased
in WT cells (pink). Therefore, we performed a comparison of these
data to known CAD genes identified from meta-analyses, e.g., the
CARDIoGRAMplusC4D consortium29 as well as others.30,31 From
these studies, 91 genes associated with 88 loci are suggested to be dys-
regulated in CAD. Genes differentially expressed in the presence of the
risk haplotype, that appeared to be shear-sensitive, and that overlap
with CAD-associated genes were found on multiple chromosomes
indicating wide haplotype regulation; in general, weakly upregulated
genes in static conditions for R/R KO reversed and became more
strongly upregulated in R/RWT under shear [Fig. 4(d); supplementary
Table 5]. In addition to global CAD risk activation upon exposure to
pathologically high shear, several CAD-associated genes were found in
both static and shear conditions with opposing expression. TNS1 and
CAMSAP2 [Fig. 4(d), red], for example, relate to cellular mechanical
functions such as cytoskeletal stability, which aligns with previous
ontologies and IPA. With several transcriptional indicators of cyto-
skeletal response to shear stress, we sought to confirm their influence
on function via shear assays in a converging parallel plate flow cham-
ber. This assay applies a family of shear stress (Fig. S4) to cells to deter-
mine the shear stress at which 50% of population detaches from the
coverslip, i.e., s50. Consistent with transwell assays, N/N WT and R/R
KO were more adherent than their R/R WT counterpart that contains
the risk locus [Fig. 5(a)]. When treated with nocodazole to perturb
microtubule assembly, N/N WT and R/R KO cells detached from the
substrate at similar levels to R/R WT cells. Addition of blebbistatin
treatment to inhibit myosin contraction showed no significant changes
in s50 for the isogenic comparison of R/R WT and R/R KO cells,
though N/N WT cells had decreased adhesion [Fig. 5(b)]. These data
validate microtubule transcriptional changes and suggest that their
influence on downstream networks may be the likely drivers of
haplotype-specific functional differences. Overall, these data suggest
for the first time that mechanical regulation of endothelial cell function
could be haplotype-specific and modulated by high shear stress.

DISCUSSION

While correlations found with genome wide-association studies
have identified many SNPs related to disease,3,4 mechanisms for those
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in non-coding loci are not well understood, e.g., the non-coding 9p21
locus and risk of endothelial permeability and disease. Difficulties
could result from the linkage disequilibrium of the locus’ polymor-
phisms,5 multiple, overlapping disease risk factors,32 contradictory
behavior of animal models,9,33 or the requirement of a covariant
stressor.11,12 Here, we found that iPSC-derived endothelial monolayers
had increased apparent permeability under static conditions with the

risk haplotype and when stressed with an inflammatory cytokine.
More strikingly, when placed in a microvessel under high, acute shear
stress consistent with CAD,26–28 endothelial cells with the risk haplo-
type exhibited increased apparent permeability compared to KO cell
types in part because of the loss of monolayer integrity, similar to the
leaky vasculature observed clinically with CAD.34 Only at supra-
pathological shear stress,28 e.g., 100 dynes/cm2, did KO cell monolayer

FIG. 3. Exposure to acute shear reduces the EC barrier function for the Risk Haplotype. (a) Representative images of iPSC-ECs cultured in cylindrical vessels for 7 days and
stained for ZO1 (green), F-actin (red), VE-cadherin (yellow), and nuclei (blue). R/R WT (top) and R/R KO (bottom) are shown with the latter including an oblique view (A0) to
illustrate patency. (b) Apparent permeability, measured by dye exclusion assay, for R/R WT (red) and R/R KO (yellow) increases with acute exposure to shear. ����p< 0.0001
for shear and haplotype based on one way ANOVA with multiple comparisons Tukey test; ���p< 0.001 and ����p< 0.0001 for shear and haplotype comparison based on
two-way ANOVA with multiple comparisons Tukey test. Note that in panel B0 , the percent change in slope relative to maximum acute shear is plotted (i.e., the percent differ-
ence in the average values), highlighting the early onset of monolayer integrity loss as noted in Fig. S3F. n¼ 3–6 per haplotype and shear stress. (c) Pearson’s correlation plot
is shown for patient-derived iPSC-ECs based on the whole transcriptome sequenced of the haplotypes indicated at right. Dendrogram indicates sample clustering; color map is
plotted between 0 and 1 as consistent with other figures. (d) Independent of patient and clonality, a 3D PCA plot is shown for all transcriptomes from R/R WT (red) and R/R
KO (yellow) ECs cultured in the vessel geometry for 6 days followed by acute shear stress for 24 h. Individual samples are shown as smaller spheres, whereas sample aver-
ages are indicated by a larger sphere noting its linkage via identically colored lines. The contribution of each PCA axis is noted alongside the axis itself. (e) Volcano plot of 135
DEGs for transcriptomic comparisons of R/R WT (red) and R/R KO (yellow) ECs identified by DeSeq2 with an adjusted p-value threshold of 0.1. Colors indicate in which haplo-
type were the genes upregulated.
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lose integrity and approach the same permeability as their risk WT
counterparts. Detailed analyses of known CAD genes29–31 and path-
ways further implicate adhesion changes as a potential mechanism for
haplotype-mediated changes. These results suggest that mechanical
stress pathway(s) can induce EC dysfunction more than inflammatory
cytokine TNFa and that shear stress causes dysfunction in a
haplotype-dependent manner via modulating cell-cell and cell-ECM
adhesion gene expression. Alongside our prior work,12 these data are
generally supportive of the framework where environmental

