56 research outputs found

    Multimodal Retinal Vessel Analysis in CADASIL Patients

    Get PDF
    Purpose To further elucidate retinal findings and retinal vessel changes in Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients by means of high resolution retinal imaging. Methods 28 eyes of fourteen CADASIL patients and an equal number of control subjects underwent confocal scanning laser ophthalmoscopy (cSLO), spectral-domain optical coherence tomography (SD-OCT), retinal nerve fibre layer (RNFL) measurements, fluorescein and indocyanine angiography. Three vessel measurement techniques were applied: RNFL thickness, a semiautomatic software tool based on cSLO images and manual vessel outlining based on SD- OCT. Results Mean age of patients was 56.2±11.6 years. Arteriovenous nicking was present in 22 (78.6%) eyes and venous dilation in 24 (85.7%) eyes. Retinal volume and choroidal volume were 8.77±0.46 mm3 and 8.83±2.24 mm3. RNFL measurements showed a global increase of 105.2 µm (Control group: 98.4 µm; p = 0.015). Based on semi-automatic cSLO measurements, maximum diameters of arteries and veins were 102.5 µm (106.0 µm; p = 0.21) and 128.6 µm (124.4 µm; p = 0.27) respectively. Manual SD-OCT measurements revealed significantly increased mean arterial 138.7 µm (125.4 µm; p<0.001) and venous 160.0 µm (146.9; p = 0.003) outer diameters as well as mean arterial 27.4 µm (19.2 µm; p<0.001) and venous 18.3 µm (15.7 µm; p<0.001) wall thicknesses in CADASIL patients. Conclusions The findings reflect current knowledge on pathophysiologic changes in vessel morphology in CADASIL patients. SD-OCT may serve as a complementary tool to diagnose and follow-up patients suffering from cerebral small-vessel diseases

    Criteria for Blood Vessel Discrimination

    Get PDF
    Introduction The diagnostic potential of optical coherence tomography (OCT) in neurological diseases is intensively discussed. Besides the sectional view of the retina, modern OCT scanners produce a simultaneous top-view confocal scanning laser ophthalmoscopy (cSLO) image including the option to evaluate retinal vessels. A correct discrimination between arteries and veins (labeling) is vital for detecting vascular differences between healthy subjects and patients. Up to now, criteria for labeling (cSLO) images generated by OCT scanners do not exist. Objective This study reviewed labeling criteria originally developed for color fundus photography (CFP) images. Methods The criteria were modified to reflect the cSLO technique, followed by development of a protocol for labeling blood vessels. These criteria were based on main aspects such as central light reflex, brightness, and vessel thickness, as well as on some additional criteria such as vascular crossing patterns and the context of the vessel tree. Results and Conclusion They demonstrated excellent inter-rater agreement and validity, which seems to indicate that labeling of images might no longer require more than one rater. This algorithm extends the diagnostic possibilities offered by OCT investigations

    Comparison of standard versus wide-field composite images of the corneal subbasal layer by In vivo confocal microscopy

    No full text
    Purpose: To evaluate whether the densities of corneal subbasal nerves and epithelial immune dendritiform cells (DCs) are comparable between a set of three representative standard images of in vivo confocal microscopy (IVCM) and the wide-field mapped composite IVCM images. Methods: This prospective, cross-sectional, and masked study included 110 eyes of 58 patients seen in a neurology clinic who underwent laser-scanning IVCM (Heidelberg Retina Tomograph 3) of the central cornea. Densities of subbasal corneal nerves and DCs were compared between the average of three representative standard images and the wide-field mapped composite images, which were reconstructed by automated mapping. Results: There were no statistically significant differences between the average of three representative standard images (0.16 mm(2) each) and the wide-field composite images (1.29 +/- 0.64 mm(2)) in terms of mean subbasal nerve density (17.10 +/- 6.10 vs. 17.17 ± 5.60 mm/mm(2), respectively, P = 0.87) and mean subbasal DC density (53.2 +/- 67.8 vs. 49.0 +/- 54.3 cells/mm(2), respectively, P = 0.43). However, there were notable differences in subbasal nerve and DC densities between these two methods in eyes with very low nerve density or very high DC density. Conclusions: There are no significant differences in the mean subbasal nerve and DC densities between the average values of three representative standard IVCM images and wide-field mapped composite images. Therefore, these standard images can be used in clinical studies to accurately measure cellular structures in the subbasal layer

