74,998 research outputs found
Inhomogeneous Shadowing Effects on J/\psi Production in dA Collisions
We study the effect of spatially homogeneous and inhomogeneous shadowing on
production in deuterium-nucleus collisions. We discuss how the
shadowing and its spatial dependence may be measured by comparing central and
peripheral collisions. These event classes may be selected by using gray
protons from heavy ion breakup and events where the proton or neutron in the
deuterium does not interact. We find that inhomogenous shadowing has a
significant effect on central collisions, larger than is observed in
central collisions. The inhomogeneity may be measured by comparing the
rapidity dependence of production in central and peripheral
collisions. Results are presented for Au collisions at
GeV and Pb collisions at TeV.Comment: 10 pgs with 3 figure
Towards precision distances and 3D dust maps using broadband Period--Magnitude relations of RR Lyrae stars
We determine the period-magnitude relations of RR Lyrae stars in 13
photometric bandpasses from 0.4 to 12 {\mu}m using timeseries observations of
134 stars. The Bayesian formalism, extended from our previous work to include
the effects of line-of-sight dust extinction, allows for the simultaneous
inference of the posterior distribution of the mean absolute magnitude, slope
of the period-magnitude power-law, and intrinsic scatter about a perfect
power-law for each bandpass. In addition, the distance modulus and
line-of-sight dust extinction to each RR Lyrae star in the calibration sample
is determined, yielding a sample median fractional distance error of 0.66%. The
intrinsic scatter in all bands appears to be larger than the photometric
errors, except in WISE W1 (3.4 {\mu}m) and W2 (4.6 {\mu}m) where the
photometric error ( mag) is to be comparable or larger
than the intrinsic scatter. Additional observations at these wavelengths could
improve the inferred distances to these sources further. As an application of
the methodology, we infer the distance to the RRc-type star RZCep at low
Galactic latitude () to be mag
( pc) with colour excess mag. This
distance, equivalent to a parallax of microarcsec, is consistent
with the published HST parallax measurement but with an uncertainty that is 13
times smaller than the HST measurement. If our measurements (and methodology)
hold up to scrutiny, the distances to these stars have been determined to an
accuracy comparable to those expected with Gaia. As RR Lyrae are one of the
primary components of the cosmic distance ladder, the achievement of sub-1%
distance errors within a formalism that accounts for dust extinction may be
considered a strong buttressing of the path to eventual 1% uncertainties in
Hubble's constant.Comment: 21 pages, 29 figures, 2 tables, abstract abridged for arXiv. Comments
solicited on referee report (received June 9, 2014) linked:
https://gist.github.com/profjsb/c6c4e2f3a20ea02f1762 . Public archive of code
used to generate results and figures:
https://github.com/ckleinastro/period_luminosity_relation_fittin
Recent s from IceCube
IceCube is a 1 km neutrino detector now being built at the South Pole.
Its 4800 optical modules will detect Cherenkov radiation from charged particles
produced in neutrino interactions. IceCube will search for neutrinos of
astrophysical origin, with energies from 100 GeV up to eV. It will be
able to separate , and . In addition to detecting
astrophysical neutrinos, IceCube will also search for neutrinos from WIMP
annihilation in the Sun and the Earth, look for low-energy (10 MeV) neutrinos
from supernovae, and search for a host of exotic signatures. With the
associated IceTop surface air shower array, it will study cosmic-ray air
showers.
IceCube construction is now 50% complete. After presenting preliminary
results from the partial detector, I will discuss IceCube's future plans.Comment: Invited talk presented at Neutrino 2008; 7 page
The influence of season, photoperiod, and pineal melatonin on immune function.