interactions act in concert with genetic variants to induce iPSC-
derived progeny responses similar to in vivo assays, which may be
impractical or impossible in common laboratory animals.7–9

The effects from both excessive wall shear stress and inflamma-
tion are well known in CAD, e.g., EC barrier function is highly suscep-
tible to inflammatory cues.17 For the 9p21 locus, cytokines such as
TNFa and IL-6 are higher in patients with the risk haplotype.35

Interferon signaling is also a known regulator of this locus’ activity,5

which implies that in the presence of the risk haplotype, CAD

FIG. 4. Shear-mediated haplotype regulation affects adhesion and CAD transcriptional signatures. (a) Top 20 statistically significant GO terms for the R/R WT vs KO compari-
son from the TopGO library. Terms associated with ECM (yellow) and adhesion (red) are indicated. (b) Scatter plot is shown for the log2 fold change of the R/R WT to KO ratio
for each transcript of iPSC-ECs from sheared and static conditions. Black data points indicate non-DEGs, blue indicates DEGs for static only, and red indicates DEGs for shear
only. Data points outlined in green represent those associated with ECM or adhesion GO terms. (c) Ingenuity analysis identified several differentially expressed genes in signal-
ing pathways linked to CAD via the IPA database. Coloring of gene nodes indicates upregulated expression relative to R/R WT (red) or R/R KO (green). CAD associated genes
via IPA database and previous literature are shown with purple highlighted outline. (d) Heatmaps showing gene expression for non-zero genes whose loci have been linked to
CAD via the CARDIoGRAMplusC4D study. Values shown were computed by DESeq2’s median of ratios. Top heatmaps show statistically significant CAD associated genes
between R/R WT (red) and KO haplotypes (yellow). Bottom heatmaps show expression of the other genes identified from the CARDIoGRAMplusC4D study (bottom). Genes
sorted into the top heatmaps had p< 0.1 for unpaired t-tests. Left and right heatmap columns are for iPSC-ECs under static or acutely sheared conditions, respectively. DEG
names are shown to the right of top heatmaps with red highlighting, indicating common genes between conditions.
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progression might also occur indirectly via transcriptional regulation.
Conversely, CAD risk factors also include the presence of turbulent
flow or high magnitude oscillatory flow,20 both of which can damage
the endothelium.19 Until this study, however, it was unclear if high
wall shear stress could regulate the activity of a non-coding locus in
and of itself and similarly influence cell function. Here, we found that
not only was the TNFa effect marginal on iPSC-derived ECs, it was
insensitive to the risk haplotype; but also minor differential transcrip-
tional regulation was detected as a function of haplotype. However,
significant functional and transcriptional changes occurred when cells
were perfused slowly in a microvessel model for an extended period
and then exposed to acute, high wall shear stress. The implication
from these data is that transcription changes with shear mirror some

gene activation patterns found in the meta-analyses of CAD transcrip-
tional differences.29–31

