

NASA Technical Memorandum 80165

NASA-TM-80165 19800001897

A FLIGHT INVESTIGATION OF PERFORMANCE AND LOADS FOR A HELICOPTER WITH NLR-1T MAIN-ROTOR BLADE SECTIONS

FOR REFERENCE

NOT TO BE TAKEN FROM THIS ROOM

Contraction Contractor

CHARLES E. K. MORRIS, JR., Robert L. Tomaine, Dariene D. Stevens

October 1979

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

LIBRARY COPY

COT 2 4 19/9

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

A FLIGHT INVESTIGATION OF PERFORMANCE AND LOADS FOR A HELICOPTER WITH NLR-1T MAIN-ROTOR BLADE SECTIONS

by

Charles E. K. Morris, Jr., Robert L. Tomaine, and Dariene D. Stevens

SUMMARY

A flight investigation has produced data on performance and rotor loads for a teetering-rotor, AH-1G helicopter that had used the NLR-1T airfoil on the main-rotor blades. Data for each test point describe simple flight-state parameters, control positions, rotor loads, power required and blade motion. The flight program was generally limited to level flight between 35 and 85 m/sec (68 and 165 knots) and to collective-fixed maneuvers at about 0.25 tip-speed ratio.

Rotor loads are reviewed in terms of peak-to-peak values and harmonic content. Peak-to-peak loads showed increases with increased airspeed. Basic trends for peak-to-peak loads were also determined for increases in maneuver load factor: beamwise values showed little increase, inboard chordwise loads increased and torsional loads decreased. The pattern of harmonic loading generally showed that the more significant components increased with increased airspeed. During maneuvers, increases in load factor had little effect on the pattern of harmonic loads for most data channels.

INTRODUCTION

The appropriate utilization of advanced airfoils for helicopter blades should improve rotor performance and reduce rotor loads (ref. 1). A flight investigation was conducted to obtain data on advanced rotorcraft airfoils representing significantly different design technologies (refs. 2 and 3). The data included blade-section aerodynamics, performance, loads, flight-state parameters, and control settings.

This report presents loads and performance data from the first part of the rotorcraft-airfoil flight investigation described in reference 2. The first blade set for the teetering-hub main rotor was built with the NLR-1T airfoil section. This is a slightly truncated version of the NLR-1 airfoil of references 4 and 5. The geometry and structural dynamics of the blades for the AH-1G test vehicle were not optimized. The investigation objectives were primarily to obtain data on the airfoil operating in the rotor environment.

The test program for the NLR-1T blades utilized two digital data systems to acquire data during hover, level flight, and maneuvers. The fuselage data system, described in reference 6, provided data on simple flight-state

N80-10136#

parameters, control positions, engine torque, fuel weight, and several other quanitities. The rotor data system, described in reference 7, acquired data on rotor loads, blade angles, and airfoil pressure distributions at 0.9 blade radius. Test conditions included steady, level flight from about 35 to 85 m/sec (68 to 165 knots) collective-fixed turns and pull-ups, at approximately 0.25 advance ratio. Flight data for the same vehicle, flown with a set of standard production-configuration blades, are given in reference 6. Relevant data from a vehicle using instrumented main-rotor blades are contained in references 8 to 11.

Numerous sets of reduced data are presented without analysis. Each set of listed data contains concurrently measured values for all of the data parameters. Figures contain typical parameter histories and plots of basic test-point trends to assist in the interpretation and ultilization of the data listings.

SYMBOLS

Positive senses of some axes, angles and accelerations are presented in figure 1.

A _{Of}	main-rotor collective pitch angle at 0.75R, commanded at swashplate, deg
A _{Os}	main-rotor collective pitch angle at 0.75R, measured at blade grips, deg
A _{0,tr}	tail-rotor collective pitch angle, deg
Alt	main-rotor lateral cyclic pitch angle, commanded at swashplate, deg
Als	main-rotor lateral cyclic pitch angle, measured at blade grip, deg
a	speed of sound, m/sec
als	first harmonic of main-rotor longitudinal flapping with respect to the rotor mast, deg
Blf	main-rotor longitudinal cyclic pitch angle, commanded at swashplate, deg
Bls	main-rotor longitudinal cyclic pitch angle, measured at blade grip, deg
bls	first harmonic of main-rotor lateral flapping with respect to the rotor mast, deg
۲	vehicle load coefficient, $\frac{Wn_z}{\rho \pi R^2 (\Omega R)^2}$
CQ	main-rotor mast torque coefficient, $\frac{Q}{\Omega \pi R^3(\Omega R)^2}$
С	airfoil chord, m

E modulus of elasticity, N/m²

F_{db} drag-brace force, positive for tension, N

 F_{nl} pitch-link load, positive for compression, N

G shear modulus, N/m²

g acceleration due to gravity, 9.81 m/sec²

h_p density altitude, m

Ib blade-section beamwise area moment of inertia, m⁴

I_c blade-section chordwise area moment of inertia, m⁴

ih horizontal-tail incidence angle, deg

J torsional stiffness constant, m⁴

M_{bp} blade beamwise (flapwise) bending moment at "p" percent blade radius, positive for load applied upward, N-m

M_{CP} blade chordwise (inplane) bending moment at "p" percent blade radius, positive for load applied rearward toward blade trailing edge, N-m

 M_h reference blade-tip Mach number, $\frac{\Omega R}{a}$

M_{tp} blade torsional moment at "p" percent blade radius, positive for load applied upward at blade leading edge, N-m

^m₁ data channel sensitivity, measured units/mV

N number of rotor revolutions, initiated at $\psi = 0^{\circ}$

 $n_{\rm X}, n_{\rm y}, n_{\rm Z}$ orthogonal set of load factors for aircraft center of gravity, g units

Pf, qf, rf orthogonal set of fuselage angular rates, rad/sec

Q main-rotor mast torque, N-m

r radial distance to blade element, m

R main-rotor radius, m

T_b blade temperature, C

	Tce	canister	electronics	temperature,	С
--	-----	----------	-------------	--------------	---

t time, seconds

V aircraft true airspeed or velocity, m/sec (knots)

W aircraft gross weight, N

X,Y,Z orthogonal set of aircraft body axes (see fig. 1)

x airfoil abscissa, positive rearward from leading edge, m

y airfoil ordinate, positive upward, m

 α_{f} fuselage angle of attack, deg

 β_{f} fuselage angle of side-slip, deg

- β_{s} main-rotor, shaft-axis teeter angle, (where $\beta_{s} = a_{0} a_{1s}\cos\psi$ - $b_{1s}\sin\psi$...) positive upward, deg
- Δ_{f} change in data measurement due to temperature (see table V)

 Δm_2 sensitivity of digitizing electronics, mV/counts - C

 ΔP_{Ω} data increment due to sensor temperature, data units/C

- ΔV_{0} adjustment to data-channel sensitivity for electonics temperature, mV/C
- δ digital data-system measurements, counts
- θ_{f} fuselage pitch attitude, deg
- θ_s main-rotor shaft-axis blade pitch at 0.75R, (where $\theta_s = A_0 A_{1s} \cos \psi B_{1s} \sin \psi \cdots$), measured at blade grip, deg

 μ tip-speed ratio, V/(ΩR)

- ρ mass density of air, kg/m³
- ϕ_{f} fuselage roll attitude, deg

 ψ main-rotor blade azimuth angle, measured from downwind position in direction of rotor rotation, deg

 Ω main-rotor rotational speed, rad/sec

Subscripts:

cg center of gravity

1 lower surface

na neutral axis

u upper surface

Bars over symbols denote mean values; circumflex marks (^) over symbols denote peak-to-peak amplitudes of oscillations for one rotor revolution.

EQUIPMENT AND PROCEDURES

Test Vehicle

The test vehicle was the modified AH-1G attack helicopter shown in the drawings of figure 2 and the photographs of figure 3. Specifications of the physical characteristics of that vehicle are given in table 1. In comparison to a standard AH-1G helicopter, the only significant external differences resulted from the use of experimental main-rotor blades, an instrumentation nose boom, a rotor-data canister mounted on top of the mast, and a stub antenna attached to the tail boom. The fuselage weapons-system assembly was replaced by a dummy chin turret and an instrumentation rack in the ammunition bay. The test vehicle differed from its configuration for reference 6 by the addition of the tail-boom antenna and the replacement of the rotor data system, main-rotor blades, and tail rotor (fig. 3(b)). The aircraft carried no wing stores.

The physical characteristics of the NLR-1T main-rotor blades are very similar to those of the other two experimental blade sets (ref. 2). These characteristics are given in tables I and II. Planform and section views of the blade are shown in figures 4 and 5, respectively. Compared to standard AH-1G blades, the NLR-1T blades had similar structural-dynamic properties and identical planform, twist and root-end fittings. Details of the structural design and some resulting physical characteristics are presented in appendix A.

The NLR-1T airfoil was analytically designed for use on a high-speed helicopter (refs. 4 and 5). An initial contour was developed with a computer program using hodograph-plane equations to obtain shock-free flow at the high-speed design point. The NLR-1 airfoil was developed further by modifying the initial shape to give good performance at hover conditions and to alleviate retreatingblade stall. The NLR-1T airfoil is simply the NLR-1 shape truncated at 99 percent of design chord to obtain a finite-thickness trailing edge. The coordinates are given in table III; wind-tunnel data and analyses are given in references 12 and 13. Key characteristics of the NLR-1T airfoil are a zerolift, drag-divergence Mach number of about 0.84; a maximum lift coefficient of 1.1 at 0.4 Mach number; and a zero-lift, subsonic pitching-moment coefficient of about -0.01 to -0.02.

Data System

The aircraft was equipped with two digital data systems. The Piloted Aircraft Data System (PADS) acquired data from fuselage-mounted sensors; the Special Rotor Blade Instrumentation (SRBI) system processed signals from rotor-mounted sensors. Both systems used pulse code modulation (PCM) in the multiplexer-digitizer electronics.

The PADS-PCM system, described fully in reference 6, recorded several types of data: aerodynamic flight state, inertial flight state, control positions, engine torque, rotor speed, blade azimuth, and fuel quantity. The electronics used a 10 bit word, parity included, and a multiplexed sampling rate of 80 times per second per channel. Specifications for each sensor are given in table IV.

The SRBI system of reference 7 was used for a variety of rotor data. The SRBI system multiplexed and digitized data on pitch-link and blade loads, mast torque, blade angles, blade-section pressures and data-system temperatures. The SRBI system had an 8-bit data word (with no parity) and sampled each of the 30 channels 1000 times per second. All of the data channels for loads and angles had a single-pole, constant-delay filter with 3-decibel attenuation frequency at 90 Hz. Further information on the individual channels and sensors is contained in tables V and VI, appendix B, and reference 7. The canister and some of the sensors are shown in the photographs of figure 6.

The SRBI system consisted of several different subassemblies. Digitization electronics for the load and angles data were located in the mast-mounted canister. The batteries, which gave power for about one hour of flight, were also mounted in the canister. During the first NLR-1T flights, a canister transmitter sent the data signal to a fuselage receiving antenna; subsequently, this transmission link was deactivated and a slipring assembly was substituted to conserve battery power. The data signal was recorded on the aircraft and transmitted from fuselage-mounted antennas to a ground station for safety-offlight monitoring.

Data Reduction

Each of the two, basic types of data, PADS-PCM and SRBI, required a separate data-reduction method. In reference 6, details of both the PADS-PCM data reduction and the resulting computer listing of corrected parameters for each test time are given. Results from SRBI data reduction describe parameters for one revolution at each selected time. SRBI data reduction requires inputs for the same time intervals from the program for PADS-PCM data reduction.

The SRBI data for loads and angles were first processed to correct for temperature and filter-lag effects. Next, a more accurate measure of rotor speed was obtained from the SRBI azimuth and time data. The new rotor speed was used to revise the calculation of PADS-PCM parameters effected by rotor speed (such as engine torque coefficient). The resulting changes were typically small. Flight records of blade loads and angles were processed to yield data decomposed into harmonics of rotor rotational frequency. Interactions between each straingauge bridge and several types of loads are indicated in table VI but were not

accounted for in the analysis since the full set of load components were not measured at each instrumented blade station. This simplified treatment is typical of flight-loads reports (refs. 8 and 14) since interactions are minimized during strain-gauge installation.

Flight-Test Procedures

Flight tests were conducted to obtain data on the performance and rotorloads characteristics of the test vehicle in straight and level flight and in maneuvers. Steady, level-flight speed sweeps were accomplished, usually in 5 m/sec (10 knot) increments, from about 35 to 85 m/sec (68 to 165 knots). Maneuvers were flown with a target tip-speed ratio of 0.25 and collective pitch set for trim at that speed. The symmetrical pull-ups and constant-airspeed, descending turns were flown with a range of normal-load factors up to 2.3. The tests also include representative periods of hover and of linear climb and descent.

Emphasis was placed on achieving well-controlled, standardized test-point conditions to allow direct comparison between data sets for the different experimental rotors. Operating rotor speed and longitudinal center of gravity were kept very close to the nominal values, and the external configuration of the aircraft was the same for the tests of all three experimental blade sets (ref. 2). Also, data were acquired only when air turbulence levels were acceptably low. Even though standardized track-and-balance procedures were followed, the rotor demonstrated relatively large sensitivity to changes in differential pitch, blade-sweep or trim-tab settings, indicating that track-and-balance variables could be important flight-test parameters.

PRESENTATION OF RESULTS

Data on performance, rotor loads, flight state and control positions are presented in figures 7 through 27 and in the listings of appendix C. Table VII is a guide to the listings. Flight numbers and run numbers are used to identify the test points for all listings and some figures. The data figures are presented as follows:

rigures
7.8
9, 10
11
12, 13
14, 15
16 to 19
20 to 22
23, 24
25, 26
27

Tiouse a

DISCUSSION

The methods of data presentation and review in this report are influenced by two anticipated uses. First, this data is a source of experimental performance and loads data for correlation studies with computer models of helicopters. Second, this data can provide a detailed description of test-point conditions for concurrently measured airfoil data (such as that of ref. 2). The data review proceeds from straight-and-level test conditions, to descending turns, and then to symmetrical pull-ups.

Vehicle load coefficient C_L ' is used as primary parameter for designating the aircraft load level experienced during maneuvers. This coefficient represents the combined influences of vehicle weight, vertical load factor, air density and rotor rotational speed: it provides a good measure of the inertial load reacted by the rotor and other aerodynamic surfaces. Reference 15 indicates that the stub wings and horizontal-tail surfaces can make significant contributions to vehicle lift and download. The data presented herein does not account for such effects, which could be a function of load factor, pitch rate, roll angle, and other parameters. In general, however, all conclusions based on variations in vehicle load coefficient also hold true for variations in load factor.

Rotor loads are discussed in terms of beamwise (flapwise), chordwise (inplane), and torsional loads. Pitch-link loads are referred to as torsional loads. The implications of interaction and simplified temperature-effects corrections are not considered herein. The mean values of some loads, particularly chordwise blade loads, appeared to experience some drift during flight. Some loads data were also affected by the need to maintain a large response range for safety-of-flight purposes, in such cases, the precision of increments is comparatively large.

Level Flight

<u>Test-point selection</u>.- As in reference 6, test-point times for data reduction were chosen on the basis of steadiness, which was judged by reviewing records of data on flight-state, control position, rotor motion, and blade loads. The ideal test point is one achieved with fixed controls and, for level flight or steady maneuvers, a trimmed vehicle; it was achieved for symmetrical pull-ups when the body attitude matched that for level flight at the same airspeed. Low levels of air turbulence were required. Rotor-data histories presented as figures 7 and 8 are typical of a steady test point since the wave forms for each blade revolution appear to be highly repeatable.

Results of harmonic analyses also serve as indications of steadiness. An example of the degree to which harmonic curve-fits can replicate measured data is given in figure 9. The data of figure 10 allows a comparison of the dominant harmonic amplitudes for several times at one test-point condition. The indicated level of steadiness is typical for all level-flight results.

Powered-required data.- Figure 11 presents data on main-rotor torque required for each of the level-flight speed sweeps flown with the NLR-IT blades.

(The sets of data are plotted with offset scales and sequenced in the ascending order of average reference Mach number.) As indicated in reference 6, a detailed comparison between data sets requires adequate data on flight state, control positions and parameters such as air turbulence level.

<u>Forward-flight effects</u>.- Basic data for two level-flight speed sweeps are presented in figure 12. Some of the test points are also described in Appendix C. Most of the plots show good agreement between data for the two speed sweeps. The sweep with a reference Mach number of 0.70 did have higher values of several parameters: vehicle load and main-rotor torque coefficients (fig. 12(a)); main-rotor collective pitch angle (fig. 12(c) & (d)); and oscillatory inplane blade loads (fig. 12(g)). The same speed sweep also exhibited slightly lower torsional and beamwise oscillatory loads (fig. 12(e) and (g)). An anomalous incremental increase in oscillatory chordwise loads is shown in figure 12(f) at about $\mu = 0.33$ for $M_h = 0.69$.

Several trends are evident in the load data of figure 12. First, in figure 12(e), the peak-to-peak loads for beamwise bending show a highly nonlinear increase with tip-speed ratio only at the most inboard station. Most of the chordwise data in figure 12(f) show that peak-to-peak loads grow more rapidly when tip-speed ratio increases above approximately 0.3 (about 130 knots). Each type of data for both blade torsion at 45 percent rotor radius and pitch-link loads follows a basic trend (fig. 12(g)). The peak-to-peak loads develop a small region of possible data-curve inflection near a tip-speed ratio of 0.2; above that speed, peak-to-peak loads grow almost linearly. In addition, the mean value of the blade torsion or pitch-link loads grows more negative, due to larger leading-edge down moments, as tip-speed ratio increases.