    Optical coherence tomography for the diagnosis and monitoring of idiopathic intracranial hypertension

    No full text
    The objectives of the study were to investigate the value of optical coherence tomography in detecting papilledema in patients with idiopathic intracranial hypertension (IIH), a disease which is difficult to monitor and which can lead to permanent visual deficits; to analyze retinal changes over time. In this non-interventional case-control study, spectral-domain optical coherence tomography (SD-OCT) was used to analyze the retinal and optic nerve head (ONH) morphology of 21 patients with IIH and 27 age- and sex-matched healthy controls over time. We analyzed the ONH volume using a custom-made algorithm and employed semi-automated segmentation of macular volume scans to assess the macular retinal nerve fiber layer (RNFL) and ganglion cell layer and inner plexiform layer complex as well as the total macular volume. In IIH patients, the ONH volume was increased and correlated with cerebrospinal fluid (CSF) pressure. The ONH volume decreased after the initiation of treatment with acetazolamide. The macular RNFL volume decreased by 5% in 3.5 months, and a stepwise multivariate regression analysis identified CSF pressure as the main influence on macular RNFL volume at diagnosis. The only factor predicting macular RNFL volume loss over time was ONH volume. SD-OCT can non-invasively monitor changes in retinal and ONH morphology in patients with IIH. Increased ONH volume leads to retinal atrophy in the form of macular RNFL volume loss, presumably due to mechanic jamming of the optic nerve at the disc and subsequent axonal loss

    Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density

    No full text
    BACKGROUND: Many studies in multiple sclerosis (MS) have investigated the retina. Little, however, is known about the effect of MS on the cornea, which is innervated by the trigeminal nerve. It is the site of neural-immune interaction with local dendritic cells reacting in response to environmental stimuli. OBJECTIVE: This study aims to investigate the effect of MS on corneal nerve fibres and dendritic cells in the subbasal nerve plexus using in vivo confocal microscopy (IVCM). METHODS: We measured the corneal nerve fibre and dendritic cell density in 26 MS patients and matched healthy controls using a Heidelberg Retina Tomograph with cornea module. Disease severity was assessed with the Multiple Sclerosis Functional Composite, Expanded Disability Status Scale, visual acuity and retinal optical coherence tomography. RESULTS: We observed significant reduction in total corneal nerve fibre density in MS patients compared to controls. Dendritic cell density was similar in both groups. Reduced total nerve fibre density was associated with worse clinical severity but not with previous clinical trigeminal symptoms, retinal neuro-axonal damage, visual acuity or disease duration. CONCLUSION: Corneal nerve fibre density is a promising new imaging marker for the assessment of disease severity in MS and should be investigated further

    A–D Combined simultaneous confocal scanning laser ophthalmoscopy (cSLO) and spectral-domain optical coherence tomography (SD-OCT).

    No full text
    <p><b>A–B</b> Infrared cSLO image centered on the optic disc of a healthy control subject (A) and a CADASIL patient (B). Green circle indicates the position of corresponding SD-OCT scan. Light green section inferiorly on the circle marks the localization of corresponding SD-OCT scan shown aside. <b>C–D</b> Magnified SD-OCT scans of healthy control subject (C) and CADASIL patient (D) show sections of major retinal vessels appearing as a group of heterogeneous reflectivities in a round-shaped configuration. Asterisks mark the inner and outer reflections of arterial vessel walls and diamonds indicate inner and outer reflections of venous vessel walls. Hyperreflectivities representing the vessel walls seem thicker and more accentuated in the CADASIL patient. Particularly in veins, demarcation of the inferior vessel wall (towards the retinal pigment epithelium) often remains challenging due to absorption effects also seen as acoustical shadow underneath the vessel (towards the retinal pigment epithelium). Note the typical hour-glass shaped configuration within the vessel lumen in both subjects. Lateral vessel walls cannot be visualized as OCT laser beam is not projected perpendicularly to them.</p
    corecore