High shear flow resulted in increased EC permeability and
diminished monolayer integrity, which are clinical hallmarks of dis-
ease.28,36 At shear stresses just prior to EC detachment, we found a
switch from down- to up-regulation of a subset of cell adhesion genes,
perhaps to counteract haplotype-specific loss of cell-cell regulators,
e.g., risk WT cells exhibited a 25-fold reduction in vascular cell adhe-
sion molecule (VCAM). Indeed, both IPA and GO analyses showed
knockout cells expressing pathways related to contractility, cell-cell
adhesion, and ECM; conversely, the risk haplotype expressed inhibi-
tory pathways. Although a 9p21-specific relationship with shear and
adhesion has not been previously documented, stress-mediated mono-
layer disruption in ECs has been noted both in vitro and in vivo11,16,19

and suggests some fidelity between model observations and clinical
presentation. We also found that modulation of microtubule assembly
caused haplotype-specific loss of adhesion and monolayer disruption
under shear stress, e.g., R/R WT, and literature suggests that this could
hinder flow-induced dilation of artery vessel.37,38 In parallel, cytokines
are classically known to activate endothelial cell expression of leuko-
cytes adhesion receptors,39 which facilitates their migration into subin-
timal spaces. We observed similar changes in risk WT ECs, albeit
when exposed to acute shear stress. Leukocyte infiltration can be
extremely detrimental to established disease,36,39 hence concern from
a 13-fold upregulation of integrin aL with risk haplotype. When pre-
sent, leukocyte signals40 have even mirrored the cell erosion observed
here at high shear stress. In addition, AP-1 or NF-kB binding mecha-
nisms—pathways identified to be related to the significantly different
biomechanical cell structures, notably here in microtubules and adhe-
sion—have been found to be influenced by several other genetic var-
iants.41 Differential endothelial enhancer activity in response to
unidirectional shear has also been found to correlate with GWAS iden-
tified risk loci SNPs at 1p32.3, which mirror the endothelial mechani-
cal deficits found in the R/R WT ECs.42 With this in mind, there is a
high likely hood that the genotypic expression discrepancies in the R/
R WT ECs caused by the risk haplotype presence are related to the
mechanotransduction deficits of adhesion response to fluidic shear.
Thus, adhesion modulation appears in multiple mechanisms of CAD,
and 9p21 could play a part in that mechanism.

Finally, the combination of iPSC-derived ECs and a 3D micro-
vessel model afforded us a unique opportunity to study the 9p21.3
haplotype in a more appropriate setting in vitro; as previously noted,
particular loci are found only in evolutionary relatives of humans and
not in common laboratory species,7,8 complicating disease models.
Patient-derived iPSCs have been used as an alternative,10 but standard
culture conditions may not induce the regulation one intends to study
owing to a locus’ variable penetrance or its indirect effects on disease.43

Conversely, significant effort over the past two decades has resulted in
a wide variety of biomaterials and fabrication methods to create the
appropriate context in which to test a hypothesis about genetic regula-
tion of disease. Our own recent evidence suggests that microenviron-
mental changes are necessary, e.g., stiffening of the niche,12 to induce
expression of lncRNA in the risk haplotype. Only at that point does
their presence cause asynchronous contraction of iPSC-derived cardio-
myocytes. Similar time-dependent stiffness changes can induce subtle
but more physiologically appropriate initiation of epithelial-to-
mesenchymal transition44,45 or loss of progenitor cell potency.46

FIG. 5. Haplotype regulates adhesion via microtubule cytoskeleton. (a) Plot of cell
density vs fluid shear stress for each iPSC-EC haplotype measured in the converg-
ing parallel plate flow chamber. Data are shown from individual chambers and multi-
ple technical replicates of the same cell line. Lines in the plot indicate sigmoidal fits
of the data to determine s50, the shear stress where 50% of the cells detach. (b)
The effect of microtubule depolymerizing drug nocodazole (þNoco) and myosin
inhibitor blebbistatin (þBleb) on s50 is plotted for the indicated haplotypes.
�p< 0.05, ��p< 0.01, ���p< 0.001, and ����p< 0.0001 for drug comparisons
within each haplotype based on one way ANOVA with multiple comparisons Tukey
test.
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The microfluidic vessel used in this study similarly induced haplotype
regulation upon exposure to acute, high shear stress. However, CAD
flow patterns are exceedingly complex28,36 and further refinement of
our model, e.g., inclusion of varied flow patterns such as unstable flow,
disturbed flow, or pulsatile flow, or variations in vessel geometry such
as in flow separation or vessel bifurcations to emulate atherogenic fac-
tors could better refine our system further and perhaps uncover addi-
tional regulation of the niche on the risk haplotype.