Wave forms for several digital data channels are shown in figure 13. These data, and the data records of figures 7, 8, and 9, help to give some insight into the speed-sweep data of figure 12. They show that data descriptions in terms of mean and peak-to-peak amplitude values may neglect some potentially significant aspects of the wave forms (for example, see fig. 13 (c)). The use of harmonic analysis offers one means of conveiently reducing, listing, and reviewing large sets of data such that more detail is preserved.

<u>Rotor-load harmonics</u>.- The harmonic content of rotor loads for a representative series of level-flight conditions is shown in figure 14. For the beamwise loads, the first four harmonics appear to be the most significant. Inboard chordwise loads have significant contributions from the first three and, sometimes, the sixth harmonics. For chordwise loads at 80 percent rotor radius, significant contributions are observed for up to seven harmonics. The first harmonic dominates blade torsion and pitch-link loads at lower speeds; above 100 knots, the second harmonic also appears to be very significant.

A summary plot, figure 15, shows forward-flight effects on the harmonics of the blade loads at 45 percent rotor radius. Data are shown for the four harmonics having the largest amplitudes. (Note that energy content and the implications for fatigue damage are also frequency dependent.) The first two harmonics clearly dominate for beam and torsion loads. Chordwise load trends are quite different in that the first and third harmonics dominate the loads at higher tip-speed ratios.

Maneuvering Flight

Descending turns.- A well-controlled descending turn is a steady maneuver executed so that airspeed and trim are maintained while altitude is lost. Figure 16 shows data, with different start times, taken during one test-point attempt. It may be seen that the wave forms match very well despite the ajustments to engine power.

Several other examples of typical rotor-data records show periodic wave forms for descending turns. Figure 17 presents some records for two turns; figure 18 presents a full set of rotor-loads records for a well-controlled turn. Figure 19 shows that increasing vehicle load coefficient (or load factor) can substantially alter the wave form.

The harmonic content of measured rotor loads for descending turns can be reviewed with the data of figures 20, 21, and 22. Representative results for left and right turns (figs. 20 and 21, respectively) show little or no effects due to increases in vehicle load coefficient. The most significant components are the same as for level flight; that is, the first four for beamwise loads, the first two harmonics for torsional loads and the first, third, and sixth for chordwise loads remain nearly constant. Summary data for the loads at 45 percent rotor radius are presented in figure 22. These data show that the only well defined trends are increases in first and third-harmonic chordwise loads and slight decreases in torsional loads with increasing vehicle load coefficient.

<u>Symmetrical pull-ups</u>.- Records of rotor data for symmetrical pull-ups are presented in figures 23 and 24. The transient nature of the maneuver is clearly indicated by the decrease in mast torque in figure 23 and the noticeable change in the steady state and peak-to-peak values for many of the load histories shown in figure 24.

Harmonic load data for six pull-ups are presented in figures 25 and 26. As in the turns, strong trends are not shown in the data of figure 25. The summary data for 45 percent rotor radius (fig. 26) show that the only clear trend is increased first-harmonic chordwise loads with increased vehicle load coefficient. The data of figures 23 and 24 indicate that somewhat different results could be obtained if criteria for test-point selection were more loosely interpreted.

<u>Maneuver-load trends.</u> Some of the rotor-loads data for turns and pull-ups show common trends for variations in peak-to-peak loads with changes in vehicle load coefficient (fig. 27) The amplitudes of peak-to-peak bending moment for all the beam channels and the outboard chord channel remain virtually constant. Values for the drag-brace load and chord bending at 45 percent rotor radius show substantial increases with increases in vehicle load factor (fig. 27(b)). Except for a pull-up at extreme conditions, the values for blade torsion and pitch-link actually decrease (fig. 27(c)). This last trend agrees well with observer and pilot comments on decreases in vibration level with increases in load factor. A review of the harmonic content of both types of maneuvers shows that, in most cases, the pattern of harmonic loads does not change significantly over the range of vehicle load coefficients (or load factors) achieved. Figures 22 and 26 help to show that for inboard chordwise loads, the first and, to a lesser degree, the third harmonics of the load do increase with increased vehicle load coefficient.

CONCLUDING REMARKS

A flight investigation has been conducted to acquire data on the performance, loads and airfoil aerodynamics of a teetering-rotor helicopter having the NLR-1T airfoil as the blade-section contour for the main-rotor. Data are presented on the variation of flight-state parameters, control positions, rotor loads, power required and blade motion during level-flight speed sweeps and maneuvers at approximately 0.25 tip-speed ratio.

Several trends were evident in the rotor loads data. Increases in airspeed in level flight increased peak-to-peak loads, particularly those inboard on the Above 35 m/sec (68 knots), each type of load was characterized by the blade. pattern of harmonic contributions to those loads: beamwise bending was dominated by the first four harmonic components; torsional loads by the first two harmonics, and inboard chordwise loads by the first, third, and sometimes, sixth The magnitude of all of these components increased with increased harmonics. During the maneuvers, the relative pattern of harmonic components airspeed. remained fairly constant with increases in load factor; the noteable exception was the growth of first and third harmonics for inboard chordwise loads with increased severity of the maneuver. During maneuvers, the most significant changes in peak-to-peak loads with increased load factor were increases in inboard chordwise loads and decreases in torsional loads.

APPENDIX A

MAIN-ROTOR BLADE DESIGN

The structural design of the main-rotor blades was influenced by requirements for built-in instrumentation and maximum commonality between the new blade As shown in figures 4 and 5, each new-airfoil blade had a thin metallic sets. substructure. The spar assembly was formed by a spar with an H-shape crosssection, high-density aluminum honeycomb behind the spar, and an airfoil-contoured nose block in the front of the spar. Nose weights were secured inside the nose block. The whole substructure was formed by bonding together the spar, a lighter aluminum-honeycomb afterbody, an aluminum trailing-edge stiffener, and aluminum skins. Strain-gauge bridges and all instrumentations leads and terminals were bonded to the substructure. Doublers and standard grip plates were attached to the root end. Outboard of about 31 percent rotor radius, Nomex honeycomb was bonded on, trimmed, and covered with a fiberglass skin to obtain a close-tolerance contour of the NLR-1T airfoil. Cavity and cover-plate assemblies for pressure transducers were installed in the nose block and Nomex honeycomb of one blade at 90 percent rotor radius. On the blade-tip lower surface, a cover plate protected a cavity for pressure-data electronics (fig. 4). The use of cover plates and fairing compound restored the airfoil contour after the pressure-data system was installed.

Despite differences in fabrication histories and instrumentation installation, the two blades of the NLR-1T set were very close in structural and dynamic characteristics. One blade was instrumented with strain-gauge bridges and pressure transducers. The instrumented blade required more contour filling and handwork to meet contour tolerance criteria. Before paint or tip weights were added, the static centers of gravity lay at 24.9 percent chordwise station for both blades and at 54.4 and 54.0 percent spanwise station, respectively, for the blades with and without instrumentation. The instrumented blade weighed 1255 newtons; the other blade weighed 1242 newtons. The measured torsional natural frequencies of the instrumented and second blade were 15.5 and 15.9 Hz, respectively. Manufacturer's tests indicated that the frequencies of the first torsional mode and the second flapwise mode were coincidental near the normal operating tip speed.

APPENDIX B

SPECIAL ROTOR BLADE INSTRUMENTATION SYSTEM

Blade Angle Data

Three types of blade angles were measured. The pitch angle of the instrumented blade was measured as described in reference 6: a spring-loaded stringtype potentiometer sensed the angle at the blade grip. Teeter angle was sensed on the first NLR-1T flights with the same linear slide-type potentiometer as described in reference 6; for all flight data reported here, it was sensed with the rotary potentiometer shown in figure 6(b). Fuselage-referenced azimuth angle of the instrumented blade was sensed by a 256 increment, digital shaft encoder mounted inside the canister support assembly. All of these systems were calibrated in place, on the aircraft.

Structural Loads Data

Strain-gauge bridges were used to measure loads in the mast and in both the pitch link and drag brace for the instrumented blade. Mast torque and pitch-link load were measured as described in reference 6. The drag brace (which connects the rear of the blade to the hub) was instrumented for axial loads with a temperature-compensated bridge (figure 6(c)) and was calibrated in tension.

Blade bending loads were measured by eight 350 ohm strain-gauge bridges. The bridges were bonded to the blade metallic substructure and, except for the most inboard bridge for flapwise bending, were covered by the Nomex honeycomb. Five flapwise bridges (at 17.4, 35.0, 44.9, 60.6, and 80.3 percent rotor radius), two chordwise bridges (at 44.9 and 80.3 percent rotor radius), and one torsional bridge (at 44.9 percent rotor radius) were active for SRBI. All three components of bending were measured together only at one spanwise station.

Calibration of the blade strain-gauge bridges was accomplished by hanging the blade from the root end and applying loads near the tip. Thus, the nominal zero-loading condition imposed no initial blade loads, other than spanwise, due to gravity. The blade root was bolted (at 15.5 percent rotor radius) to a fixture mounted at the top of a massive, vertical, loading stand. Loads were applied by a rectangular fixture that covered 0.3 m of the span at 92.6 percent blade radius. Flapwise and chordwise moments were produced by forces perpendicular and parallel, respectively, to the 15.5 percent rotor-radius station. Torsional moments were applied as pure moments at the loading block. The resulting data on bridge sensitivity and interactions are given in tables IV and V. Typical calibration data (fig. 28) show the effect of blade bending and some load misalignment under highly loaded conditions.

Temperature effects were also evaluated. Data on zero-load effects of temperature variation were obtained when the entire blade was stabilized at several temperatures between -10 C and 270 C. These results showed linear variations. Specifications for temperature compensation for strain-gauge bridges and cumulative experience indicated that temperature-induced shifts in sensitivity were negligible when compared to the zero change.

Temperature Data

Temperatures were sensed in the canister and in one of the pressure transducer cavities. Canister temperature was used to apply corrections to all load and angle channels which were digitized in the canister. The blade temperature was used to correct for the effects of changes in blade temperature on the blade bridges. Simplified data-reduction methods assumed that the Nomex and dead-air cells next to the metallic surface helped to insulate the blade and produce a fairly uniform internal temperature.

Preflight Calibrations

Calibrations were applied to strain-gauge channels with battery power after the battery had discharged enough to stabilize the voltage level. Calibrations were made in the form of shunt changes to the bridge circuits. Records were made for ambient loads and for two levels of bridge unbalance whose incremental change in voltage corresponded to known load levels. Calibration records were impressed on both the flight and ground-station tapes. This process calibrated the signal conditioning and checked bridge output for standard, ambient conditions.

APPENIX C

TEST-POINT DATA LISTINGS

The upper part of the page for each test point contains PADS-PCM data from fuselaged-mounted sensors. The information on test-point identification and data on flight-state, control position and other parameters are presented in the manner explained in reference 6.

The lower part of each page contains SRBI-system data on the rotor. Testpoint identification is printed next to flight-condition parameters. Three temperatures are given: the value computed for ambient atmospheric conditions (AMB TEMP): blade temperature at 90 percent radius, upper surface, 60 percent chord (TEMP 60), and the temperature of the blade electronics in the canister (CAN TEMP). The latter two are listed in table V and reference 6 as Th and $\bar{T}_{Ce},$ respectively. They were two temperatures used in SRBI data reduction. mast-torque coefficient printed is the average value for the revoluton. The The total torque coefficient is the value obtained for engine power at equivalent main-rotor rotational speed. Both blade pitch (at 75 percent radius) and teeter angle of the instrumented blade are described by conventional mean and cyclic components based on harmonic analysis. Peak-to-peak values are added since, as noted in reference 6, data traces may be much more complex than a simple firstharmonic pattern.

Rotor loads are presented in terms of mean values, peak-to-peak values and the harmonic content for the first 12 harmonics of actual rotor rotational frequency. (The measured value of this frequency is also listed.) The harmonic representation uses a series of cosine terms, each with a phase delay. Using the labels from the listing, each load may be described as:

 $F(t) = (MEAN) + \sum_{n=1}^{\infty} ((AMP)_n \cos(t-(PHASE)_n))$

where F is the load (a function of time), MEAN is the mean amplitude, n is number of the harmonic, AMP is the vector amplitude, and PHASE is the phase angle in degrees for that harmonic.

FLIGHT ND. 06 RUN ND. 6 TIME 68740.80	0 (j£C)	AIRCRAFT TO	DTAL WT = 3	5964. N 80þ5. lb	LOADED CG	G X ■ 5.05 M Y = -00 Z = 1.83	■ 198.6 IN ■0 ■ 71.9	
AERODYNAMIC FI T. Alrspeed A/C Mach Nu	LIGHT S ⁻ = 106.9 = .169	KT	LYNAMIC Static Total Static	PKES= 1.66 PkES= 94.0 TEMP= 266.1 TEMP= 254.6	KPA KPA JEGK DEGK	39.3 PSF 1962. PSF 478.9 DEG 476+2 DEG	Ř R	
BUDY ALPHA Budy Beta	* −2.4 ■ −1.2	DEG DłG	DE LENSIT SONIC KATE OF	NSITY- 1.24 YALT= -105. SPEED= 326.t CLIMB= -50.	KG/M3 = M = M/SEC = M/MIN =	•00240 SLUG -343. FT 1072. IPS -163. FPM	/FT3	
INERTIAL FLIGH	HT STATE	1						
AXIS CG LI (M/S)	N VEL (FPS)	CG LIN ACC (G)	HUBLIN V (m/s) (f	EL HUBLIN PS) (G)	ACC AXI	S ANG PUS (DEG)	ANG RATES (rad/Sec)	ANG ACC (RAD/SEC2)
X 54.94 Y -1.19 Z -2.26	180.3 -3.9 -7.4	053 .039 957	54.94 18 -1.18 - -2.26 -	0.2059 3.9 .041 7.4956	ROL PIT YAW	L – 1.1 CH –3.2 / 339. 0	.004 .602 .009	•012 •029 -•044

-

•

2

1

CUNTRJL ANGLES M.R. CULL= 9.3 DEG HURIZ FIN= 7.8 OEG A1= -.3 OEG T.R. CULL= -.3 DEG E1= 4.8 UEG PEUAL POS= -.2 DEG

RUTUR PARAMÉTERS	HOVER	TIP MACH=	•ó9	SHAFT ALPHA= CONTROL ALPHA-	-2.4 OEG -7.2 DEG	
	TIP	MAX-MACH=	. 30	DELTA PS1=	1.2 DEG	
	•9R •9R	MAX-MACH= MIN-MACH=	.53 •79 •46	ENGINE POWER= Thrust factor=	418. KW = .899E+07 N =	560. HP .202E+07 LE!

	NASA	LANGLEY FLIGHT D	ATA AH-1G	- ROTOK PERF	ORMANCE AND LUA	DS
	FLIGHT NG. 60	NU= .241 V= 106.9	אד אאאד גע אד Mast Cu	<pre>• 000203 • 000193</pre>	AMB TEMP- TEMP_U60=	-8.6 C ■ 16.54 F 9.1 C ■ 48.40 F
	RUN NG. 6	N7. 054	(GH ECK		CAN TEMP=	-3.0 C = 26.58 F
	TIME 68740.73	CLF= ,00376	RPM/324	= 1.002	c.	
RJTOK	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO = 6.9 AO = -€A	Al=6 Al= -1.8	61= 5.5 PEA B1= .0 PEA	AK-TO-PEAK= 11.0 AK-TO-PEAK= 3.7
KUTUR	LUADS (AMP/PHA	ASE) OKAG BRACE (N/LEG)	CHURD .449 (N-M/DEG)	CHORU .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TU-PEAK	42186. 3821./ -21.5 187./ -46.8 2064./ 44.7 639./ 67.3 126./ -85.6 915./ -37.6 201./ 9.4 265./ -12.5 48./ -61.3 96./ -43.2 23./ 59.0 142./ -30.3 12061.	13555. 1100./ -24.9 91./ 4.0 594./ 39.6 344./ 62.9 136./ -40.2 111./ 43.2 164./ -19.7 93./ -58.1 154./ -22.6 03./ 77.4 85./ -51.0 4383.	2098. 218./ -48.1 55./ -29.7 63./ -42.0 11./ 82.8 39./ -24.2 139./ -46.6 49./ 8.2 72./ -13.9 26./ -51.3 90./ -15.2 9./ 25.2 37./ -65.7 1078.	-2314. 2327./ -33.0 1799./ -42.0 407./ -23.1 333./ -84.1 137./ 31.0 63./ -65.8 87./ 46.7 42./ 2.2 47./ -74.0 38./ 53.9 24./ -21.2 17./ -66.2 7350.	-307. 366./ -50.6 184./ -37.7 83./ 21.5 56./ 64.7 25./ 71.7 10./ 18.6 8./ 15.6 4./ 9.2 7./ 79.9 2./ 53.9 8./ -16.2 3./ -77.0 1017.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 0 7 8 9 10 10 11 12 PEAK-TO-PEAK	$\begin{array}{c} -237. \\ 717. / -51.7 \\ 387. / -52.9 \\ 69. / 61.6 \\ 293. / 60.4 \\ 79. / -22.1 \\ 24. / 76.0 \\ 47. / 65.1 \\ 6. / -58.7 \\ 24. / -47.6 \\ 64. / 7.5 \\ 14. / -29.1 \\ 13. / -62.1 \\ 2439. \end{array}$	72. 398./ -61.9 252./ -68.9 36./ 17.4 85./ 49.1 9./ -83.5 4./ 69.0 10./ 54.4 3./ 3.8 13./ -73.2 17./ 14.4 9./ -14.0 4./ 14.3 1106.	-51. 410./ -62.4 271./ -67.2 43./ 64.8 48./ 41.8 19./ 71.3 10./ -24.3 26./ 89.8 5./ -55.4 5./ -48.8 15./ 4.5 4./ -9.1 6./ -15.8 1210.	-289. 393./ -63.8 228./ -64.7 73./ -80.1 64./ 61.8 7./ 86.2 13./ 10.1 12./ -9.2 6./ -5.4 16./ -43.2 23./ 27.5 8./ -18.5 3./ 4.1 1174.	29. 179./ -74.8 87./ -62.8 84./ -85.1 114./ 47.6 49./ 68.6 37./ -24.6 36./ -47.0 17./ 5.4 12./ -28.2 17./ 26.6 7./ 12.1 5./ -5.3 752.