In addition to the well-documented seasonal cycles of mating and birth, there are also significant seasonal cycles of illness and death among many animal populations. Challenging winter conditions (i.e., low ambient temperature and decreased food availability) can directly induce death via hypothermia, starvation, or shock. Coping with these challenges can also indirectly increase morbidity and mortality by increasing glucocorticoid secretion, which can compromise immune function. Many environmental challenges are recurrent and thus predictable; animals could enhance survival, and presumably increase fitness, if they could anticipate immunologically challenging conditions in order to cope with these seasonal threats to health. The annual cycle of changing photoperiod provides an accurate indicator of time of year and thus allows immunological adjustments prior to the deterioration of conditions. Pineal melatonin codes day length information. Short day lengths enhance several aspects of immune function in laboratory studies, and melatonin appears to mediate many of the enhanced immunological effects of photoperiod. Generally, field studies report compromised immune function during the short days of autumn and winter. The conflict between laboratory and field data is addressed with a multifactor approach. The evidence for seasonal fluctuations in lymphatic tissue size and structure, as well as immune function and disease processes, is reviewed. The role of pineal melatonin and the hormones regulated by melatonin is discussed from an evolutionary and adaptive functional perspective. Finally, the clinically significance of seasonal fluctuations in immune function is presented. Taken together, it appears that seasonal fluctuations in immune parameters, mediated by melatonin, could have profound effects on the etiology and progression of diseases in humans and nonhuman animals. An adaptive functional perspective is critical to gain insights into the interaction among melatonin, immune function, and disease processes
Characteristics of Cherenkov Radiation in Naturally Occuring Ice
We revisit the theory of Cherenkov radiation in uniaxial crystals.
Historically, a number of flawed attempts have been made at explaining this
radiation phenomenon and a consistent error-free description is nowhere
available. We apply our calculation to a large modern day telescope - IceCube.
Being located at the Antarctica, this detector makes use of the naturally
occuring ice as a medium to generate Cherenkov radiation. However, due to the
high pressure at the depth of the detector site, large volumes of hexagonal ice
crystals are formed. We calculate how this affects the Cherenkov radiation
yield and angular dependence. We conclude that the effect is small, at most
about a percent, and would only be relevant in future high precision
instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For
radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to
determine the arrival direction, any variation in emission angle will directly
and linearly translate into a change in apparent neutrino direction. In
closing, we also describe a simple experiment to test this formalism, and
calculate the impact of anisotropy on light-yields from lead tungstate crystals
as used, for example, in the CMS calorimeter at the CERN LHC
Recommended from our members
Bremsstrahlung and Pair Creation: Suppression Mechanisms and How They Affect EHE Air Showers
Most calculations of air shower development have been based on the Bethe-Heitler cross sections for bremsstrahlung and pair production. However, for energetic enough particles, a number of different external factors can reduce these cross sections drastically, slowing shower development and lengthening the showers. Four mechanisms that can suppress bremsstrahlung and pair production cross sections are discussed, and their effect on extremely high energy air showers considered. Besides lengthening the showers, these mechanisms greatly increase the importance of fluctuations in shower development, and can increase the angular spreading of showers
Role of dynamic capsomere supply for viral capsid self-assembly
Many viruses rely on the self-assembly of their capsids to protect and
transport their genomic material. For many viral systems, in particular for
human viruses like hepatitis B, adeno or human immunodeficiency virus, that
lead to persistent infections, capsomeres are continuously produced in the
cytoplasm of the host cell while completed capsids exit the cell for a new
round of infection. Here we use coarse-grained Brownian dynamics simulations of
a generic patchy particle model to elucidate the role of the dynamic supply of
capsomeres for the reversible self-assembly of empty T1 icosahedral virus
capsids. We find that for high rates of capsomere influx only a narrow range of
bond strengths exists for which a steady state of continuous capsid production
is possible. For bond strengths smaller and larger than this optimal value, the
reaction volume becomes crowded by small and large intermediates, respectively.
For lower rates of capsomere influx a broader range of bond strengths exists
for which a steady state of continuous capsid production is established,
although now the production rate of capsids is smaller. Thus our simulations
suggest that the importance of an optimal bond strength for viral capsid
assembly typical for in vitro conditions can be reduced by the dynamic influx
of capsomeres in a cellular environment.Comment: Revtex, 26 pages, 7 EPS figure
- …