METHODS
Endothelial cell (EC) differentiation

iPSCs were differentiated into ECs using an established proto-
col21 [Fig. S1(B)]. Briefly, iPSCs were plated at densities ranging from
32 000 to 52 000 cells/cm2 on day 0. Cell media was then changed to
N2B27þCHIR media on day 1. Cell media was changed to Stempro
þ Forskolin þ VEGF on day 4. Cell media was again changed on
day 5. Cells were sorted on day 6 using flow assisted cell sorting
(FACS) for VE-Cadherin immunostaining and plated for 7 days for
endothelial maturity.

Immunofluorescence imaging

Cells were immersed in an ionic solution of 1mM MgCl2 and
0.1% (w/v) Saponin for the duration of the immunostaining. Between
each step, the sample was washed three times with 1mMMgCl2 solu-
tion. Cells were introduced to only 0.1% (w/v) Saponin for 15min
before blocking with 2% goat serum solution for 30min. Primary anti-
body solution was added into saponin and goat serum solution as
noted before added to the sample for 2 h. These antibody solutions
include VE-Cadherin 1:100 concentration (cell signaling D8752) and
ZO1 1:200 (Abcam 221546). Secondary fluorescent antibodies were
added 1:1000 to the samples in the goat serum þ saponin solution for
45min at room temperature. Additionally, rhodamine phalloidin may
be added for actin visualization. DAPI dye was then added to the sam-
ple for 3min at a 1:400 dilution. The sample was then prepared using
fluoromount on a microscope slide for imaging [Fig. 1(a)]. Cells were
imaged using Zeiss 780 confocal microscope.

Circularity analysis

Endothelial cells were stained using immunofluorescent staining
techniques described earlier. Samples were imaged using Zeiss 780
confocal microscope. Cell area and perimeter were measured using
ImageJ software. Circularity was calculated using the cell area and
perimeter measured [Fig. 1(b)].

ROS detection assay

Mature and confluent endothelial monolayers were washed twice
with PBS before being immersed in a 5lM dihydroethidium solution at
37 �C for 20min. Samples were then washed twice with 1mM MgCl2
solution before being fixed using 10% formaldehyde solution. Samples
were then mounted and imaged as described above [Fig. 2(c)]. Cell
nuclei intensity was then measured using ImageJ software.

Dye exclusion assay

iPSC-derived endothelial cells were cultured on a transwell per-
meable support for 6 days. On the sixth day, cells were serum starved

for 24 h before the start of the assay. In some sample groups, TNFa
was added to the solution at 1 ng/ml in serum starve conditions 12 h
before assaying. A 24-well plate fitting the corresponding permeable
transport was filled with 600ll media solution for each well for each
time point and permeable support. The top compartments of each
permeable support were replaced with new media at the start of the
assay also containing 0.2mg/ml 70 kDa FITC-Dextran at the start of
the assay. Over a period of one hour at 15-min intervals, the permeable
support containing confluent endothelial cells was transferred from
one well to a new well. Samples of each time point and each permeable
support were then transferred to a 96 well plate for imaging in a
Syngery 4 multi-mode microplate reader [Fig. 2(a)]. Using a FITC-
Dextran standard, mass diffused over time and apparent permeability
were calculated.

RNA isolation

Cells were lysed with Trizol. Chloroform was added 1:5 to trizol
and moved to Eppendorf microcentrifuge tubes. Samples were then
spun down at 14 000 rpm for 15min using an Eppendorf centrifuge
5424R. Aqueous solution separated during centrifugation was
removed from the top of samples and mixed 1:1 with isopropanol and
made to sit for 10min at 4 �C before centrifugation at 14 000 rpm for
10min. The sample supernatant was then removed and replaced with
75% ethanol with diethylpyrocarbonate (DEPC) water before centrifu-
gation at 11 000 rpm for 5min. The supernatant was once again
removed and the sample-containing Eppendorf tubes allowed to dry
for 10min. Sample pellets were then resuspended in DEPC water, and
the RNA concentration was calculated using a Thermofisher
Nanodrop 2000C. In the event of having small cell quantities to work
with, a Qiagen miRNeasy kit was used for RNA extraction. The kit
protocol was followed as instructed.

Quantitative Polymerase Chain Reaction (PCR)

Cell-isolated RNA was made into cDNA for quantitative PCR
analysis using the invitrogen superscript III reverse transcriptase kit.
cDNA was aliquoted into a 384-well plate according to the number of
primers being used and a mixture of primers, DEPC water, and power
SYBR green PCR master mix was added to each sample aliquot. This
384-well plate was then read in the BioRad CFX 384 touch real-time
PCR detection system.

