243 research outputs found

    Mediators and biomarkers of inflammation in meningitis: Cytokine and peptidome profiling of cerebrospinal fluid

    Get PDF
    © 2016, Pleiades Publishing, Ltd.Differential diagnosis of bacterial and viral meningitis is an urgent problem of the modern clinical medicine. Early and accurate detection of meningitis etiology largely determines the strategy of its treatment and significantly increases the likelihood of a favorable outcome for the patient. In the present work, we analyzed the peptidome and cytokine profiles of cerebrospinal fluid (CSF) of 17 patients with meningitis of bacterial and viral etiology and of 20 neurologically healthy controls. In addition to the identified peptides (potential biomarkers), we found significant differences in the cytokine status of the CSF of the patients. We found that cut-off of 100 pg/ml of IL-1β, TNF, and GM-CSF levels discriminates bacterial and viral meningitis with 100% specificity and selectivity. We demonstrated for the first time the reduction in the level of two cytokines, IL-13 and GM-CSF, in the CSF of patients with viral meningitis in comparison with the controls. The decrease in GM-CSF level in the CSF of patients with viral meningitis can be explained by a disproportionate increase in the levels of cytokines IL-10, IFN-γ, and IL-4, which inhibit the GM-CSF expression, whereas IL-1, IL-6, and TNF activate it. These observations suggest an additional approach for differential diagnosis of bacterial and viral meningitis based on the normalized ratio IL-10/IL-1β and IL-10/TNF > 1, as well as on the ratio IFN-γ/IL-1β and IFN-γ/ TNF < 0.1. Our findings extend the panel of promising clinical and diagnostic biomarkers of viral and bacterial meningitis and reveal opposite changes in the cytokine expression in meningitis due to compensatory action of proand antiinflammatory factors

    Mechanisms of the noxious inflammatory cycle in cystic fibrosis

    Get PDF
    Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis

    Airborne DNA reveals predictable spatial and seasonal dynamics of fungi.

    Get PDF
    Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5

    Continuous Flow Reactor for the Production of Stable Amyloid Protein Oligomers

    Full text link
    The predominant working hypothesis of Alzheimer's disease is that the proximate pathologic agents are oligomers of the amyloid β-protein (Aβ). "Oligomer" is an ill-defined term. Many different types of oligomers have been reported, and they often exist in rapid equilibrium with monomers and higher-order assemblies. This has made formal structure-activity determinations difficult. Recently, Ono et al. [Ono, K., et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 14745-14750] used rapid, zero-length, in situ chemical cross-linking to stabilize the oligomer state, allowing the isolation and study of pure populations of oligomers of a specific order (number of Aβ monomers per assembly). This approach was successful but highly laborious and time-consuming, precluding general application of the method. To overcome these difficulties, we developed a "continuous flow reactor" with the ability to produce theoretically unlimited quantities of chemically stabilized Aβ oligomers. We show, in addition to its utility for Aβ, that this method can be applied to a wide range of other amyloid-forming proteins

    Moose and snowshoe hare competition and a mechanistic explanation from foraging theory

    Full text link
    Moose ( Alces alces ) and snowshoe hare ( Lepus americanus ) appear to compete with each other. This was determined using the “natural experiments” of populations found in sympatry and allopatry on islands at Isle Royale National Park, Michigan, and manipulated exclosures. The population densities from these areas are fit to a series of competition models based upon different competitive mechanisms (Schoener 1974a), using non-linear regression techniques. A model of competition for food where the food can be separated into exclusively used and shared categories is found to predict observed densities of moose and hare best. Finally, the competition model's parameters (fraction of food shared and competition coefficients) are shown to agree with values predicted independently from a foraging model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47750/1/442_2004_Article_BF00396753.pd

    Toward Developing Models to Study the Disease, Ecology, and Evolution of the Eye in Mollusca*

    Full text link

    Airborne DNA reveals predictable spatial and seasonal dynamics of fungi

    Get PDF
    Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms

    Luther, Karl Theodor Robert

    No full text
    corecore