FLICHT NO. 061 A B RCRAFT TOTAL WT = 34378. N LOADED CG X= 5.04 M = 198.4 B 7729.- LA RUN NO. 3 ¥= - 80 = 72.4 TIMF 57558.00 (SFC)
 DYNAMIC
 PRES
 .85
 KPA
 17.7

 STATIC
 PRES
 97.5
 KPA
 7036.

 TOTAL
 TFMP
 267.0
 DEG K
 480.7

 STATIC
 TEMP 266.4
 DEG K
 479.5
 PSF 17.7
7036. AERODYNAMIC FLIGHT STATE PSF DEG R T. AIRSPEED= 70.8 KT A/C MACH ND= .111 OEG F DENSITY- 1.28 KG/M3 = .00248 SLUG/FT3 DENSITY ALT= -420. M = -1379. FT SUNIC SPEED= 327.7 M/SEC = 1075. FPS -.2 OFG RODY ALPHA-PODY RETA: 2.6 RFG

INFRITAL FLIGHT STATE

VXIS	CG LIN (M/S)	I VFL (FIX;)	CG LIN ACC (G)	HUB L1 (M/S)	N VFL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (pad/sec)	ANG ACC (RAD/SEC2)
¥ Y 7	36.38 1.61 14	119.4 5.4 5	031 004 -1.006	36.39 1.64 14	119.4 5.4 5	035 004 -1.006	ROLL PITCH YAW	0 -1.2 101.6	.002 006 .003	.001 .022 015
CUNTRUE	ANGLES	5	M.R. COLL= ÅI= Bl=	7.5 7 2.5	OFG NEG DEG	HORIZ FIN= T.P. COIL- PEDAL POS=	6.7 OF 5 OE 6 OE	6		

RATE OF CLIMB: -36. M/MIN = -119. FPM

PARAMETER ^q	HOVER	TIP MACH=	• 69	SHAFT ALPHA= Control Alpha=	2 DFG -2.7 DEG	
	TIP I	PAX-MACH*	.80	DELTA PSI=	-2.6 DEG	
	TIP I	MIN-MACH*	•58			
	.9P	MAX-MACH*	•73	ENGINE POWER-	316. KW =	424. HP
	• 9R	FIN-MACH=	•51	THRUST FACTOR-	.928E+07 N ≠	.209E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS TOTAL CQ= .000149 Mast CQ= .000141 MU= .160 V= 70.8 KT FLIGHT NO. 61 AMB TEMP= -6.8 C = 19.81 F TEMP **U60**= 10.3 C = CAN TEMP* 2.8 C = 50.62 F RUN NO. 37.06 F 3 OMEGA- 34.022 RAD/SFC RPM/324= 1.003 NZ: 1.006 G TIME 52557 88 CLP= ,00369 7.0 -.8 Al= -.9 Al= -.6 PEAK-TO-PEAK, RUTER ANGLES THETA 3/4 (DFG) TEFTER ANG (DEG) ×٥= B1 = 2.5 53 PEAK-TO-PEAK • 3 AO= B1 = 1.5 CHORD .803 (N-M/DEG) .449 POTOP LOADS (AMP/PHASE) DRAG BRACE CHARD .449 PITCH LINK TORSION (N-M/DEG) (N/DEG) (N/DEG) (N-M/DEG) 12770. -185. 2049. -1150. MFAM 43407. 1459./ -17.0 480./ -2.0 319./ 7.5 88./ -38.9 63./ 34.9 HARMONIC-1 3831./ -4.9 996./ -9.8 186./ -34.5 218./ -57.5 566./ -33.2 27./ 7.3 68./ 65.0 9./ -13.7 408./ -28.5 16./ -57.3 2 581./ 24.8 177./ -79.5 137./ 38.6 368./ 87.8 198./ 19.6 123./ 10.4 3 60./ -26.6 21./ -64.5 4 57./ 29.0 21./ -37.2 5 42./ 51.4 129./ 48.8 130./ -79.8 29./ -68.7 6 7 54./ 35.0 32./ 2.3 134./ -10.0 132./ -39.2 10./ -21.0 77./ -25.9 24./ -17.6 16./ 62.5 2.3 3./ -24.1 8 68./ 31.6 56./ -61.2 101./ -65.9 28./ -63.2 111./ -70.3 27./ -5.0 65./ 58.2 73./ -84.6 4./ -66.7 9 10 41./ -29.6 93./ 48.9 32./ 59.8 29./ -26.9 9./ 89.9 11 38./ 18.3 16./ 49.9 3./ -53.5 12 PFAK-TO-PFAK 904. 3871. 601. 7980. 2629. **BFAM .174** BEAM .350 BEAM .449 BFAM .606 BEAM .803 (N-M/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) MEAN -285. -148. 53. 124. -34. HARMONIC-1 375./ -40.9 233./ -77.5 251./ -74.8 250.1 -66.0 93./ -74.8 184./ -23.0 54./ -47.7 27./ 24.2 29./ -14.4 103./ -8.7 160./ -27.1 25./ 48.9 27./ -10.2 105./ -29.9 118./ -23.9 28./ 73.7 121./ -32.0 2 3 34./ .9 106./ -4.9 4 94.1 -29.7 13./ 13.1 16./ -38.8 17./ 14.6 5 5./ 44.2 18./ 11.5 89.3 15./ 6./ -17.5 10./ -65.2 32.1 -45.6 6 21./ -59.8 9./ 19.2 27./ -69.8 7 13./ -46.8 36./ 72.0 41./ -7.2 35./ 12.1 33./ 73.7 13./ 65.2 7./ 58.3 21./ 37.5 12./ -71.3 8 13./ -54.9 25./ -16.7 31./ 56.6 12./ .7 8./ 82.7 9./ -1.9 36./ 75.2 q 12./ 10 -6.7 9.8 11 14./ -51.1 5./ -18.9 3./ 5./ 29.2 17./ -86.0 6./ -75.9 3./ 86.1 17 11./ -65.1 PEAK-TO-PFAK 1392. 633. 735. 887. 664.

FLIGHT NO. 061 AIRCRAFT RUN NO. 4 TIMF 57606.70 (SFC)	TOTAL WT • 34381. N 7730. LB	LOADED CG	X 5.04 M = 198.4 N Y00 =0 Z 1.84 = 72.4
AFPODYNAMIC FLIGHT STATE T. AIPSPEED= 10.4 KT A/C MACH NO= .126	DYNAMIC PRES 1.09 STATIC PRES 97.5 TOTAL TEMP- 267.1 STATIC TEMP- 266.3	KPA ■ KPA ■ DEG K ■ DEG K ■	22.8 PSF 2037. PSF 480.8 OEG R 479.3 DEG R
RODY ALPHA*2 DEG Rody Reta: 1.3 deg	DENSITY- 1.28 DENSITY ALT* -429. SONIC SPEED ® 327.7 BATE OF CLIMB72.	KG/M3 = . M = . M/SEC = . M/MIN = .	.00748 SLUG/FT3 -1409. FT 1075. FPS -237. FPM

INFRIIAL FLIGHT STATE

AXTS	FG LIN (M/S)	(FPS)	(GUNACC (G)	HUP [] (M/S)	(N VFL (FPS)	HUB LIN ACC (G)	AXIS	ANG POIS (DEG)	ANG RATES (rad/sec)	ANG ACC (RAD/SEC?)
X Y 7	41.35 •95 -•13	135.7 3.1 4	040 .004 -1.030	41.33 .93 13	135.6 3.0 - • 4	038 003 -1.030	ROLL PITCH YAW	0 -1.8 102.1	012 .009 006	032 009 .024
C חאדא היך	ANGLES	3	M.R. COLL= A1= B1=	7.8 6 3.0	DEG PEG OEG	HORIZ FIN= T.P. COLL= PEDAL POS=	6.9 OFC 8 OEC 6 OEC	3		

-

-

.

POTOP	PARAMETERS				SHAFT ALPHA=	Z DE	G			
		HOVER	TIP MACH-	• 69	CONTROL ALPHA-	-3.2 DF	G			
		TIP	MAX-MACH=	.82	DELTA PSI=	-1.3 OF	G			
		TIP	MIN-MACH*	.57						
		.9R	MAX-MACH=	•75	ENGINE POWER *	330	. KW	2	443. H	ΗP
		• 9R	MIN-MACH-	• 50	THRUST FACTOR-	•930E+0	7 N	*	.209E+07 1	LB

FLIGHT N7. 61 MU*.181 TOTAL C0*.000146 AMB TEMP= -6.9 C * 19.63 F RUN N0, 4 NZ* 1.030 G OMEGA- 34.069 RAD/SFC TEMP 060* 10.5 C * 50.88 F RUT N0, 4 NZ* 1.030 G OMEGA- 34.069 RAD/SFC TEMP 060* 10.5 C * 50.88 F RUT N0, 4 NZ* 1.030 G OMEGA- 34.069 RAD/SFC REM* 0.06 RAD/SFC * 3.1 PEAK-TO-PEAK* 6.3 FEAK-TO-PEAK* ROTOR LTADS (AMP/PHASE) DRAG BRACE CHORD.449 CHORD.803 PITCH LINK TORSION.449 (N-M/DEG) (N-M/DEG) (N-M/DEG) PITCH LINK TORSION.449 MEAN 43219 12842. 2056. -1259. -205. 10063 (N-M/DEG) (N-M/DEG) PITCH LINK TORSION.449 MARMONC - 1 3622./ 7.3 183./ 73.2 6.5/.10.9 MEAN 43219. 12842. 2056. -1259. -205. 3 1424./ 18.0 392./ 13.2.3 65./.10.9 46./ 4 236./ 73.3 142./.77.2 17./.42.0 125./.17.0 6./.48.4 5 364./ 55.7 72./.44.2		NASA.	LANGLFY FLIGHT DA	ATA AH-1G	- ROTOR PERFI	PMANCE AND LOAD	S
KUN NO, 4 NZ* 1.030 G OMEGA- 34.069 RAD/SFC TIME 52606.55 CLP*.00376 RPM/324* 1.004 RAD/SFC ROTOR ANGLES THETA 3/4 (DEG) A0* 7.3 A1* -*8 B1* 3.1 PEAK-TO-PEAK* 2.2 ROTOR LDADS (AMP/PHASE) DRAG BRACE CHORD .40*8 A1*10 B1* 3.1 PEAK-TO-PEAK* 2.2 ROTOR LDADS (AMP/PHASE) DRAG BRACE CHORD .449 CHORD .803 PITCH LINK TORSION .449 MEAN 43219. 12842. 2056. -1295. -205. 2 703./ -7.6 320./ -13.6 8./ 32.3 654./ 10.9 46./ -15.4 3 1424./ 18.0 32.1 127.7 25./ 42.0 127.7 68./ 46./ -15.4 3 142.4./ 18.0 36./ 77.7 25./ 42.0 127.7 68./ 46./ -15.4 4 236./ 77.3 167./ 77.7 25./ 42.0 12./ -65.0		FLIGHT NO. 61	MU* •181 V# 80.4 k	TOTAL CO (T MAST CO	• 000155 • 000146	AMB TEMP= TEMP U60=	-6.9 C = 19.63 F 10.5 C = 50.88 F
TIME 52606.55 (LP + .00376 RPM/324+ 1.004 ROTOR ANGLES THETA 3/4 (DEG) A0 + 7.3 A18 R1. 3.1 PEAK-TO-PEAK" 6.3 TEETER ANG (DEG) A0 +8 A1 + -1.0 R1 + .3 PEAK-TO-PEAK" 2.2 ROTOR LAADS (AMP/PHASE) DRAG BRACE CHORD .449 CHORD .403 PITCH LINK TORSION .449 (N/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) (N/M/DEG) MEAN 43219. 12842. 2056125924.8 254.7 57.6 2 703.7 -7.6 320.7 -3.1 183.7 -35.6 1595.7 -24.8 254.7 57.6 3 1424.7 18.0 322.7 19.7 65.7 -125.4 373.79 68.7 48.4 4 236.7 -37.3 147.7 77.7 25.7 42.0 175.7 67.0 R.7 48.4 4 236.7 -37.8 147.7 77.7 25.7 42.0 175.7 60.1 41.7 -37.3 6 663.7 -89.5 369.7 73.7 65.7 -13.6 8.7 32.9 66.7 68.7 48.4 9 89.7 36.3 151.7 -29.4 82.7 -38.6 04.7 42.2 5.7 -58.7 10 21.7 -71.4 145.7 -73.9 65.7 -61.9 46.1 11.7 -5.4 11 40.7 34.0 83.7 -74.2 03.4 7.7 0 21.7 -54.6 2.7 -61.5 9 89.7 36.3 151.7 -29.4 82.7 -38.6 04.7 42.2 5.7 -58.7 10 21.7 -1.9 107.7 -25.0 41.7 -09.9 30.7 43.1 13.7 -1.5 PFAK-TO-PFAK 9384. 3142.7 961. 41.7 60.9 110.7 -64.1 17.7 -34.1 11 40.7 34.0 83.7 -70.3 31.2 -57.3 23.7 -59.5 113.7 -1.5 9 FFAK-TO-PFAK 9384. 3142. 9 61.4 4128.6 630. MFAN -132. 11960.7 03 31.7 -57.3 23.7 -55.5 113.7 -74.9 48.0 (N-M/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) MFAN -132. 119.7 -70.3 31.7 -57.3 23.7 -55.5 113.7 -74.9 3 190.7 -22.7 71.7 (9 44.7 24.1 22.7 +40.6 84.7 -22.7 3 190.7 -22.7 71.7 (9 44.7 24.1 22.7 +40.6 84.7 -22.7 4 80.7 -72.4 23.7 85.5 3.7 49.1 20.7 -87.9 39.7 -55.5 113.7 -74.9 5 153.7 24.9 15.7 24.7 71.9 5.7 21.7 20.2 64.7 22.0 7 66.7 35.3 17.7 23.7 21.7 5.7 21.7 20.2 64.7 22.0 7 66.7 35.3 17.7 23.7 21.7 20.7 44.8 8.7 30.6 6.7 7.1 13.7 53.0 30.7 -77.1 3.7 39.7 -75.8 31.7 7 82.2 7 7 66.7 35.7 77.7 26.7 74.8 8.7 30.0 6.7 7.7 21.7 20.2 64.7 22.0 7 66.7 35.3 17.7 26.7 74.4 8.8 6.7 30.9 26.7 77.7 13.8 7.7 10.8 8 3 0.0 77.6 3.7 44.8 8.7 30.4 6.7 7.1 13.7 53.6 153.7 75.2 11.7 7.7 13.7 53.6 153.7 7.7 11.7 3.7 53.7 10.8 8 30.7 71.6 3.7 76.6 5.7 15.7 37.7 -86.0 35.7 -75.2 11 20.7 -75.8 11.2 7.7 75.7 26.7 14.5 3.7 7.7 21.7 7.7 21.7 7.7 13.7 35.6 153.7 7.7 26.7 7		RUN NO, 4	N7 = 1 030 (- 34 060 RAD/SE	CAN TEMP-	2.4 C ■ 36.37 F
RMITNP ANGLES THETA 3/4 (DEG) TEETER ANG (DEG) A0* 7.3 A0* A1* 8 A1* A1* 8 A1* A1* 3 B1* PEAK-TO-PEAK* 6.3 PEAK-TO-PEAK* 6.3 2.2 ROTOR LMADS (AMP/PHASE) DRAG BRACE (N/DEG) CHORD .449 (N/DEG) CHORD .803 (N-M/DEG) PICH LINK (N-M/DEG) TORSION .449 (N-M/DEG) TORSION .449 (N-M/DEG) MEAN 43219. 12842. 2056. -1259. -205. 3 1424./ 18.0 302./ 19.7 65./ 1595./ 24.8 254./ -57.6 3 1424./ 18.0 302./ 19.7 65./ 172./ 80.1 61./ -37.3 4 236./ -37.1 147./ 72.7 25./ 20.1 172./ 80.1 61./ -57.6 3 142 18 73.9 65.7 72.1 41.7 73.6 27.0 172./ 80.1 61./ -51.1 11./ -54.6 4 236./ -73.8 74./ 50.8 34./ -60.3 66./ -65.1 11.// -54.6		TIME 52606.55	CLP= .00376	RPM/324	■ 1.004		
ROTOR LINADS LAMP/PHASE) DRAG BRACE CHORD .449 PITCH LINK TORSION .449 MEAN 43219. 12842. 2056. -1259. -205. HARMONIC1 3622./ -1 93./ -3.1 183./ -35.6 1595./ -24.8 254./ -57.6 2 703./ -7.6 370./ 13.6 8./ 32.3 654./ -10.9 46./ 48.4 4 236./ -37.3 142./ 77.7 25./ 47.0 125./ 67.0 8./ 42.6 5 364./ 58.7 72./ 44.7 28./ 27.0 172./ 80.1 41./ -75.6 8 26./ -37.8 74./ 50.6 34./ 73.9 64./ -64.3 66./ -65.1 11./ -54.7 9 89./ 36.3 151./ -29.4 82./ 71.2 170./ 88.2 36./ -61.2 10 21./ -10.1 107./ -35.6 94./ 42.2	ROTOR	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO= 7.3 AO=8	A1=8 B A1= -1.0 B	1: 3.1 PEA 1: .3 PEA	K–TO–PEAK" 6.3 K–TO–PEAK* 2.2
MEAN 43219, 12842, 2056, -1259, -2055, -2055, 487, -57,6 -205, 1955, -24.8 -254, -57,6 -270, -13,6 -155, -154, 1955, -24.8 -254, -57,6 -270, -13,6 -155, -154, 1955, -24.8 -254, -154, -254,	ROTOR	LANDS (AMP/PH)	SE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MEAN	43219.	12842.	2056.	-1259.	-205.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HARMONIC+1	3622./1	953./ -3.1	183./ -35.6	1595./ -24.8	254./ -57.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	703./ -7.6	320./ -13.6	8./ 32.3	654./ -10.9	46./ -15.4
4 236./ -37.3 147./ 77.7 25./ 42.0 125./ 67.0 8./ 42.6 5 364./ 55.7 72./ 44.2 28./ 27.0 172./ 80.1 41./ -37.3 6 663./ -89.5 369./ 87.4 128./ 71.2 179./ 88.2 36./ -65.0 7 227./ -71.4 145./ -73.9 65./ -63.3 66./ -85.1 11./ -5.4 8 26./ -37.8 74./ 50.8 34./ 73.9 21./ -54.6 2./ -61.5 9 89./ 36.3 151./ -29.4 82./ -38.6 94./ 42.2 5./ -65.3 10 21./ -1.9 107./ -35.0 41./ -80.9 110./ -64.1 17./ -34.1 14 49./ 34.0 81./ -42.0 34./ -60.8 55./ -45.3 10./ -35.8 12 119./ -30.5 69./ -82.9 35./ -19.9 39./ 43.1 13./ -1.5 9 98.4 3142. 961. 4128. 630. 9 147./ -42.5 283./ -70.3 310./ -57.3 299./ -55.5 113./ -74.9 44RM0NIC-1 417./ -42.5 813./ -70.3 310./ -57.3 299./ -55.5 113./ -74.9 9 117./ -31.5		3	1424./ 18.0	392./ 19.7	65./ -15.4	373./9	68./ 48.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	236./ -37.3	142./ 77.7	25./ 42.0	125./ 67.0	8./ 42.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	364./ 55.7		28./ 27.0	172./ 80.1	41.7 - 37.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		n		309./ 07.4	128.7 (1.2	1/9./ 00.2	
9 80,/ 36,3 151,/ -29,4 82,/ -38,6 94,/ 42,2 5,/ -58,7 10 21,/ -1.9 107,/ -35,0 41,/ -80,9 110,/ -64,1 17,/ -34,1 11 40,/ 34,0 83,/ -42,0 34,/ -60,8 55,/ -45,3 10,/ -35,8 12 119,/ -30,5 69,/ -82,9 35,/ -19,9 39,/ 43,1 13,/ -1,5 PFAK-TN-PFAK 9384. 3142. 961. 4128. 630. MFAN -132. 113. -1.5 28,/ -70,3 310,/ -57,3 29,/ -55,5 119,/ -74,9 YAR MONIC-1 417,/ -42,5 283,/ -70,3 310,/ -57,3 29,/ -55,5 119,/ -74,9 2 117,/ -31,5 119,/ -40,1 158,/ -30,0 17,/ -48,6 84,/ -32,7 3 199,/ -72,7 71,/ 9 44,/ 24,1 42,/ -48,6 84,/ -32,7 3 199,/ -72,7 71,/ 9 44,/ 24,1 42,/ -48,6 84,/ -32,7 3 199,/ -72,7 71,/ 9 44,/ 24,1 42,/ -48,6 84,/ -32,7 3 199,/ -72,7<		/ 0	26 / -37.8	74./ 50.8	34 / 73.0	21./ -54.6	2.7 - 51.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 Q	89./ 36.3	151./ -29.4	82./ -38.6	94./ 42.2	5./ -58.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	21./ -1.9	107./ -35.0	41./ -80.9	110./ -64.1	17./ -34.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	49./ 34.0	83./ -42.0	34./ -60.8	55./ -45.3	10./ -35.8
PFAK-TN-PFAK9384.3142.961.4128.630.BFAM .174 (N-H/DEG)BEAM .350 (N-H/DEG)BEAM .449 (N-H/DEG)BFAM .606 (N-H/DEG)REAM .803 (N-H/DEG)MFAN 4AR MONIC-1-132.11846297.54.YAR MONIC-1 417./ -31.5119./ -40.1158./ -30.0170.v -29.798.v -42.53199./ -22.771./ .944./ 24.142./ -48.684./ -32.73199./ -22.771./ .944./ 24.142./ -48.684./ -32.7480./ -72.423./ 85.53./ 49.120./ -87.154./ -39.55153./ 24.916./ 25.427./ 19.539./ 13.87./ 82.2654./ 14.95./ -87.921./ 5.721./ 20.264./ 22.0766./ 35.317./ 23.427./ 29.24./ 31.937./ 10.8830./ 71.63./ 84.38./ 30.48./ 7.113./ 53.6951./ 25.726./ 44.816./ 39.926./ 74.721./ -71.11080./ 64.928./ 87.122./ 55.537./ -86.035./ -75.21120./ -26.37./ -66.65./ 16.710./ -57.58./ 82.61264./ -23.017./ 316./ -34.217./ -2.011./ -2.2PEAK-TO-DEAK142075.286.590.0632		12	119./ -30.5	69.1 -82.9	35./ -19.9	39./ 43.1	13./ -1.5
BFAM .174 (N-M/DEG) BEAM .350 (N-M/DEG) BEAM .449 (N-M/DEG) BFAM .606 (N-M/DEG) REAM .803 (N-M/DEG) MFAN '4AR MONIC-1 -132. 119. -46. -297. 54. '4AR MONIC-1 417./ -42.5 283./ -70.3 310./ -57.3 299./ -55.5 119./ -74.9 2 117./ -31.5 119./ -40.1 158./ -30.0 170./ -24.7 93./ -42.5 3 199./ -22.7 71./ .9 44./ 24.1 42./ -48.6 84./ -32.7 4 80./ -72.4 23./ 85.5 3./ 49.1 29./ -87.1 54./ -39.5 5 153./ 24.9 16./ 25.4 27./ 19.5 30./ 13.8 7./ 82.2 6 54./ 14.9 5./ -87.9 21./ 5.7 21./ 20.2 64./ 22.0 7 66./ 35.3 17./ 23.4 27./ 29.2 4./ 31.9 37./ 10.8 8 30./ 71.6 3./ 84.3 8./ 30.4 8./ 7.1 13./ 53.6 9 51./ 25.7 26./ 44.8 16./ 39.9 26./ 74.7 21./ -71.1 10 80./ 64.9 28./ 87.1 22./ 55.5 37./ -86.0 35./ -75.2 11 20./ -26		PFAK-TO-PEAK	9384.	3142.	961.	4128.	630.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BFAM .606 (N-M/DEG)	REAM .803 (N-M/DEG)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MFAN	-132.	119.	-46.	-297.	54.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HAR MONIC-1	417./ -42.5	283./ -70.3	310./ -57.3	279.1 -55.5	113./ -74.P
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	117./ -31.5	119./ -40.1	158./ -30.3	173.0 -29.9	83.V° -42.J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	199./ -22.7	71./ .9	44./ 24.1	42./ -48.6	84./ -32.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· -	3	199./ -22.7	71./ .9	44./ 24.1	42.1 -48.6	84./ -32.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	80./ -72.4	23./ 85.5	3./ 49.1	29./ -87.1	54./ -39.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	153./ 24.9	16./ 25.4	27./ 19.5	39./ 13.8	7./ 82.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	54./ 14.9	5./ -87.9	21./ 5.7	21./ 20.2	64./ 22.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		/	00./ 35.3	1/./ 23.4	21.1 29.2	4./ 31.9	3/./ 10.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	50.7 /1.0	3.1 64.3	0e/ 30e4		13.7 23.0
11 20./ -26.3 7./ -66.6 5./ 16.7 10./ -57.5 8./ 82.6 12 64./ -23.0 17./ .3 16./ -34.2 17./ -2.0 11./ -2.2 PEAK-TO-OFAK 14.30 752 865 000 6.32		9	2107 6201	20./ 44.0	10+/ 34+9	20+/ 14+/	$\frac{21}{35} = \frac{71}{5} = \frac{2}{25}$
12 64./ -23.0 17./ .3 16./ -34.2 17./ -2.0 11./ -2.2 PEAK-TO-OEAK 14.30 752 845 000 632		10		7 / -66.6	5./ 16.7	10 / -57.5	B / B2-6
PEAK-TO-OFAK 1430 752 945 000 632		12	64./ -23.0	17./ .3	16./ -34.2	17.7 - 2.0	11./ -2.2
		PEAK-TO-OFAK	1430.	75?.	865	909.	632.

