11,176 research outputs found

    Eta Carinae across the 2003.5 Minimum: Analysis in the visible and near infrared spectral region

    Get PDF
    We present an analysis of the visible through near infrared spectrum of Eta Carinae and its ejecta obtained during the "Eta Carinae Campaign with the UVES at the ESO VLT". This is a part of larger effort to present a complete Eta Carinae spectrum, and extends the previously presented analyses with the HST/STIS in the UV (1240-3159 A) to 10,430 A. The spectrum in the mid and near UV is characterized by the ejecta absorption. At longer wavelengths, stellar wind features from the central source and narrow emission lines from the Weigelt condensations dominate the spectrum. However, narrow absorption lines from the circumstellar shells are present. This paper provides a description of the spectrum between 3060 and 10,430 A, including line identifications of the ejecta absorption spectrum, the emission spectrum from the Weigelt condensations and the P-Cygni stellar wind features. The high spectral resolving power of VLT/UVES enables equivalent width measurements of atomic and molecular absorption lines for elements with no transitions at the shorter wavelengths. However, the ground based seeing and contributions of nebular scattered radiation prevent direct comparison of measured equivalent widths in the VLT/UVES and HST/STIS spectra. Fortunately, HST/STIS and VLT/UVES have a small overlap in wavelength coverage which allows us to compare and adjust for the difference in scattered radiation entering the instruments' apertures. This paper provides a complete online VLT/UVES spectrum with line identifications and a spectral comparison between HST/STIS and VLT/UVES between 3060 and 3160 A.Comment: 13 pages, 11 figures + atlas. The paper accepted for the ApJS and is accompanied with an atlas in the online edition pape

    Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    Get PDF
    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.Comment: 9 pages, 9 figures, 1 table, 44 reference

    Spin dynamics of the S=1/2 antiferromagnetic zig-zag ladder with anisotropy

    Full text link
    We use exact diagonalization and the modified Lanczos method to study the finite energy and finite momentum spectral weight of the longitudinal and transverse spin excitations of the anisotropic zig-zag ladder. We find that the spin excitations form continua of gapless or gapped spinons in the different regions of the phase diagram. The results obtained are consistent with a picture previously proposed that in the anisotropic case there is a transition from a gapped regime to a gapless regime, for small interchain coupling. In this regime we find a sharp low-energy peak in the structure function for the transverse spin excitations, consistent with a finite stiffness.Comment: 17 figure

    A simple deterministic self-organized critical system

    Full text link
    We introduce a new continuous cellular automaton that presents self-organized criticality. It is one-dimensional, totally deterministic, without any kind of embedded randomness, not even in the initial conditions. This system is in the same universality class as the Oslo rice pile system, boundary driven interface depinning and the train model for earthquakes. Although the system is chaotic, in the thermodynamic limit chaos occurs only in a microscopic level.Comment: System slightly modified. New results on Liapunov exponents. Submitted for publication (8 pages
    • …
    corecore