23,833 research outputs found

    Starburst-driven galactic winds: I. Energetics and intrinsic X-ray emission

    Full text link
    We have performed an extensive hydrodynamical parameter study of starburst-driven galactic winds, motivated by the latest observation data on the best-studied starburst galaxy M82. We study how the wind dynamics, morphology and X-ray emission depend on the host galaxy's ISM distribution, starburst star formation history and strength, and presence and distribution of mass-loading by dense clouds. We find that the soft X-ray emission from galactic winds comes from low filling factor (ff < 2 per cent) gas, which contains only a small fraction (f < 10 per cent) of the mass and energy of the wind, irrespective of whether the wind models are strongly mass-loaded or not. X-ray observations of galactic winds therefore do not directly probe the gas that contains the majority of the energy, mass or metal-enriched gas in the outflow. The soft X-ray emission comes from gas at a wide range different temperatures and densities. Estimates of the physical properties of the hot gas in starburst galaxies, based on fitting the standard simple spectral models to existing X-ray spectra, should therefore be treated with extreme suspicion. The majority of the thermal and kinetic energy of these winds is in a volume filling hot, T approx 10^7 K, component which is extremely difficult to probe observationally due to its low density and hence low emissivity. Most of the total energy is in the kinetic energy of this hot gas, a factor which must be taken into account when attempting to constrain wind energetics observationally. We also find that galactic winds are efficient at transporting large amounts of energy out of the host galaxy, in contrast to their inefficiency at transporting mass out of star-forming galaxies. (Abridged)Comment: Accepted for publication in MNRAS. Letter page size postscript available from http://adcam.pha.jhu.edu/~dks/dks_published.htm

    Predicting X-ray emission from wind-blown bubbles - Limitations of fits to ROSAT spectra

    Full text link
    Wind-blown bubbles, from those around massive O and Wolf-Rayet stars, to superbubbles around OB associations and galactic winds in starburst galaxies, have a dominant role in determining the structure of the Interstellar Medium. X-ray observations of these bubbles are particularly important as most of their volume is taken up with hot gas, 1E5 < T (K) < 1E8. However, it is difficult to compare X-ray observations, usually analysed in terms of single or two temperature spectral model fits, with theoretical models, as real bubbles do not have such simple temperature distributions. In this introduction to a series of papers detailing the observable X-ray properties of wind-blown bubbles, we describe our method with which we aim to solve this problem, analysing a simulation of a wind-blown bubble around a massive star. We model a wind of constant mass and energy injection rate, blowing into a uniform ISM, from which we calculate X-ray spectra as would be seen by the ROSAT PSPC. We compare the properties of the bubble as would be inferred from the ROSAT data with the true properties of the bubble in the simulation. We find standard spectral models yield inferred properties that deviate significantly from the true properties, even though the spectral fits are statistically acceptable, and give no indication that they do not represent to true spectral distribution. Our results suggest that in any case where the true source spectrum does not come from a simple single or two temperature distribution the "observed" X-ray properties cannot naively be used to infer the true properties.Comment: 14 pages, LaTeX with 13 eps figures, condensed abstract. MNRAS in pres

    Provisional specification for satellite time in a geomagnetic environment

    Get PDF
    Satellites in geosynchronous orbit were experiencing operational anomalies. These anomalies are believed to be due to the environment charging the spacecraft surfaces to a point where discharges occur. In designing future satellites for long term operation at geosynchronous altitude, it is important that designers have a specification that will give the total time per year, the particle flux density and particle energies that their satellites can be expected to encounter in these substorm environmental conditions. The limited data currently available on the environmental conditions are used to generate the provisional specification given in this report

    The Energetics and Mass-loss of Mrk33

    Full text link
    We present ROSAT HRI X-ray data and optical imaging of the important dwarf starburst Markarian 33. We find an extended, complex, shell-like morphology in the X-ray emission, with an extent of 2.3 x 1.9kpc, coincident with the bright star-forming regions at the centre of the galaxy. The physical extent of this X-ray emission from Mrk 33 is very similar to the observed Halpha emission, and suggests that the bulk of the X-ray emission is coming from an expanding superbubble. We estimate the age and mass of Mrk 33's starburst to be 5.8 Myr and 6.9 x 10^{6} Msolar respectively with the energy injection rate in the central regions of the galaxy being 10^{41} erg/s, while the associated mass-loss rate from the star-forming regions is estimated to be 0.2 Msolar/yr. We suggest that the X-ray emission is predominantly powered by starburst type activity and argue that a blowout in the form of a galactic wind is the most likely fate for Mrk 33 resulting in the loss of most of the galaxy's metal-enriched material and a small fraction (<1 per cent) of the ISM.Comment: 13 pages, 6 figures, accepted for publication in MNRA

    Provisional specification for satellite time in a geomagnetic substorm environment

    Get PDF
    Satellites in geosynchronous orbit have been experiencing operational anomalies. These anomalies are believed to be due to the environment charging the spacecraft surfaces to a point where discharges occur. In designing future satellites for long term operation at geosynchronous altitude, it is important that designers have a specification that will give the total time per year, the particle flux density, and particle energies that their satellites can be expected to encounter in these substorm environmental conditions. The limited data currently available on the environmental conditions was used to generate the provisional specification given

    Chandra and XMM-Newton Observations of NGC 4214: The Hot Interstellar Medium and the Luminosity Function of Dwarf Starbursts

    Full text link
    We present results from Chandra and XMM-Newton X-ray observations of NGC 4214, a nearby dwarf starburst galaxy containing several young regions of very active star-formation. Starburst regions are known to be associated with diffuse X-ray emission, and in this case the X-ray emission from the galaxy shows an interesting morphological structure within the galaxy, clearly associated with the central regions of active star-formation. Of the two main regions of star-formation in this galaxy, X-ray emission associated with the older is identified whereas little is detected from the younger, providing an insight into the evolutionary process of the formation of superbubbles around young stellar clusters. The spectra of the diffuse emission from the galaxy can be fitted with a two temperature component thermal model with kT=0.14keV and 0.52keV, and analysis of this emission suggests that NGC 4214 will suffer a blow-out in the future. The point source population of the galaxy has an X-ray luminosity function with a slope of -0.76. This result, together with those for other dwarf starburst galaxies (NGC 4449 and NGC 5253), was added to a sample of luminosity functions for spiral and starburst galaxies. The slope of the luminosity function of dwarf starbursts is seen to be similar to that of their larger counterparts and clearly flatter than those seen in spirals. Further comparisons between the luminosity functions of starbursts and spiral galaxies are also made.Comment: 16 pages, 12 figures. Accepted for publication in MNRA

    A flight investigation of performance and loads for a helicopter with 10-64C main rotor blade sections

    Get PDF
    A flight investigation produced data on performance and rotor loads for a teetering rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade section contour. The test envelope included hover, forward flight speeds from 34 to 83 m/sec (65 to 162 knots), and collective fixed maneuvers at about 0.25 tip speed ratio. The data set for each test point describes vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak to peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor. Detailed data for an advanced airfoil on an AH-1G are presented

    A flight investigation of performance and loads for a helicopter with NLR-1T main-rotor blade sections

    Get PDF
    Data on performance and rotor loads for a teetering-rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade-section contour are presented. The test envelope included hover, forward-flight speed sweeps from 35 to 85 m/sec, and collective-fixed maneuvers at about 0.25 tip-speed ratio. The data set for each test point described vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak-to-peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor

    A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections

    Get PDF
    A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions
    corecore