FLIGHT NO. 061 RUN NO. 12 TIME 53383.87 (SFC)	AIRCRAFT TO	OTAL WT =	33080. 7639.	N I LB	LOADED	CG	X = 5.0 Y = Z = 1.3	04 M 00 84	= 1: # #	98.4 0 72.6	N
AFRODYNAMIC FLIGHT S T. AIRSPFED= 134.6 A/C MACH ND= .212	ТАТЕ КТ	DYNAM Stat Tot Stat	IC PRES= IC PRES= AL TEMP- IC TEMP*	3.06 96.4 268.4 266.1	KPA KPA D£G K OEG K	* * *	63.8 2014. 483.2 478.9	PSF PSF REG PEG	R R		
RODY ALPHA= -4.6 Rody RetA=5	DFG PEG	DFNS Ioni Rate (1	DENSITY- ITY ALT= C SPEED= F CLIMB=	1.26 -317. 327.5 -90.	KG/M3 M M/SEC M/MIN	= 2 2 2 2	•00245 - 1040. 1075. - 294.	SLUG FT FPS FPM	'FT3		
INFPTIAL FLIGHT STAT	F.										

AXIS CG (M/S	LIN VEL) (FPS)	CG U	N ACC	HUB L (M/S)	IN VEL (FPS)	HUH LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X 6°.0 Y6 7 -5.57	2 226.4 1 -2.0 -18.3	(.(?)91)43)92	69.03 61 -5.57	226.5 -2.0 -18.3	092 .059 992	ROLL PITCH YAW	-2.0 -5.8 21.9	002 002 .005	.078 .005 .025
CONTROL ANG	LFS	MR.	CULL- &1= 81=	12.1 4 7.2	DEG Peg DEG	HORIZ FIN= T.R. Coll= Pedal Pos=	9.2 OF •4 OF •5 DE			

ROTOR PARAMETERS	HOVER	TIP MACH= .69	SHAFT ALPHA CONTROL ALPHA*	-4.6 PEG -11.8 DFG	
	TIP Tip	MAX-MACH90 MIN-MACH= .48	OELTA PSI:	.5 DEG	
	•9R .9R	MAX-MACH- •83 MIN-MACH* .41	ENGINE POWER Thrust factor,	622. KW = .909E+07 N =	834. HP •204E+07 LB

.

	NASA	LANGLFY FLIGHT DA	ATA AH–1G ==	ROTOR PERFO	RMANCE AND LOAD	S
	FLIGHT NO. 61	1 MU*,305 V≖134.6 k	TOTAL CO KT MAST CO	* •000300 = •000293	AMB TEMP- TEMP U60= Can Temp-	-7.1 C = 19.23 F 12.1 C = 53.84 F -1.1 C = 30.07 F
	TIME 53313.69	NZ= .992 (CLP* .00367	G OMEGA RPM/324	- 33.848 PAD/SE = .998	c	
ROTOR	ANGLES	THFTA 314 (DEG) TFETER ANG (DEG)	AO= 11.5 AO= -,9	Al=4 B Al= -2.6 B	1= 8.3 PEA 1=5 PEA	.К–ТО–РЕАК- 16.8 .К–ТО–РЕАК* 5.4
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN Harmonic—1	36629. 4898./ -60.4	13945. 1538./ -62.7	1855. 374./ -72.5	-3295. 3681./ -45.6	-457. 522./ -50.5
	2 3 4	1224./ -81.6 3760./ 29.2 721./ 25.1	424./ 62.4 1128./ 32.1 476./ 1.1	111./ -10.1 41./ 21.2 76./ -31.7	3163./ -47.1 447./ -66.8 487./ 75.7	352./ -51.6 103./ -8.4 67./ 14.3
	5	418./ 85.6 332./ -26.4	298./ -84.7 267./ -28.3	97./ -63.0 61./ .3	245./ 31.1 337./ 1.8	54./ 64.3 37./ 23.2
	/ 8 ዓ	5°./ .6 108./ -36.3	106./ -25.8 51./ 22.3	28./ -49.8 19./ 50.0	20.1 82.1 47.1 -44.7 38.1 -54.2	7./ -22.4 2./ -47.6
	10 11	74./ 61.4 64./ 9.2 110./ -63.4	151./ 71.1 72./ -43.6 22./ 1.0	64./ 65.8 38./ -60.9	$32 \cdot / 47 \cdot 1$ $18 \cdot / -13 \cdot 1$ $17 \cdot / -34 \cdot 0$	$1 \cdot / -73 \cdot 2$ $5 \cdot / -32 \cdot 8$ $2 \cdot / -74 \cdot 8$
	PEAK-TO-PEAK	17491.	5781.	1245.	12692.	1490.
		RFAM .174 (N-M/DEG)	BEAU .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2	46. 1371./ -67.7 593./ -52.0	121. 605./ -66.5 374./ -86.4	-15. 600./ -64.9 383./ -89.1	-241. 539./ -68.0 310./ -85.6	-8. 235./ -87.1 117./ -63.0
	3 4 5	410./ 25.6 411./ 27.6 119./ -32.3	21./ 87.4 119./ 5.0 3./ 28.3	73./ 38.7 61./ -16.5 32./ 7.2	197./ 51.0 77./ 22.8 9./ -22.3	222./ 50.1 148./ 2.4 71./ 15.6
	6 7 8	66./-41.4 29./-21.9 28./ 24.1	11./ 12.8 8./ -16.8 3./ -11.6	24./ -46.7 15./ 24.0	17./ -85.2 10./ -67.0	44./ -59.0 35./ 71.5 26./ -73.5
	9 10	14./ -15.9	6./ 11.7 10./ 70.3	8./ -69.7 8./ 43.3	8./ 88.2 11./ -87.8	14./ -47.7 8./ -63.7
	11 ∎2 PEAK-TO-PFAK	9./ -02.0 26./ 89.7 4564.	5./ /9.7 7./ -68.1 1807.	5./ +18.8 10./ -80.7 1725.	6./ -76.1 10./ -70.1 1619.	4./ -51.7 7./ -45.8 1156.

FLIGHT NO. 061 RUN NO. 14 T{ME 53718.24 {SEC}	AIRCRAFT TOTA	L WT • 33774. N 7 <u>5</u> 93. L	LOADED CG X B Y Z	5.04 M = 198.3 00 = 1.85 = 72	8 IN 9 7
AEPODYNAMIC FLIGHT S T. AIPSPEED= 150.2 A/C MACH NO236	TATE KT	DYNAMIC PRES STATIC PRES TOTAL TEMP- STATIC TEMP-	3.80 KPA 79 95.8 KPA 200 268.6 DEG K 483 265.7 DEG K 478 .	•3 PSF 1• PSF 5 DEG R 2 DEG R	
RODY ALPHA6.2 RODY RFTA - 6	PEG DEG	DENSITY DENSITY ALT SONIC SPEED- RATE OF CLIMB-	1.26 KG/M3 = .002 -263. M = -86 327.3 M/SEC = 1074 -31. M/MIN = -10	44 SLUG/FT3 2. FT 4. FPS 3. FPM	
INFRITAL FLIGHT STAT	r				
AXIS CG LIN VEL (M/S) (FPS)	CG LIN ACC H (G) (UBLINVEL HUB M/S) (FPS)	G)	ANG POS ANG F (DEG) (RAD)	RATES ANG ACC (RAD/SEC21
X 76.82 257.0 Y .86 2.8 Z -8.36 -27.4	120 7 .028 972 -	6.80 252.0 .85 2.8 8.36 -27.4	133 ROLL .025 PITCH 972 YAW	-2.100 -6.6 .00 211.0 .00	04014 09 .062 02 .001
CONTROL ANGLES	M.R. COLL= A1= B1=	14.1 OEG HI 6 DEG T. 8.3 DEG PE	IRIZ FIN= 10.1 DFG R. COLL= 1.6 OEG EDAL POS= 1.9 DEG		
ROTOR PARAMETERS		SHA	AFT ALPHA* -6.2 DF	G	

HOVEP	TIP MACH*	.70	CONTROL ALPHA*	-14.5	DEG		
TIP	MAX-MACH-	.93	OFLTA PSI*	6	DEG		
TIP	MIN-MACH=	•46					
•9R	PAX-MACH-	•86	ENGINE POWER=	•	775. KW	1039.⊦	ΗP
. 9R	MIN-MACH=	• 39	THRUST FACTOR*	•918	E+07 N	.206E+07 L	. B