Creation of microvessel model

Glass-bottom petri dishes were used as the frame of the devices
in a process outlined in Fig. S3. Holes of 0.64 and 1.27mmwere drilled
into opposite sides of the petri dishes, directly above the bottom of the
petri dish and perpendicular to the petri-dish wall. Blunt-end pins of
23G and 18G (0.25 in.0) were fit snugly into the drilled holes, making
sure to not allow for unusual cracks or holes. A steel cylinder was then
fit from one end of the petri dish to the other through the blunt end
pins. PDMS with ratio of crosslinker 1:10 elastomer was then poured
to fill the modified dish and allowed to solidify. PDMS was degassed
prior to addition to the mold to ensure smooth interface. After the
PDMS had solidified, PDMS was removed from the center of the mod-
ified dish using a scalpel according to the desired chamber dimensions.
The blunt-end pins were allowed to extend beyond the wall of the
chambers to disperse pressure away from the collagen-PDMS interface
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and instead further into the collagen gel and the lumen. The gel cham-
ber is cleaned to remove any small PDMS residue. The seal of the bot-
tom glass and the petri-dish were ensured intact and unbroken.
Freshly made PDMS is then poured into a petri-dish lid according to
the volume of the intended gel chamber, being sure to not create bub-
bles. The modified dish is then inverted and placed over the fresh
PDMS in the lid to seal the gel chamber. The PDMS was not allowed
to rise to the blunt-end pin openings of the gel chamber in order to
allow for unobstructed inlet and outlets of the gel chamber. The modi-
fied dish is then allowed to rest for at least two days.

To create the gel scaffold within the microfluidic devices, all com-
ponents, including the PDMS-dish case, the blunt-end pins, and any
other framework supports, such as the microfluidic stand, were steril-
ized. The blunt-end pins were then fit into the appropriately sized
holes in the PDMS-dish case. Any introduction of liquid to the device
was then added via leur-lock syringe through the inlet only, which has
a smaller diameter than the outlet, to minimize pressures within the
gel chamber. The chamber is washed once with PBS and then coated
with 0.1mg/ml poly-D-lysine for 5min before being washed out with
PBS. This is set to dry overnight.

Type 1 collagen gel was used for the gel scaffolding for all experi-
mentations within the microfluidic device. For a 6mg/ml concentra-
tion collagen gel, 1 M NaOH at 0.024 the volume of collagen and 10�
PBS at 0.1 the total volume were mixed together in a small petri dish
on ice. Type 1 collagen gel, chilled on ice, was mixed well into the
NaOH and PBS mixture until uniformity, avoiding bubble formations.
Deionized water was added and mixed to fill the remaining total vol-
ume. The finished type 1 collagen gel mixture was then syringed into
the microfluidic device from the inlet slowly, allowing for minimal
bubble formation but before warming of the gel occurs, until the entire
gel chamber is filled and halfway into the outlet blunt-endpin. A thin
steel cylinder of 340lm diameter was then inserted through the inlet,
and the outlet was then gently sealed with a male leurlock plug. The
device was then heated at 37 �C in an incubator with the outlet side up
for 2 h for gel solidification. 2 h after solidifying, the microfluidic
device was removed from the incubator and the thin steel cylinder was
removed gently from the device. The channel was then inspected for
any obstructions and flow tested from outlet to inlet. The collagen gel
is then crosslinked with a 20mM genipin solution for 2 h at 37 �C.
After 2 h, the microfluidic device was washed with PBS at room tem-
perature. The device was washed with PBS overnight at room temper-
ature to remove any residual genipin solution.

Preparation and use of microvessel model

After overnight PBS wash, the microfluidic devices were coated
along the lumen of the collagen scaffold with 0.1lg/ml fibronectin for
greater cell attachment during seeding [Fig. S3(C)]. Each side was
coated for an hour with fibronectin solution for even distribution on
all sides of the microfluidic channel. With coating complete, the
microfluidic device was perfused overnight with EGM2 media at room
temperature to allow for displacement of PBS-scaffold liquid for cell
nourishing media.