	NAS	SA LANGLEY F	LIGHT DATA	44-1G	ROT	OR PERFOR	MANCE AND	LOADS	
	FLIGHT NO.	61 MU= V=	⊪338 150.2 KT	TOTAL MAST	CQ= .000	367 363	AMB T Temp	'EMP= -7.5 C U60= 13.3 C	■ 18.52 F ■ 55.97 F
	RUN NO.	14					CAN T	EMP1.5 C	■ 29.38 F
	TIME 53718.	NZ= 17 CLP=	•00354	RPM/	324= 1.005	S RAD/SEC	2		
R U L Ü B	ANGLES	THETA 3/4 Tefter an	(DEG) A G (DEG) A	0= 13.4 0=9	A1= A1=	3 R1 -2.9 B1	10.0 1= -1.0	PEAK–TO–PEA PEAK–TO–PEA	K" 20.1 AK- 6.2
RULUB	LOADS (AMP/	PHASE) CRAG (N/	BRACE CH DEG) (IORD .449 N-M/DEG)	CHORI (N-1	0 .803 1/DEG)	PITCH LII (N/DE	NK TORSION (N-M/	.449 DEG)
	MEAN	34171.	145	87.	1660		-4190.	-583.	
	HARMONIC-	1 6573./	-74.5 21	26./ -73	.8 513	/ -75.6	4567./ -	50.1 625./	-53.7
	:	2 1773./	68.4 7	69./ 32	·1 193	-8.6	4124./ -	-46.4 441./	-54.9
		3 5525./	29.0 16	88./ 31	•8 70. 7 142	/ 52.1	404./	80.2 123./ 61.2 81./	-12.5
		4 991•/ 5 600•/	77.8 3	53./ -76	.1 145	./ -68.4	109./	31.9 29./	86.8
	í	6 144. /	-65.7 1	22./ -84	.5 53	/ 88.3	330./	2.0 41./	2.2
	-	7 569./	-4.5 3	55./ -5	.7 101	/ -10.6	99.1	40.9 23./	-2.2
	:	8 237./	85.7 1	34./ 71	.2 39	./ 63.2	26.1	88.2 4./	-65.9
	ç	9 62./	-53.3	64./ -3	.5 19	/ 16.5	48./ -	-78.1 5./	-71.1
	10	0 41./	11.2 1	39./ 1	•1 72	./ -20.3	97./	88.9 12./	80.3
	1	1 69./	-37.2 1	52./ -31	.9 89	./ -43.5	35./	8.2 1./	-89.0
	12 PEAK-TO-PFAK	2 45./	43.0 77	46.7 -32 52.	1718	•/ -2/•8	15735.	1869.	22.3
		BEAM • (N-M/	174 BF DEG) (AM .350 N-M/DEG)	BEAM	.449 1/DEG)	BEAM .60 (N-M/DE	6 BEAM • G) (N-M/	803 DEG)
	MEAN	270.	1	39.	-1		-225.	-19.	
	HARMONIC-	1 1888./	-73.9 7	20./ -70	.8 690	/ -68.2	676./ -	-70.4 290./	-89.4
		2 794.1	-48.3 4	44.1 -89	.9 449	/ 84.0	353./	83.4 114./	-80.6
	:	3 703./	15.4	43./ 24	.2 89	./ 31.0	261./	34.8 311./	32.3
		4 463./	19.2 1	28./ -5	.8 63	•/ -33•5	82./	25.2 135./	-5.2
		5 134./	-40.6	12./ 70	•5 30	./ -24.2	18./ -	-11.3 61./	-27.5
		6 98. /	-80.2	12./ 14	•7 28	./ -70.1	23./	71.8 35./	-75.1
		7 60./	-62.4	14./ -71	•7 21	./ -39.0	7./	29.5 37./	-3.2
		8 30./	7.5	Z./ -59	•0 13	./ 31.0	9./	76.5 25./	74.1
		9 27./	73.8	7./ 25	•7 9	./ -67.0	14./	69.Z 14./	-86.1
	1	0 51./	52.3	20.1 69	• 4 14	. 44.3	29.1	81.8 24.7	-81.8
	1	7 24./	-70.0	4./ -53	• • •	•/ 24•/	/•/ -	···· ····	-10+/
		/ 20•/	3/0/	7.7 2	• 5 0	•/ 0•9	2+/	2.1	01+2
	FFAR-IU-PEAP	1 02130	21	140	2020	•	10770	1-03-	

3

.

-

.

.

FL∎GHT NO. 061 RUN NO. 268 TIME 55556.20 (SEC)	AIRCRAFT TOTAL WT • 32 7	2470. N LOAOEC 2300. LB	CG X• 5.03 M Y•00 Z• 1.87	■ 198•2 IN ■ -•0 ■ 73.6
AERODYNAMIC FLIGHT S 7. AIRSPEED* 0.0 A/C MACH NO" 0.000	TATE DYNAMIC STATIC KT TOTAL STATIC	PRES- 0.00 KPA PRES- 101.9 KPA TEMP* 270.0 DEG F TEMP- 270.0 DEG F	• 0.0 PSF • 2129. PSF < • 485.9 OEG < • 485.9 DEG	R R
BODY ALPHA- 10.1 BODY BETA" -15.4	DEG DEN OEG DENSITY SONIC S RATE OF C	NSITY* 1.32 KG/M3 ALT= -750. M Speed- 329.9 M/See Climb" O, M/MI	B = .00255 SLUG/ = -2461. FT C = 1082. FPS N = 0. FPM	FT3
INERTIAL FLIGHT STAT	E			
AXIS CGLIN VEL (M/S) (FPS)	CG LIN ACC HUB LIN VE (G) (M/S) (FP	L HUB LIN ACC S) (G)	AXIS ANG POS (DEG)	ANG RATES ANG ACC (RAD/SEC) (RAD/SEC)
X 0.00 0.0 Y 0.00 U.0 Z 0.00 0.0	.004 0.00 0 .015 0.00 0 996 0.00 0	.0 .005 .0 .014 .0 996	ROLL8 PITCH0 YAW 5.3	.000006 .003005 006 .024
CONTROL ANGLES	MP. COLL= 9.2 OEG Al= -2.1 DEG Bl= .4 DEG	HORIZ FIN- T.R. COLL= PEDAL POS=	6.5 DFG 6.5 DEG 6.6 DEG	
ROTOR PARAMETERS	HOVER TIP MACH69	SHAFT ALPHA- CONTROL ALPHA-	0.0 DEG HUE —•4 deg	3 HEIGHT= 3.2 R
	TIP MAX-MACH69 TIP MIN-MACH- .69	DELTA PSI*	0.0 OEG	

•9R MAX-MACH- .62 •9R MIN-MACH- .62 THRUST FACTOR- .957E+07 N • .215E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOP PERFORMANCE AND LOADS

	FLIGHT NO. 61 RUN ND. 26 TIME 55556.09	MU-0.000 V= 0.0 k NZ= .996 G CLP= .00339	TOTAL CO Mast CO G Omega- RPM/324	• .000234 • .000216 • 34.021 RAD/SFC • 1.003	AMB TEMP- TEMP U60 = CAN TEMP-	-3.2 C • 26.24 F 12.7 C • 54.82 F •9 C • 33.57 F
ROTOR	ANGLES	THETA 3/41 (DEG) Teeter ang (Deg)	AO= 8.1 AO= -1.0	Al* -1.5 81 Al* .1 Bl	L: .2 PEA L:6 PEA	K–TO–PEAK* 2.9 K–TO–PEAK'' 1.3
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	40224. 3078./ 18.3 1449./ 72.5 728./ -69.1 364./ 82.6 348./ 82.3 275./ 82.1 183./ 51.6 182./ -80.9 146./ 71.8 125./ 88.7 64./ -80.1 88./ 63.3 9027.	13397. 1102./ 12.5 476.1 75.8 352./ -83.1 125./ -63.7 68./ -58.5 97./ -89.2 102./ 36.1 107./ -62.1 34./ -30.9 114.1 46.0 29.1 -86.5 24./ 2.5 3391.	1656. 149./ 10.7 83./ 62.5 51./ -69.6 22.1 7.5 24./ -5.4 20./ -70.7 18./ 65.1 42./ -47.5 13./ -26.4 23./ 37.2 24./ -2.7 18./ -42.4 685.	-1833. 1061./ -81.4 130./ -13.3 159./ -22.0 60./ 49.9 140./ -32.4 43./ -77.3 13./ -24.2 37./ -76.0 18./ 73.0 15./ -60.3 12./ 80.0 5./ 1.9 2287.	-219. 19.1 39.4 8./ 12.5 47.1 -78.8 15./ -16.3 27./ -19.6 10./ 73.6 6./ -78.7 2./ 45.6 3./ -75.8 2./ -82.4 1./ -82.6 1.1 .6
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 7 8 9 10 10 11 2 PEAK-TO-PEAK	$\begin{array}{c} -59. \\ 179. / & 34.7 \\ 103. / & 55.3 \\ 14. / & -5.5 \\ 65. / & -46.1 \\ 25. / & -29.6 \\ 36. / & 61.9 \\ 6. / & -50.0 \\ 4. / & 59.8 \\ 7. / & -4 \\ 5. / & 55.4 \\ 2. / & 28.0 \\ 4. / & -14.9 \\ 651. \end{array}$	242. 33./ 34.6 29./ 25.7 11./ -85.4 15./ -30.7 2./ 71.6 1./ 63.3 1./ 32.1 3./ -3.4 3./ 56.8 2./ -75.6 2./ 17.5 1./ -45.4 145.	136. $80./ 33.4$ $34./ 19.4$ $18./ -84.7$ $7./ -20.9$ $2./ -12.0$ $8./ -85.2$ $3./ 51.4$ $2./ 1.4$ $3./ -22.6$ $2./ -59.8$ $1./ 16.7$ $1./ 43.4$ $204.$	-3. 170./ 19.3 52./ 21.8 23./ 85.0 5./ -43.8 5./ 79.9 5./ 65.4 2./ 15.4 4.1 3./ -50.1 1./ 2.7 3./ -82.5 2./ 49.7 382.	-261. 235./ 6.7 76./ 24.4 23./ 56.7 7./ -88.8 6./ 61.1 15./ -84.6 3./ 25.1 2./ -73.9 2./ -44.8 2./ 75.2 1./ -2.9 1./ -26.1 497.

۰.

N	ASA LANGLEY FLIG	HT DATA AH-1G	PADS PC	M DATA	
FLIGHT NO. 062 RUN NJ. 16 TIME 68261.70 (SEC)	AIRCRAFT TOTAL	₩Î = 35710. N 3028. LB	LDADED (G X= Y= Z=	5.04 M ■ 19 ■ -•00 ■ ■ 1.83 ■ 7	8.6 IN 0 1.9
ALRODYNAMIC FLIGHT 1. Airspeed= 109.3 A/C Mach NU+ .17	STATE 1 KT 2	DYNAMIC PRES Static pres Tjtal Temp= 20 Static temp- 20	1.96 KPA = 4 94.3 KPA = 19 67.2 DEG K = 48 65.7 DEG K = 47	1.0 PSF 73. PSF 1.0 DEG R 8.2 OEG R	
BODY ALPHA1.4 BODY BLTA∓ -1.	DEG 3 DEG Ra	DENSITY* DENSITY ALT= - Sonic Speed= 3 Ate of Climb=	1.24 KG/M3 = .00 103. M = -3 27.3 M/SEC = 10 -21. M/MIN = -	0240 SLUG/FT3 339. FT 074. FPS -67. FPM	
INERTIAL FLIGHT STA	TE				
AXIS CGLINVEL (M/S) (FPS)	CGLIN ACC HU (g) (m	BLIN VEL HUB /S) (FPS)	LIN ACC AXIS (G)	ANG POS ANG (Deg) (ra	GRATES ANG ACC Ad/Sec) (Rad/Sec2)
A 26.17 184.3 Y -1.29 -4.2 Z -1.61 -5.3	046 56. .034 -1 -1.018 -1	16 184.2 - .27 -4.2 .01 -5.3 -1	.04J ROLL .041 PITCH .016 YAW	9 -2.0 272.2	011 .030 006028 005064
CONTRUL ANGLES	M.R. CULL- Al= BI=	5.3 DEG HOR 4 DEG T.R 5.8 LEG PED	IZ FIN- 8.3 DE • COLL= •4 DE AL PDS= •4 OE	6 6 6	
RUTOK PARAMETERS	HUVER TIP MACH=	.70 CONTRO	T ALPHA. −1.6 D L ALPHA≖ −7.4 D	EG EG	

TIP N	/AX-MACH=	.87	DEL	TA PS1 =	1.3 DEG	;			
TIP M	IIN-MACH=	.52							
.9R h	AX-MACH=	. .	ENGINE	POWER-	426.	ΚW		572.	ΗP
.9R M	IIN-MACH=	•45	THRUST	FACTÜK≡	.907E+07	N	3	•204E+07	L B

	NASA	LANGLEY FLIGHT DA	TA AH-1G	- ROTOR PERFO	RMANCE AND LOAD	S
	FLIGHT NO. 62	MU≖ .246 V= 109.3 K	TOTAL CO MAST CO	• 000205 • 000194	AMB TEMP= TEMP U60=	-7.5 C = 18.53 F 11.4 C = 52.47 F
	RUN NU 16	N7= 1018 6		* 34.031 PAD/SE	CAN TEMP"	-1.8 C = 28.68 F
	TIME 68261.55	CLP= ,00396	KPM/324	= 1.005	L.	
RUTUR	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO= 9.1 A)= -1.1	Al=5 B Al= -2.2 B	l= 6.3 PEA l= .0 PEA	K−TO−Pt AK= 12.1 K−TO−PE AK= 4.3
ROTLR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHURD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	42191.	13478.	2096.	-2178.	-297.
	HARMONIC-1	3376./ -33.8	925./ -36.4	255./ -58.1	2321./ -34.9	376./ -50.7
	2	814./ 24.1	171./ -2.1	51./ -54.7	2164./ -44.0	220./ -37.7
	3	2017./ 37.7	533./ 38.5	28./ 3.7	334./ -8.0	89./ 21.5
	4	415./ 50.0	261./ 50.6	23./ -32.2	490./ -85.4	58./ 64.6
	5	118./ 72.0	43./ -31.5	54./ 1.9	237./ 35.0	37./ 57.3
	6		388./ -58.8	52./ -65.9	150./ -27.5	11./ -39.7
	1	403.7 07.7	324.7 -71.0	01.7 85.9	90.1 00.2	15./ 73.0
	0	1/3+/ 10+4	91*7 - 20*3	49.7 -0.2	69.7 -34.0	8./ -40./
	10	80./ =70.8	162.7 -65.5	23.7 -10.7	54 / 60 01	30.7 30.9
	11	46-1 42-6	76.7 -15.4	43.7 = 13.2	30./ -3.0	
	12	46./ -9.7	28./ 61.9	26./ -17.9	15./ 56.5	5-/ 31-3
	PEAK-TO-PEAK	11236.	3869.	1010.	8364.	1104.
		BEAM .174 (N-m/deg)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 1 n-m/d eg)
	MEAN	-174.	97.	-47.	-275.	34 .
	HARMONIC-1	671./ -56.2	420.1 -64.4	435./ -65.0	413./ -67.9	197./ -84.5
	2	458.1 -60.9	286.1 -74.0	303./ -72.3	239./ -70.9	73./ -65.0
	3	94./ 69.9	36./ 1.1	44./ 54.4	83./ 81.4	94./ 77.3
	4	401./ 62.5	109./ 49.6	55./ 34.8	86./ 62.8	147./ 47.7
	5	101./ 21.7	1./ -60.1	32./ 58.1	10./ 54.6	59./ 40.3
	6	63./ -46.1	6./ -29.2	29./ -47.8	18./ -35.5	60./ -44.5
	7	50./ 34.3	9./ 65.2	25./ 66.8	9.1 -46.4	34./ -61.5
	8	29./ -63.9	2./ 55.3	14./ -65.0	8./ -21.1	26./ -5.7
	9	26./ 45.5	17./ 71.7	5./ 25.1	17./ -83.5	10./ -35.4
	10	46./ 7.7	18./ 23.7	11./ -1.1	24./ 31.2	20./ 45.1
	11	8./ 25.0	10./ -33.0	1./ 80.2	3./2	2./ 2.1
	12	28./ -13.0	9./ -11.5	9./ -2.9	9.1 -4.2	5./ 19.5
	PEAKTIUTPEAK	2780.	1264.	1353.	1326.	857.

.

٠

.FLIGHT NO. 062 NUN Nil. 23 TIME 68550,70 (SEC)	AIRCRAFT TOTAL	₩T = 35321. N 7941. LB	LOADED CG X= Y= Z=	5.04 M = 198.6 00 =0 1.83 = 72.1	I N
AERÚÚYNAMIC FLIGHT T. Airspéed= 109. A/C mach nú= .17	STATE I 2 KT 2	STATIC PRES= 1 STATIC PRES= 9 TUTAL TEMP- 26 STATIC TEMP= 26	.96 KPA ■ 41 4.4 KPA ■ 197 7.3 DEG K ■ 481 5.7 DEG K ■ 478	•0 PSF 2. PSF •1 DEG R 2 DEG P	
BUJY ALPHA≖ . BUDY BETA≖ 5.9	6 GEG Deg R	DENSITY- 1 DENSITY ALT= -1 SONIC SPEED= 32 ATE OF CLIMB3	•24 kG/M3 ≢ •002 11• M -36 7.3 M/SEC = 107 81. M/MIN ≡ -125	40 SLUG/FT3 4. FT 4. FPS 2. FPM	
INERTIAL FLIGHT STAT	ΓE				
AXIS OG LIN VEL (M/S) (FPS)	CG LIN ACC HUE (G) (M)	BLIN VEL HUBL (S) (FPS) (IN ACC AXIS G)	ANG PUS ANG RA (Deg) (RAD/S	TES ANG ACC EC) (RAD/SEC2)
X 55.67 163.3 Y 5.75 18.9 Z .62 2.0	071 55 054 5. -1.414	.50 182.4 74 18.5 62 2.3 -1.	C74 ROLL C51 PITCH 410 YAW	45.0004 -1.8 .141 203.7 .124	•032 •016 -•004
CUNTROL ANGLES	M.R. CCLL= (Al= Bl= (9.3 DEG HURI .0 DEG T.R. 4.1 DEG PEDA	2 FIN= 7.3 DEG COLL= •6 DEG L POS= •0 DEG		
RUTOK PARAMETERS	HOVER TIP MACH=	SHAFT .70 CONTROL	ALPHA = .6 DE ALPHA = -3.4 DE	G	
	TIP MAX-MACH=	.87 DEL	TA PSI= -5.9 DE	G	
	TIP MIN-MACH* •9R MAX-MACH* .9R MIN-MACH*	•53 •80 ENGINE .4h THRUST	POWEK≃ 354 FACT⊡k= ₀918E+0	.Kw'≢ 475. 7 N ■ .206E+0	HP 7 L B
∺IASA FLIGHT NU. 62 RUN NO. 23 TIME 68880.55	LANGLEY FLIGHT I MU= .244 V= 109.7 NZ= 1.410 CLF= .00546	DATA AH-1G Total CQ KT MAST CQ G UMEGA D RPM/324	ROTOK PERFOR • 030167 • 030158 • 34.304	MANCE AND LOADS Amb temp Temp U60= 17 Can temp* -1	7.5 C = 18.57 F 1.4 C = 52.57 F 1.8 C = 28.68 F
אט ו טא ANGLES	THETA 3/4 (DEG TEETER ANG (DEG) AO= 8.7) AO= -1.1	Al* .4 B1 Al*9 B1	• 4•2 PEAK • • 9 PtAK-	-TO-PEAK' b.8 ·TO-PEAK* 2.5
RUTUR LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
MĒ AN HARMOM C-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	44608. 4115./ -10.5 1466./ -46.4 2289./ 13.2 555./ 15.6 574./ -74.1 1546.1 -90.0 214./ 36.7 30.1 79.6 102./ 18.9 111.1 -54.4 56./ 67.3 123./ 43.1 14982.	13186. 1062./ -10.4 553./ -56.2 655./ 18.0 277./ -4 92./ 49.0 1064./ 83.9 42./ -73.7 38./ -35.5 130./ 42.9 20./ -73.6 39./ -2.8 91./ 51.4 5635.	2233. 307./ -70.4 13./ -75.6 59./ 1.4 o2./ -28.7 38./ 21.4 222./ 81.1 44./ 71.1 24./ 41.9 35./ 5.1 50./ -75.2 35./ 48.3 47./ 12.5 1206.	-1753. 1650./ -43.6 1611./ -43.6 324./ 10.9 426./ 78.9 107./ -57.2 161./ -17.0 88./ -31.4 50./ -73.1 142./ 18.1 95./ -72.3 26./ 9.1 27./ 77.3 6611.	$\begin{array}{c} -279. \\ 324./ -66.4 \\ 179./ -28.1 \\ 78./ 15.9 \\ 71./ 28.5 \\ 30./ -63.5 \\ 48./ -7.5 \\ 9./ -12.0 \\ 3./ -19.2 \\ 9./ 66.9 \\ 11./ -61.6 \\ 8./ -74.1 \\ 7./ -13.6 \\ 972. \end{array}$
	BEAM .174 (N-N/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .006 (N-M/DEG)	BEAM .803 (N-M/DEG)
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 ΡΕΔΚ-ΤŪ-ΡΕΔΚ	187. 478./ -42.2 284./ -62.6 85./ -66.2 363./ 31.9 142./ -81.2 126./ 55.3 96./ -18.5 42./ -36.0 84./ -3.8 61./ 75.9 9./ 70.9 62./ 14.6 2289.	150. 424./ -73.2 256./ -87.4 60./ -21.2 108./ 16.5 20./ 83.1 13./ -1.9 14./ -18.7 15./ 30.0 49./ 18.0 26./ -83.4 10./ 48.0 18./ 22.7 1301.	-87. 458./ -75.3 308./ -85.9 62./ 18.2 60./ 2.9 26./ 9.1 8./ -42.7 43./ 3.3 11./ -46.4 25./ -1.3 19./ 75.2 9./ 57.6 17./ 3.4 1493.	-367. 446./ -78.8 288./ -88.4 97./ 52.9 81./ 26.2 30./ -71.1 12./ -24.0 22./ 57.1 21./ 66.9 50./ 34.2 37./ -79.3 3./ -47.0 13./ 22.7 1420.	170. 266./ 86.2 127./ 74.7 109./ 57.9 159./ 8.1 66./ 45.1 49./ 65.4 86./ 41.7 36./ 76.5 46./ 49.3 32./ -74.9 8./ 42.1 2./ 70.4 1062.

 \mathcal{P}

FLIGHT NO. 062 AIRCRAFT RUN NJ. 24 TIME 68939.10 (SEC)	TOTAL WT = 35282. N LOADED CG X = 5.04 M = 198.6 IN 7932. LB Y =00 =0 Z = 1.83 = 72.1
AERODYNAMIC FLIGHT STATE	DYNAMIC PRES 1.91 KPA = 39.8 PSF
Ť. AIRSPEED= 107.7 KT A/C MACH ND= .169	STATIC FRES 94.3 KPA 1970. PSF TOTAL TEMP= 267.3 DEG K = 481.1 DEG R STATIC TEMP= 265.7 DEG K = 478.3 OEG K
BUDY ALPHA6 DEG BODY BETA= 3.3 DEG	DENSITY = 1.24 KG/M3 = .00240 SLUG/FT3 DENSITY ALT = -100, M = -329. FT SONIC SPEED= 327.3 M/SEC = 1074. FPS RATE OF CLIMB199, M/MIN = -652. FPM
INERIIAL FLIGHT STATE	

AX IS	CG L1 (M/S)	N VEL (FPS)	(GLIN ACC (G)	HUBL (M/S)	IN VEL (FPS)	HUBLIN ACC (G)	AXIS	ANG PUS (deg)	ANG RATES .(RAD/SEC)	ANG ACC (RAD/SEC2)
x	55.31	101.5	062	55.18	181.0	059	ROLL	33.0	.005	008
Y	3.18	10.4	+.018	3.19	10.5	021	PITCH	-2.2	.063	016
Ž	62	-2.0	-1.236	62	-2.0	-1.235	YAW	341.1	.09 5	.012
CONTROL	ANGLE	s	M.R. COLL=	9.4	DÉG	HOR1Z FIN=	7.9 OEC	3		
			A1 =	2	CεG	T.R. COLL≃	.7 DE(3		
			81=	5.0	DEG	PEDAL POS #	•2 DE	G		

~

÷

RUTOR PARAMETERS		SHAFT ALPHA=	6 DEG	
	HOVEK TIP MACH= "7	CONTROL ALPHA=	-5.6 DEG	
	TIP MAX-MACH# .d	7 DELTA PSI=	-3.3 DEG	
	TIP MIN-MACH= .5	3		
	•98 MAX-MACH= •8	O ENGINE POWER*	412. KW =	552. HP
	•9R MIN-MACH= .46	6 THRUST FACTOR-	.909E+07 N =	.204E+07 LB

	NASA	LANGLEY FLIGHT LA	ATA 4H-16	ROTOR PERF	URMANCE AND LOAI	DS
	FLIGHT NÜ. 62	MU= .242 V= 107.7 H	TOTAL CO T MAST CO	• .000197 • .000183	AM8 TEMP* TEMP U60 #	-7.4 C = 18.63 F 11.4 C = 52.45 F
	RUN NO. 24				CAN TEMP*	−1.8 C = 28.68 F
	T∎ME 66938.96	NZ# 1.235 CLP= .00475	RPM/324	* 34.159 RAD/S = 1.007	EC	
RUTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	A0 = 8.9 AJ = −1.1	Al= .2 Al= -1.4	81= 5.0 PE 81= .6 PE	AK-TD-PEAK≈ 10.2 AK-TD-PEAK≈ 3.0
ROTUR	LOADS (AMP/PH	ASE) DRAG BPACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	43075.	13399.	2133.	-1968.	-289.
	HARMONIC-1	3932./ -22.0	990./ -24.3	259./ -58.5	2065./ -41.3	337./ -58.4
	2	995./ -13.0	344./ -42.8	19./ -66.0	1785./ -47.0	187./ -35.9
	3	2315./ 27.3	636./ 28.3	40./ -2.6	269./ -4.5	79./ 16.8
	4	504./ 26.7	218./ 20.8	29./ -19.5	428./ 84.5	59./ 34.7
	5	369./ 89.1	101./ 58.6	45./ 33.4	128./ -13.9	27./ 66.7
	6	1679.7 -69.9	767./ -76.3	162./ -81.2	81./ 21.3	23./ 18.4
	7	242.7 -85.6	267./ -84.1	37./ -81.6	60./ 23.7	14./ 39.1
	8	55./ 9.0	47.7 -51.1	13./ -50.2	54.7 -67.0	7./ 73.8
	10			27.7 60.8	86.7 40.4	1./ -6.8
	10	91.7 - 39.0		4/0/ -4208	09.7 -35.1	8./ 9.9
		126 / -56 6	1000/ -2000	4/ •/ -5/ •9	11.7 29.6	6./ -9.1
	PEAK-TO-PE AK	12306.	4755.	1014.	7077.	984.
		BEAM •174 (N-M/DEG)	BEAM .350 (n-m/deg)	BEAM .449 (N-M/DEG)	BEAM .006 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN	24.	95.	-77.	-326 -	108.
	rl ARMONIC-1	571./ -55.8	422./ -71.3	445./ -73.1	440./ -75.0	240.7 -88.4
	2	348.1 -66.0	262./ -82.0	301./ -80.3	252./ -80.5	100./ 89.7
	3	52./ -73.3	54./ -5.0	59./ 33.3	79./ 68.5	95./ 65.8
	4	331./ 46.5	101./ 33.1	56./ 20.8	78./ 43.9	132./ 29.2
	5	94./ -71.0	15./ 80.8	. 27./ 41.1	11./ -81.2	64./ 52.9
	6	60./ 77.8	11./ 10.1	10./ 35.1	16./ -41.9	49./ -86.0
	7	37./ -9.6	9./ 11.7	25./ 35.3	19./ -77.3	51./ 86.6
	8	26./ -14.7	7./ 53.7	7./ -40.0	16./ -71.8	29./ -51.5
	9	48./ 21.3	32./ 39.5	14./ 30.0	34./ 59.1	29./ 74.1
	10	43./ -72.0	20./ -44.6	12./ -62.2	25./ -41.2	21./ -33.5
	11	10./ 84.1	8./ 89.3	5./ -82.1	1./ 79.2	4./ 86.6
	12	38./ 87.8	11./ 88.5	12./ -80.4	9./ -73.6	4./ -53.2
	PLAK-TO-PEAK	2067.	1264.	1402.	1326.	925.

-

.

.

FLIGHT NO. 062 RUN NJ. 26 TIME 69103.20 (SEC)	AIRCRAFT TO	TAL WT = 35188. N 7911. LB	LOAOEU CG X = 5 Y = - Z = 1	5.04 M = 198.5 IN 00 =0 1.33 = 72.1
Atrodynamic flight s	TATE	UYNAMIC PRES= 1.82 Static pres= 94.4	KPA ■ 38.0 KPA = 1972	PSF • PSF
T. AIRSPEED= 105.2 A/C MACH NO* .165	KT	TOTAL TEMP= 267.2 Static temp= 205.7	DEG K = 480.9 DEG K = 478.3	9 DEG R OEG R
8 JJY ALPHA* -2.1 8 JJY 86 TA≖ -1.5	DEG DEG	DENSITY ■ 1.24 DENS TY ALT ■ −109 Sonic Speed = 327.3 Rate of Climb" 7.	KG/M3 = ,00240 M = -358 M/SEC = 1074. M/MIN = 22	SLUG/FT3 • FT • FPS • FPM
INITIAL FLIGHT STAT	E			
AXIS CGLIN VEL (M/S) (FPS)	CG LIN ACC (G)	HUB LIN VEL HUB LIN (M/S) (FPS) (G)	ACC AXIS AN	NG POS ANG RATES ANG ACC (DEG) (RAD/SEC) (RAD/SEC2)

X Y Z	54.07 -1.42 -2.01	177.4 -4.7 -6.6	05 99	54 39 73	54.06 -1.40 -2.01	177.4 -4.6 -6.6	052 .027 993	ROLL PITCH YAW	-2.1 -2.0 270.9	.008 .002 .003	061 008 043
CONTROL	ANGLES		M.R.	COLL= A1= B1=	9.1 7 5.3	OEG LEG DEG	HORIZ FIN= T.R. CULL= PEDAL POS=	8.0 DEG .4 DEG .4 OEG			

KÜTÜR PARAMETERS	HOVEF TIP MACH= .69	SHAFT ALPHA= Control Alpha=	-2.1 OEG -7.4 DEG
	TIP MAX-MACH= .86	DELTA PSI=	1.5 DEG
	•9R MAX-MACH* •79 •9R MIN-MACH* •46	ÉNGINÉ POWER= Thrust factor=	428. KW ■ 575. HP •904E+07 N ■ •203E+07 LB

	NASA	LANGLEY FLIGHT DA	ATA AH-1G	- RUTUR PERF	ORMANCE AND LOAD	20
	FLIGHT NO. 62	M∪ ≖ ∘237 V≢ 105.2 k	TOTAL CO	,000207	AMB TEMP* TEMP 1160=	-7.4 C ■ 18.65 F 12.0 C = 53.59 F
	RUN NO. 26	NZ- 002 /		BAOAS	CAN TEMP-	-1.8 C = 28.68 F
	TIME 69103.05	CLP= .00384	R PM/324	= 1.003	EL	
RUTOR	ANGLES	THETA 314 (DEG) Teeter ang (DEG)	∆0≖ 8 .9 ∆0≖ -1.1	Al=7 Al= -1.9	B1= 5.5 PE/ B1=0 PE/	AK-TO-PEAK= 11.3 AK-TO-PEAK- 3.8
RUTUR	LOADS (AMP/PH/	ASE) DRAG BRACE (N/DEG)	CHURD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N~M/DEG)
	MEAN	41867.	13640.	1950.	-2124.	-294.
	HARMUhl C-1	3622./ -16.8	989.1 -21.7	230./ -46.7	2256.1 -32.9	355./ -49.8
	2	489./ -36.7	138./ -65.7	50./ -29.1	1848./ -44.7	206./ -40.8
	3 4	458./ 70.7	605./ 41./ 243./ 63.3	36./ -13./	398.7 -19.7	83./ 22.2
	5	20./ 36.4	97./ -59.7	30./9	211./ 26.0	32./ 48.6
	b	948./ -30.2	667./ -35.6	147./ -40.3	76./ -74.2	8./ 43.7
	7	310./ 53.7	203./ 62.0	53./ 34.5	103./ 55.7	8./ 23.1
	8	215./ 6.2	172./ 2.0	50./ 18.4	49./ -42.1	2./ -47.8
	9	35./ -56.5	67./ -77.5	26./ -74.8	31./ 87.6	5./ 45.9
	10	104.7 -24.5	71./ -30.3	43./ .3	59./ 61.2	3./ 83.5
	11		54./ 75.8	9.7 -42.9	23.7 -68.9	5./ 21.9
		121.7 -07.0	10/0/ -2000	01.7 -07.2	14./ -41./	3.7 42.0
	FLAN-TU-FEAN	12300.	4400.	1012.	(392.	1016.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-H/DEG)
	MEAN	-217.	85.	-55.	-282.	41 .
	HARMONIC-1	674./ -51.2	392./ -62.9	409./ -63.3	391./ +65.1	174./ -78.8
	2	359./ -54.0	246./ -71.1	265./ -69.4	214./ -67.3	72./ -60.2
	3	68./ 57.9	42./ 22.8	48./ 57.3	75./ -86.9	91./ 89.0
	4	279./ 58.9	84./ 47.1	46./ 38.0	61./ 61.7	112./ 42.2
	5	87.1 -23.6	9.1 62.7	18./ 54.7	7./ 86.4	51./ 54.0
	6	23./ -69.3	5./ 34.4	2.1 -44.0	13./ 25.2	22./ -34.1
	7	53./ 60.5	12./ 60.7	29./ 79.3	8./ -29.6	38./ -65.8
	8	14./ -01.4	3./ -8.6	5.1 -12.5	4.7 -13.0	18./ -24.5
	10	49.7 - 2	10+/ -00+3	4.7 90.0	14.7 -12.1	17.7 -03.7
	11	16./ 29.5	8./ =16.0	7./ 33.9	23•/ 3U+1 8./ -1.2	1/•/ 2D•V B / 37 4
	12	1./ 76.3	2./ -26.9	4./ 5.8	4./ 26.7	3.1 44.7
	PEAK-TO-PEAK	2288.	1152.	1209.	1145.	743.

25

1

.