To seed cells into the microfluidic device, a device was placed at
37 �C in an incubator 30minutes before seeding to warm up the media
and device. Endothelial cells were lifted and prepared in solution at 10
� 106 cells/ml in EGM2. 8ll of cell solution was then pipetted into
the device through the inlet, allowing for the cell solution to flow

through and into the lumen of the device, and then the microfluidic
device was placed in the incubator for 5min. After incubation, the
device was reseeded with another 8ll of cell solution again and placed
on another side of the device for 5min in the incubator, and continu-
ing for the other side and top of the device. This allowed for even dis-
tribution of cells along all sides of the device. After seeding all four
sides of the device (top, sides, bottom), the microfluidic device was
placed in the 37 �C incubator to allow for cells to strengthen attach-
ment. One hour later, fresh media was added to the microfluidic
device. 10 hours later, the microfluidic devices were connected to a
peristaltic pump for long term perfusion. Media reservoirs were
changed with fresh media every 2 days.

Microvessel permeability assay

On the sixth day of pump perfusion, the microfluidic shear is
increased to the desired shear stress magnitude and held for 24 h.
After perfusion, microfluidic devices were gently removed from the
pump and attached to a microscope slide. The microfluidic device was
then mounted on the microscope platform of a Zeiss 780 confocal
microscope. The image area was centered on the channel to allow for
observation of diffusion. The microfluidic device was then perfused at
approximately 0.4ll per minute with 0.2mg/ml 70 kDa FITC-
Dextran dye in EGM2 media over 30min, with fluorescent images
taken every 2-min [Fig. S3(E)]. The fluorescent intensity of a consis-
tently standardized area around the microfluidic channel is then mea-
sured for each image using ImageJ software. Change in fluorescence
intensity is calculated over time, which is then used to calculate appar-
ent permeability of the microfluidic device based on channel
dimensions.

Converging parallel plate flow chamber

Geometry of the flow chamber was cut in Teflon tape sheets
using the Silhouette Cameo 4 desktop cutter. Teflon tape designed
cuts were then attached to glass slides and sterilized for cell seeding.
iPSC-derived endothelial cells were cultured on Teflon taped glass
slides for 6 days. On the sixth day, cells were serum starved for 12 h
before the start of the assay. In some sample groups, nocodazole or
blebbistatin was added to the solution at 0.66 or 10lM, respectively,
in serum starve conditions. The plates were inserted into the converg-
ing parallel plate by fitting the glass slide into a silicone gasket and
sealing the flow chamber using screws. Before images of the glass slides
were taken under phase contrast before attaching the sealed flow
chamber to a peristaltic pump for shearing, glass slides were sheared
for 5min using a PBS 4.5mg/ml dextrose solution at 37 �C at the des-
ignated shear values before taking after images of the glass slides. The
cellular detachment of each glass slide can then be calculated by the
area coverage lost from the before to after images using ImageJ
software.

RNA sequencing

Isolation of RNA was conducted as described above. Samples
were submitted to UCSD Institute for Genomic Medicine Sequencing
Core. Total RNA was assessed for quality using an Agilent Tapestation
4200, and samples with an RNA Integrity Number (RIN) greater than
8.0 were used to generate RNA sequencing libraries using the TruSeq
stranded mRNA sample prep kit with TruSeq unique dual indexes
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(Illumina, San Diego, CA). Samples were processed following manu-
facturer’s instructions, modifying RNA shear time to 5 min. Resulting
libraries were multiplexed and sequenced with 100 basepair (bp)
paired end reads (PE100) to a depth of approximately 25 � 106 reads
per sample on an Illumina NovaSeq 6000. Samples were demulti-
plexed using bcl2fastq v2.20 conversion software (Illumina, San Diego,
CA). Analysis was conducted using STAR, R, DeSeq2, and python
software.

Statistics

All experiments were performed using cells from three distinct
differentiations with the number of technical replicates, n, indicated
where appropriate. Bar graphs and scatter plots with individual data
are represented as mean6 standard deviation. Statistical analyses were
performed using GraphPad Prism5, the threshold for significance level
at p< 0.05, unless otherwise noted, and are detailed in the correspond-
ing figure legends.

SUPPLEMENTARY MATERIAL

See the supplementary material for four figures, which further
detail haplotype differences between lines and outline the methods
used for the microfluidic vessel-in-a-dish and the converging parallel
plate flow chamber models. Five supplemental tables are provided to
list the differentially expressed genes (DEGs) and gene ontological
(GO) terms from bulk RNA-sequencing of WT vs KO haplotype com-
parisons of differentiated iPSC-derived ECs with and without shear
stress. Tables also list CAD-associated genes not dysregulated by the
risk haplotype.
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