;

FLIGHI NO. 062 RUN NO. 30 TIME 69369.90 (SEC)	AIRCRAFT TOTA	L WT ≖ 35046•N L 7879•LB	.0ADED CG X 5.04 Y0 Z 1.83	M = 198.5 IN 0 = −.0 5 = 72.1
AEROUYNAMIC FLIGHT S T. AIRSPEEL= 104.8 A/C MACH NO* .165	KT	DYNAMIC PRES= 1.60 Static pres= 94.3 Tutal Temp* 267.4 Static Temp* 266.0	KPA = 37.7 KPA = 1970. DEG K = 481.4 OEG K = 478.8	PSF PSF DEG R DEG R
6001 ALPHA= 5.1 Budy Beta= 4.6	DEG DEG	DENSITY* 1.24 DENSITY ALT= -87. SONIC SPEED= 327.5 KATE OF CLIMB373.	KG/M3 = .00240 S M = -286. F M/SEC = 1074. F M/MIN = -1225. F	LUG/FT3 T PS PM
INERTIAL FLIGHT STAT	E			
AXIS OG LIN VEL (h/s) (FPS)	CG LIN ACC H (G) (IUB LIN VEL HUB LIN A M/S) (FPS) (G)	ACC AXIS ANG (DE	PUS ANG RATES ANG ACC G) (KAD/SEC) (RAD/SEC2)
x 53.54 175.7 Y 4.31 14.1 Z 4.81 15.6	057 5 048 -1.027	3.53 175.6056 4.32 14.2047 4.81 15.8 -1.027	ROLL 1 PITCH -1 YAW 21	.8 .007 .002 .4 0.06008 .9024 .020
CUNTRUE ANGLES	M.R. COLL= A1= B1=	6.5 DEG HORIZ FJ .3 DEG T.K. COL 4.5 PEG PEDAL PC	N= 7.5 OEG L= .2 DEG IS= .5 DEG	
ROTOR PARAMETERS	HOVER TIF MACH	SHAFT ALP Shaft Alp	2HA* 5.1 DEG 2HA= .7 OEG	

HOVER	TIP MACH-		CONTROL ALPHA-	• 1	UEG			
TIP	PAX-MACH-	.87	DELTA PSI=	-4.6	OEG			
TIP	MIN-MACH=	.54						
•9R	FAX-MACH=	.80	ENGINE POWER=	:	206. 1	<w =<="" th=""><th>276.</th><th>HP</th></w>	276.	HP
•9R	MIN-MACH=	. 47	THRUST FACTOR	.916	E+07 N	∎ I	.206E+07	LB

	NASA	LANGLEY FLIGHI DA	ATA AH–1G – –	ROTOR PERF	ORMANCE AND LOA	20
	FLIGHT NO. 62	MU= .236 V= 104.5 K	IOTAL CO T Mast Co	= .000098 = .000086	AM8 TEMP= Temp U60=	-7.2 C = 19.11 F 10.9 C = 51.57 F
	RUN ND. 30				CAN TEMP=	-1.8 C = 28.60 F
	TIME 69360.83	NZ= 1.027 C CLP= .00394	G OMEGA RPN/324	= 34.136 RAD/S = 1.006	EC	
KUTOR	ANGLES	THETA 3/4 (DEG) Teeter Ang (DEG)	∆0= 6.0 ∆J= -1.1	Al= .4 Al= -1.8	Bl= 4.4 PE Bl= .8 PE	АК-ТО-РЕАК= 8.7 Ак-ТО-РЕАК= 3.6
RUTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TURSION .449 (n-m/deg)
	MÉAN	47463.	12576.	2420.	-858.	-187.
	HARMON1C-1	1938./9	379./ 3.3	121./ -61.9	2368./ -42.9	362./ -66.5
	2	1394./ -31.3	366./ -44.8	27./ -1.3	1561./ -63.7	158./ -52.3
	3	2728./ -10.8	742./ -8.5	j7./ −36.5	436./ -53.2	87./ -21.5
	4	771./ 4.8	421./ -6.9	52./ -28.5	531./ 38.4	85./ 4.2
	5	411./ -15.9	154./ 37.4	38./ 29.3	332./ -19.7	48./ 15.3
	b	550./ 65.3	359./ 67.2	43./ -88.1	111./ -72.4	8./ -16.1
	7	136./ 47.2	105./ 87.3	24./ 81.3	148./ -37.4	14./ -40.7
	8	36./ 26.8	61./ 15.8	38./ 38.4	6./ -9.9	12./ -34.6
	9	95.7 29.8	95.7 -20.9	31.1 34.4	53./ -89.9	5./ -36.4
	10	112.7 -13.6	110.7 11.4	85./ 30.6	74.7 11.2	11./ 48.0
	12		70+7 40+0 55 7 -25 1	4./ 4.1	47.7 45.0	3./ -30.0
	PEAK-TO-PEAK	10166.	3202.	864.	7880.	1002.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .605 (N-4/DEG)	BEAM .803 {N-M/DEG}
	MEAN	-456.	7.	-139.	-352.	44 -
	HARMONIC-1	519./ -57.7	410./ -75.0	424./ -77.0	373./ -81.5	161./ 88.8
	2	313./ -81.4	248.1 85.5	273./ 87.7	236./ -89.3	75./ 82.4
	3	214./ 85.9	77./ -54.8	61./ -7.8	93./ 39.3	108./ 32.6
	. 4	551./ .3	156./ -13.8	70./ -21.5	106./8	178./ -8.1
	5	228./ -60.5	13./ 76.3	37./ -19.3	30./ -56.8	42./ 16.3
	6	39./ 86.0	10./ -71.0	35/ 71.8	19./ 65.9	83./ 77.0
	7	125.1 73.6	24./ 85.6	36./ -85.2	5./ -72.0	26./ -6.3
	8	55./ 76.0	15./ 87.2	11./ -74.0	21./ -83.5	28./ 86.5
	9	33./ 76.2	28./ 82.5	9./ -85.8	40./ 89.9	47./ -84.0
	10	42./ -60.6	16./ -30.9	9./ -52.7	24./ -49.1	22./ -53.9
	11	19.1 46.2	12./ 29.2	2.1 -69.4	8./ 26.7	3./ 20.4
		45.1 - 22.1	10./ 1.5	8./ -29.3	11./ -8.7	3./ 32.3
	PEAK-IU-PEAK	2922.	1302.	1330.	1201.	963.

.

34965•N LOADED CG X= 5.04 N = 198•5 N 7861•LB Y= -.00 = -.0 Z= 1.83 = 72•2 FLIGHT NO. 062 A RCRAFT TOTAL NI = 34965. N RUN NJ. 31 Z= 1.83 TIME 09468.17 (SEC) DYNAMIC PRES 1.99 KPA 41.5 PSF Static Pres 94.8 KPA 1979. PSF Tutal Temp- 267.7 Oeg K 481.9 Deg R Static Témp 266.2 Deg K 479.1 Oeg R AEKODYNAMIC FLIGHT STATE T • AIRSPEED- 109.8 KT A/L MACH NO: .173 DENSITY- 1.24 KG/M3 • .30241 SLUG/FT3 DENSITY 4LT = -130. M = -426. FT SONIC SPEED = 327.6 M/SEC = 1075. FPS RATE OF CLIMB- 298. M/MIN = 978. FPM BUJY ALPHA- -5.2 DEG BUJY BETA: -1.7 OEG INERTIAL FLIGHT STATE AXIS OG LIN VEL CG LIN ACC HUB LIN VEL HUB LIN ACC AXIS ANG PUS ANG RATES (M/S) (FPS) (G) (M/S) (FPS) (G) (DEG) (RAD/SEC) ANG ACC (RAD/SEC) (RAD/SEC2) 56.21 104.4 -1.72 -5.7 -5.10 -16.7 -3.7 -.045 -.043 ROLL -.015 -.021 56.22 184.5 Х -5.6 -16.7 .034 PITCH -.0 201.3 .007 -.009 - 1.69 .029 -5.10 -1.007 -1.007 YAW - 0.02 .080 7 K.K. COLL: 1C.9 DEG A1: -1.3 DEG B1: t.3 DEG 8.7 DEG .3 DEG .6 DEG CUNTRUE ANGLES HORIZ F1N= T.R. CULL' PEDAL POS= SHAFT ALPHA* -5.2 OEG Control Alpha= -11.5 DEG RUIJR PARAMETERS HOVER TIP MACH* .69 1.8 DEG IIP MAX-MACH= .37 DELTA PSI=

 TIP
 MIN-MACH=
 .52

 .9R
 MAX-MACH=
 .60
 ENGINE
 POWER'
 581.
 KW =
 780.
 HP

 .9R
 M1N-MACH=
 .45
 THRUST FACTON=
 .901E+07
 N
 .203E+07
 LE

NASA LANGLEY FLIGHT DATA AH-1G ---- RUTUR PERFORMANCE AND LOADS TUTAL CQ= .000282 Mast Cq= .000269 AMB TEMP= -7.0 C = 19.41 F TEMP U60• 12.0 C = 54.61 F CAN TEMP= -1.5 C = 29.30 F FLIGHT NO. 62 MU= .248 V= 109.d KT 29.30 F KUN NO. 31 OMEGA* 33.977 FAD/SEC RPM/324= 1.001 NZ= 1.007 G TIME 69468.02 CLP= .00387
 THETA 314
 (DEG)
 AO =
 10.3
 AI =
 -1.1
 BI =
 6.7
 PEAK-TO-PEAK=
 13.0

 TEETER ANG
 (DEG)
 AO =
 -1.1
 AI =
 -2.5
 BI =
 -.4
 PEAK-TO-PEAK 5.2
 KOTOR ANGLES CHORD .803 PITCH LINK RUTUR LUADS (AMP/PHASE) DRAG BRACE CHORD .449 TORSION .449 (N-M/DEG) (N-M/DEG) (N/DEG) (N/DEG) (N-M/DEG) 39131. 39131. 14252. 4132./ -23.8 1198./ -27.0 -2695. MEAN 1829. -364. 2489./ -31.1 HARMONIC-1 267./ -49.8 360.1 -46.9 1198.7 -27.0 169.7 67.3 714.7 56.0 231.7 19.2 87.7 75.9 319.7 9.1 2489.7 -31.1 1780.7 -46.9 307.7 -16.6 262.7 80.9 112.7 -11.0 66./ -10.6 62./ 41.0 670./ -80.6 215./ -46.0 2 215./ -46.0 87./ 31.5 25./ 41.9 15./ 19.7 12./ 22.0 2./ 87.8 5./ -82.5 3 2239./ 58.9 34./ -12.5 393./ 22.2 4 116./ 83.5 32./ 34.8 67./ 13.4 13./ 26.1 31./ -6.5 5 412./ 19.6 123./ -7.8 48./ 77.7 60./ -40.6 6 98./ 18.4 102./ 15.7 7 109./ 16.2 91./ -24.5 8 31./ -6.5 8./ 35.1 29./ 36.7 39./ 39.6 17./ -68.7 15./ -10.1 36./ 86.0 43./ -2.6 31./ -38.8 2.1 -26.7 88./ 45.9 99./ 55.7 24./ -81.2 45./ 51.5 13./ 52.2 7./ 85.6 10 3./ 30.6 11 51./ -65.4 39./ 35.9 3./ -54.0 12 PEAK-TO-PEAK 4051. 797. 1031. 13381. 7276. (N-M/DEG) BEAM .174 BEAM .350 BEAM .449 (N-M/DEG) (N-M/DEG) BEAM .606 BEAM .803 BEAM .350 (N-M/DEG) (N-M/DEG) MEAN 129. -20. -261. -5. 51. HARMONIC-1 887./ -52.8 421./ -60.4 432./ -60.6 412./ -63.5 197./ -81.2 235./ -77.5 16./ 53.9 59./ 40.1 4./ 37.1 432.7 -60.8 254.7 -74.9 43.7 82.5 33.7 33.6 12.7 54.9 300./ -52.2 145./ 38.3 213./ -69.5 82./ -85.3 2 81./ -51.9 3 80./ -88.7 184./ 49.9 45 37./ 54.9 3./ 1.1 81./ 41.3 37./ 41.7 56./ -32.5 5./ -5.0 9./ -57.2 3./ -32.3 5.1 -29.2 22./ -30.2 6 11./ 23.6 7 21./ -87.5 27./ -64.2 41./ 5./ 89.2 8 11./ -58.4 2.1 6.5 9./ -57.6 8./ -27.1 15./ -12.9 10./ -28.3 13./ 25.4 2./ 76.4 2./ 85.9 4./ 53.2 29./ 16.2 5.1 -36.4 1./ -70.3 0 11./ -10.6 B./ 20.1 3./ 41.9 12./ 21.3 2./ -57.6 12./ 34.0 1./ -74.3 2./ -56.8 10 5./ 36.7 11 9.1 48.4 4./ 84.6 3./ -.5 12 · PEAK-IG-PEAK 2495. 1171. 1201. 1140. 703.

FLIGHT NO. 063 AIRCRAFT PUN NO. 1 TIMF 53710.30 (SEC)	TOTAL WT • 34071. N LOADEC 7660. LB) CG	G X= 5.03 M = 198.0 IN Y=00 =0 Z= 1.84 ≖ 72.6
AFREDYNAMIC FLIGHT STATE T. AJRSPEED= 67.5 KT A/C MACH NO= .107	OYNAPIC PRES= .64 KPA Static pres= 80.8 KPA Total TEMP= 264.8 OEG K Static TEMP* 264.2 DEG K	2 7 (2 (2	13.4 PSF 1687. PSF 476.6 DEG R 475.5 DEG R
RODY ALPHA* .4 DEG BODY RETA= 5.1 DEG	DENSITY* 1.07 KG/M3 DENSI TY ALT= 1432. M Sonic Speed* 326.4 M/Sec Ratf of CLIMB* -70. M/MIN	} = = = =	.00207 SLUG/FT3 4699. FT 1071. FPS -230. FPM

INERTIAL FLIGHT STATE

AXIS	IT, LIN (M∕S)	VEL (FPS)	CG LIN ACC (G)	HUB LI (M/S)	N VFL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
¥ Y 7	34.60 3.08 .24	113.5 10.1 .8	036 003 982	34.60 3.08 .24	113.5 10.1 .8	036 000 982	ROLL PITCH YAW	• 0 -1.5 353.4	•002 -•001 •001	.014 001 .016
CONTROL	ANGLES		M.R. COLL= 41= 81=	7.4 -1.0 7.3	NEG OEG DEG	HORIZ FIN= T.R. Coll= Pedal Pos=	6.6 DE •4 DE •5 DE	G G G		

ROTOR PARAMETERS	HOVER	TIP MACH= .70	SHAFT ALPHA= CONTROL ALPHA*	.4 DFG -1.9 DEG	
	TIP Tip	MAX-MACH= .91 MIN-MACH= .59	DELTA PSI*	-5.1 OEG	
	•9P •9R	HAY-MACH- •74 PIN-MACH= .52	ENGINE POWER* THRUST FACTOR*	283. KW = •785E+07 N =	380. HP .176E+07 LB

	NASA	LANGLEY FLIGHT D	TA AH-1G	- ROTOR PERFO	RMANCE AND LOAD	S
	FLIGHT NO. 63	MU* •151 V* 67.5 k	TOTAL CO Mast Co	• .000157 • .000150	AM8 TEMP* TEMP U60=	-9.0 C = 15.83 F 9.2 C = 48.59 F
	PUNINO. 1				CAN TEMP=	−.3 C = 31.47 F
	TIME 53718.15	NZ= .982 (CLP= .00423	RPM/324	* 34.197 *Au/se * 1.008	ι.	
ROTOR	AWGLFS	THETA 314 (DEG) TEFTER ANG (DEG)	AO= 7.5 AO=5	AI* -1.0 B	1= 2.0 PEA 1= .4 PEA	K-TO-PEAK* 4.4 K-TO-PEAK*' •8
RÜTUR	LOADS CAMP/PHA	ASE) DRAG BQACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MFAN	44596.	13839.	2238.	-932.	- 121.
	HARMONIC-1	3855./ -11.0	1148./ -18.5	187./ -44.5	1246./ -3.6	165./ -56.0
	2	824./ -44.0	348./ -39.6	63./ -63.2	591./ 8.9	59./ 29.8
	3	331./ 58.1	68./ 21.7	51./ -31.2	271./ 26.2	77./ 83.0
	4	302./ 68.2	87./ 2.2	24./ -47.3	119./ -16.9	18./ 8.1
	5	253./ 3.8	42./ 27.3	31./ -78.9	113./ -44.2	9./ 17.9
	6	234./ 32.4	162./ 8.9	49./ -34.2	153./ 87.0	33./ -71.0
	7	56./ 77.1	92./ 34.4	51./ 37.0	82./ 25.1	5./ 20.5
	8	95./ -54.3	91./ -81.0	20./ 27.5	36./ .4	11./ -85.8
	9	64./ 63.0	73./ -51.9	32./ -75.7	38./ 17.9	6./ 71.0
	10	69./ .2	53./ 18.3	13./ 48.4	78./ 75.8	16./ -42.2
	11	95.7 -18.2	92./ 31.8	12./ -31.0	51.7 -79.6	8./ 80.6
	PEAK-TO-PEAK	8995.	34.7 -36.8 3137.	8.7 -65.0 957.	3383.	2.7 13.5 551.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 {n-m/deg]
	MEÃ^	-169.	167.	52.	-184.	16-
	HARMONIC-1	298.1 -35.2	168./ -89.5	187./ -89.3	176./ -76.6	74./ -82.8
	2	126./ 3.7	114./ -29.8	145./ -26.5	195./ -26.7	119./ -35.5
	3	119./ -25.9	20./ -11.1	11./ 81.8	56./ -52.8	124./ -35.1
	4	145./ -23.9	46./ -26.5	32./ -13.3	25./ -1.9	47./ 13.3
	5	118./ -45.1	10./ 6.5	23./ -61.8	26./ -31.9	34./ -55.2
	6	34.1 5.3	3./ -52.0	9.1 -64.9	16.1 -23.0	32-1 72-8
	7	39./ 29.7	10./ 82.4	23./ 57.0	20./ -26.5	50./ 22.9
	8	54./ -10.3	10./ 24.2	19./ -4.3	12./ 70.4	21./ -56.1
	9	23./ 10.6	12./ 24.5	11./ -12.2	17./ 22.2	28./ 33.3
	10	56./ 21.1	20./ 50.6	17./ 9.6	15./ 68.9	13./ 81.6
	11	36./ 50.2	18./ 81.2	13./ 5.5	12./ 65.3	8./ 67.7
	17	> 13./ 85.4	1./ 82.6	3./ -54.4	3./ -60.7	4./ -39.7
	PEAK-TO-PFAK	1361.	500.	568.	759.	717.

9

N

 FLIGHT NO. 063 RUN NO. 2 TIMF 53788.60 (SFC)
 AIRCRAFT TOTAL WT • 34048. N 7655. LB
 LOADED CG X = 5.03 M • 198.0 IN Y = -.00 Z = 1.85

 AFRNDYNAMIC FLIGHT STATE
 DYNAMIC PRES = .86 KPA = 17.9 PSF STATIC PRES = 80.9 KPA = 16880. PSF T. AIPSPEFD = 77.9 KT A/C MACH NO = .123
 TOTAL TEMP= 765.1 DEG K = 477.1 DFG R STATIC TEMP= 264.3 OEG K = 475.7 DEG R

 BDDY ALDHA = -.2 OFG PODY RETA = 4.2 PEG
 DENSITY = 1.07 KG/M3 = .00207 SLUG/FT3 DENSITY ALT = 1424. M SONIC SPEED = 326.4 M/SEC = 1071. FPS RATF OF CLIMB = -56. M/MIN = -183. FPM

INFRIJAL FLIGHT STATE

.

.

•

AXIS	OG LIN (M/S)	VEL (FPS)	CG LIN ACC (G)	HUBL (M/S)	IN VFL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (PAD/SEC)	ANG ACC (RAD/SEC2)
X Y 7	39.96 2.96 12	131.1 9.7 4	038 011 986	39.96 2.96 - .12	131.1 9.7 4	040 016 986	ROLL PITCH YAW	•3 •1•5 341.3	001 .001 .000	021 .008 014
CONTROL	ANGLES		M.R. COLL A1 B1	7.7 8 3.0	DFG OEG DEG	HORIZ FIN* T•P• COLL= Pedal POS=	6.9 DEG •5 DEG •6 DEG			

ROTOR PARAMETERS	HOVER TIP MACH70	SHAFT ALPHA- CONTROL ALPHA-	2 OEG -3.2 DEG	
	TTP WAX-MACH .82	DELTA PSI=	-4.2 DEG	
	TIP MIN-MACH= .58	ENGINE DOWER:	293. KW =	393. HP
	•9R MIN-MACH= •13	THRUST FACTOR=	•786E+07 N =	•177E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G -	- ROTOR PERFO	IPMANCE AND LOA	DS
	FLIGHT NO. 63	MU= .175 V= 77.9 H	TOTAL CO (T MAST CO	= .000162 = .000154	AMB TEMP* TEMP U60 =	-8.9 C = 16.03 F 9.4 C = 48.90 F
	RUN NO. 2	NZ#	G OMEGA	* 34 164 RAD/SE	CAN TEMP=	3 C ■ 31.47 F
	TIME 53798.49	CLP= ,00425	RPM/324	■ 1.007		
ROTOR	ANGLES	THFTA 314 (DEG) TEFTER ANG (DEG)	∆0 = 7.7 ∆0 = −.6	Al=7 B Al=3 B	1 = 2.8 PE/ 1 = •4 PE/	AK-TO-PEAK* 5.9 AK-TO-PEAK= 1.0
ROTOR	LOADS (AMP/PHA	(N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMPNIC-1 2 3 4 5 6 7 8 9 10 11 12 PFAK-TO-PEAK	44427. 3645./ -12.3 595./ -25.8 852./ -5.2 315./ 80.0 250./ 17.8 398./ 55.0 85./ 30.9 36./ 48.6 106./ 23.3 79./ -71.0 53./ -36.7 56./ -47.2 8465. BEAM .174 (N-M/DEG)	14081. 1014./ -19.6 319./ -10.9 305./ -16.6 230./ 61.9 51./ 74.0 245./ 45.1 141./ 76.9 72./ -58.0 193./ 75.8 24./ .8 3396. BEAM .350 (N-M/DEG)	2214. 159./ -46.7 10./ 79.8 47./ -47.3 39./ -7.3 30./ -4.1 63./ 15.5 50./ 88.3 29./ 75.1 86./ 72.8 77./ 8.2 42./ 20.4 26./ 50.0 942. BEAM .449 (N-M/DEG)	-1055. 1512./ -18.4 514./ -16.9 356./ -4.1 46./ 52.0 94./ 83.5 152./ 56.7 22./ -21.0 129./ -2.3 30./ 32.0 029./ -3.4 7./ -59.9 4229. BEAM .606 (N-M/DEG)	-137. 212./ -56.0 31./ -15.4 79./ 53.0 7./ 35.6 44./ -47.6 38./ 85.9 9./ -45.1 9./ -85.5 8./ 62.4 10./ 71.3 11./ 87.9 12./ -64.4 651. BEAM .803 (N-M/DEG)
	MFAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	$\begin{array}{c} -175, \\ 387, / -43, 5 \\ 99, / -18, 7 \\ 156, / -43, 9 \\ 115, / 52, 7 \\ 104, / -17, 5 \\ 36, / -76, 6 \\ 41, / -13, 8 \\ 27, / -63, 2 \\ 73, / -21, 8 \\ 55, / -5 \\ 13, / 19, 3 \\ 66, / 82, 1 \\ 1433, \end{array}$	$\begin{array}{c} 163.\\ 231./ -80.1\\ 103./ -41.5\\ 44./ -21.8\\ 40./ 44.5\\ 14./ -10.9\\ 6./ -25.3\\ 15./ -21.3\\ 4./ 40.1\\ 36./ 3.5\\ 16./ 14.1\\ 8./ -49.8\\ 22./ -78.0\\ 660. \end{array}$	$\begin{array}{c} 33.\\ 242./ -78.3\\ 147./ -31.5\\ 22./ 20.6\\ 20./ 4.5\\ 20./ -22.6\\ 18./ -69.3\\ 20./ -31.0\\ 5./ 51.5\\ 23./ -14.4\\ 17./ -16.6\\ 5./ -5.3\\ 13./ 66.1\\ 716. \end{array}$	$\begin{array}{c} -198. \\ 233./ -71.1 \\ 166./ -32.5 \\ 44./ -54.5 \\ 42./ 54.9 \\ 29./ -17.7 \\ 7./ -30.3 \\ 11/ -9.6 \\ 13./ -46.6 \\ 40./ 21.5 \\ 25./ 19.6 \\ 14./ -74.2 \\ 623. \end{array}$	16. 95./ -83.2 94./ -41.0 95./ -33.5 59./ -85.8 16./ 48.9 49./ -27.9 25./ -76.2 27./ -2.9 35./ 44.7 27./ 30.3 8./ -22.4 9./ -79.2 667.

FLIGHT ND. 063 AIRCRAFT PUN ND. 3 TIME 53849.40 (SFC)	TOTAL WT = 34018. N LOAD 7648. LR	ED CO	G X= 5.03 M = 198.0 IN Y=00 =0 Z= 1.85 = 72.7
AERODYNAMIC FLIGHT STATF	DYNAMIC PRES= 1.09 KPA Static PRES= 80.9 KPA	:	22.8 PSF
T. AIRSPFED: 97.9 KT A/C Mach No139	TOTAL TEMP= 265.4 DEG STATIC TEMP- 764.4 DEG	K ■ K ■	477.7 DEG R 475.9 DEG R
RODY ALPHA* -1.9 DEG Body RetA= 2.4 DFG	DENSITY= 1.07 KG/ DENSITY ALT® 1419. M Sonic Speed® 326.5 M/S Ratf of CLIMB® 5. M/M	M3 = EC = IN =	•00207 SLUG/FT3 4656. FT 1071. FPS 18. FPM

INFFTIAL FLIGHT STATE

AXIS	CG LIN (M/S)	VFL (FPS)	CC LII (G	N ACC	HUB L (M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS	ANG RATES (PAD/SEC)	ANG ACC (RAD/SEC2)
1 Y 7	45.14 1.90 -1.51	148.1 6.2 -5.0	0 .0(9	46 01 95	45.14 1.91 - 1.51	148.1 6.3 -5.0	046 000 995	POLL PITCH YAW	-1.8 335.6	.001 .001 003	006 .000 .013
CONTROL	ANGLES		M.R.	COLL= A1= P1=	8.5 - • १ 3.8	DEG DEG DEG	HORIZ FIN= T.R. Coll= Pedal PoS=	7.2 DEG •5 DFG •7 DEG			

.

-

2

RUTUR PARAMETERS	HAVER TIP MACH* 70	SHAFT ALPHA= Control Alpha-	-1.9 DFG -5.7 DFG	
	TIP FAX-MACH- .84 TIP MIN-MACH* 56	DELTA PSI=	-2.4 DEG	
	•9R MAX-MACH* •77 •9R WIN-MACH* •49	FNGINE POWER - Thrust factor'	350. KW = .784E+07 N =	470. HP •176E+07 LB

NASA LANGLEY FLIGHT DATA AH-16 ---- ROTOR PEPFORMANCF AND LOADS

	FLIGHT NO. 63	MU= .197	TOTAL CO	• ,000194	AMB TEMP-	-8.8 C = 16.22	F
	PLIN NO. 3	V" ₿(•9 K	MASI CU	* .000185	CAN TEMP-		F
	KUN NU 3	N7= .995 (= 34 158 RAD/SEC	CAN TEMF	-•3 0 • 31.47	Г
	TIME 53849.75	CLP= .00428	RPM/324	 1.007 	•		
R ባቸቦጽ	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO= 8.6 AO=6	Al*7 Bl Al*7 Bl	. 3.7 PEA 2 PEA	K–TO–PEAK* 7.6 K–TO–PEAK- 1.5	
ROTOP	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
		(2210	144.21	27/ 7	-1425	-179	
		43210.	1058./ -27.2	205./ -53.5	1673./ -21.2	247./ -51.0	
	2	294.1 -46.5	167./ 15.4	2./ -15.3	632./ +39.1	51./ -44.7	
	3	1353./ 25.7	448./ 14.7	67./ -15.4	345./ -6.4	58./ 42.8	
	4	267./ -25.8	200./ -67.2	28./ 64.7	101./ 56.4	23./ 28.3	
	5	500./ 87.2	146./ -88.5	35./ 59.0	232./ -84.6	38./ -28.8	
	6	698./ -72.1	564./ -67.0	131./ -79.0	140./ -74.8	25./ -48.0	
	7	306./ -75.4	263./ -83.4	60./ -74.0	93./ 76.2	11./ -24.8	
	8	88./ 21.3	35./ 18.0	25./ 85.0	18./ 77.3	2./ -80.3	
	9	39./ 78.6	95./ -50.6	35./ -33.0	67./ -37.8	3./ 87.9	
	10	50./ 37.4	106./ -33.2	42./ -32.3	33./ 52.9	4./ -61.8	
	11	74./ 87.8	60./ 86.9	20./ -88.3	32./ -31.6	2./ 56.3	
		43./ -14.8	21./ -64.0	34./ -38.1	22./ -80.9	4./ 41.5	
	PEAK-TO-DFAK	9524.	3954.	939.	4349.	563.	
		BEAM .174 (N-M/DEG)	REAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)	
	MEAN	-108	178.	48.	-187	12.	
	HARMONTC-1	500-/ -46-4	273./ -69.8	291./ -67.5	279./ -67.5	115./ -84.2	
	2	112./ -44.6	84./ -53.3	112./ -40.4	135.7 - 37.0	B4./ -40.6	
	3	119./ -6.5	61./ 21.1	48./ 41.3	38./ -56.0	73./ -39.0	
	4	115./ -64.4	30./ -69.9	6./ 42.3	31./ -72.4	58./ -35.8	
	5	157./ 54.2	18./ 30.0	12./ 55.3	31./ 24.6	14./ 29.1	
	6	57./ 73.2	1./ 62.0	10./ 25.8	18./ 42.6	40./ 37.0	
	7	63./ 27.2	10./ 42.8	25./ 16.6	10./ 24.3	42./ 19.4	
	8	61./ 48.7	10./ 88.0	15./ 41.4	12./ -47.0	16./ -15.4	
	9	26./ -51.9	19./ -47.3	9./ -36.9	16./ -42.3	18./ -57.8	
	10	48./ 24.9	13./ 71.6	15./ 54.2	14./ 80.4	13./ -83.8	
	11	10./ -87.6	8./ -41.4	4.1 -57.8	7./ -27.1	7./ -70.3	
	1?	19./ 9.6	6./ 33.5	7.1 -4.8	8./ 1.4	7./ 11.3	
	PEAK-TO-PEAK	1373.	674.	765.	804.	500.	

FLIGHT NO. 063 AIRCRAFT RUN NO. 4 TIME 53917.20 (SFC)	TOTAL WT = 33947. N 7632. LB	LOADED OG X 5.03 1 Y00 Z 1.85	M = 198.0 IN = −.0 = 72.7
AFRODYNAMIC FLIGHT STATE	DYNAMIC PRES- 1.26 Static pres- 80.9	KPA ■ 26.3 PSI KPA ■ 1690. PSI	F
T. AIRSPEED= 94.4 KT A/C MACH ND= .149	TOTAL TEMP= 265. STATIC TEMP- 264.6	8 DEG K = 478.4 DE OEG K = 476.3 DE	G R G R
RODY ALPHA= -1.9 DEG Rody BETA= 1.4 OFG	DENSITY- 1.07 DENSITY ALT= 1431. SONIC SPEED- 326.6 RATF OF CLIME17	KG/M3 = .00207 SLU M = 4694. FT M/SEC = 1072. FPS M/MIN = -57. FPM	G/FT3
INFRTIAL FLIGHT STATE			
AYIS CG LIN VEL CG LIN AC (M/S) (EPS) (G)	CHUBLINVFLHUBLIN (M/S)(FPS) (G)	ACC AXIS ANG PO (DEG)	S ANG RATES ANG ACC (RAD/SEC) (RAD/SEC2)
X 48.51 159.1048 Y 1.15 3.8 .002 7 -1.64 -5.4964	48.50 151.104 1.15 3.8 .00 -1.64 -5.496	9 ROLL -1.1 7 PITCH -2.3 4 YAW 312.0	001 .024 .001 .000 001 .015

X 48.51 159.1 -.048 48.50 151.1 -.049 ROLL -1.1 Y 1.15 3.8 .002 1.15 3.8 .007 PITCH -2.3 7 -1.64 -5.4 -.964 -1.64 -5.4 -.964 YAW 312.0 CONTROL ANGLE? MR COLL 8.5 OEG HORIZ FINE 7.4 OFG A1 = -.6 OEG T.R. COLL 5 OEG 91 = 4.3 OEG PEDAL POS 6 DEG

R

R

ROTOR PARAMETERS	HOVEP	TIP MACH= .70	SHAFT ALPHA- CONTROL ALPHA-	-1.9 OEG -6.2 DEG	
	TIP TIP	MAX-MACH= .85 MIN-MACH= .55	DELTA PSI=	-1.4 DEG	
	.9R .9R	MAX-MACH- •78 MIN-MACH* •48	FNGINE POWER- THRUST FACTOR'	352. KW ≢ •782E+07 N ≖	472. HP •176E+07 LB

NASA LANSLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NN. 63	MU= .212 V= 94.4	TOTAL CO KT MAST CO	•000196 •.000189	AMB TEMP= TFMP U60=	-8.5 C ■ 16.63 10.0 C ■ 49.99	F
	RUN NO. 4			,	CAN TEMP-	7 C = 30.77	F
	TIME 53'397.07	NZ= .964 CLP= .00416	G OMEGA- RPM/324	- 34.089 RAD/SEC • 1.005			
NT NR	ANGLES	THETA 3/4 (DEG) TEETEP ANG (REG)	AO = 8.7 AO = −.6	Al=6 B1 Al=9 B1	■ 4.2 PEA ■ 0 2 PEA	K-TO-PEAK* 8.5 K-TO-PEAK= 1.8	
NTNR	LOADS (AMP/PHA	SE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
	MFAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	42936. 3480./ -17.9 82./ 50.0 1900./ 36.4 456./ 10.7 415./ -77.0 714./ -72.0 161./ 71.0 114./ 28.5 52./ -23.8 55./ 88.7 88./ 86.1 76./ 39.2 10031.	14756. 926./ -28.8 47./ 55.6 557./ 35.5 196./ -9.3 107./ -83.0 537./ -69.8 59./ 82.4 9./ -2.2 54./ 14.5 125./ -23.9 13./ -33.1 22./ -71.0 3550.	2094. 195./ -69.2 45./ -6.2 60./ 27.4 39./ -36.9 44./ 72.1 118./ -71.5 38./ -61.6 28./ -48.3 39./ -19.9 49./ -16.2 10./ 48.7 7./ 45.2 782.	-1527. 1848./ -24.4 1047./ -54.5 332./ -7.0 245./ 63.6 187./ -53.6 29./ -80.4 31./ -38.2 14./ -30.3 76./ -69.4 33./ 72.3 26./ -54.2 15./ -77.8	-191. 287./ -49.8 94./ -54.0 46./ 32.9 37./ 44.3 33./ -9.8 12./ -25.5 4./ -17.3 8./ -89.7 2./ -46.5 6./ 75.4 4./ 54.5 2./ 36.7	
		BFAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM "449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PFAK	$\begin{array}{c} -178. \\ 529./ -46.9 \\ 171./ -65.4 \\ 99./ 20.9 \\ 145./ 13.5 \\ 103./ 77.0 \\ 48./ -80.4 \\ \circ./ 38.5 \\ 43./ 70.4 \\ 41./ -77.7 \\ 28./ -10.0 \\ 9./ -44.6 \\ 16./ 40.7 \\ 1587. \end{array}$	148. 293./ -65.6 111./ -72.4 71./ 28.8 38./ 9.1 17./ 45.1 7./ 18.8 3./ -14.7 9./ -88.8 26./ -71.5 8./ 14.1 6./ -16.4 7./ 71.9 748.	$\begin{array}{c} 30.\\ 317./-65.1\\ 128./-61.4\\ 55./43.9\\ 23./39.4\\ 2./-76.1\\ 4./-35.9\\ 10./-71.3\\ 9./48.7\\ 8./-84.7\\ 5./2.2\\ 3./1\\ 6./63.2\\ 815.\end{array}$	-201. 303./ -66.1 128./ -54.8 49./ -86.8 23./ 15.0 18./ 31.5 13./ 21.5 6./ -26.1 8./ -43.4 28./ -56.2 13./ 36.6 8./ -20.1 6./ 88.2 807.	4. 128./ -81.0 58./ -47.4 62./ -72.6 68./ 10.9 36./ 56.4 15./ 13.9 20./ -17.2 12./ -55.7 5./ 21.7 6./ 22.0 4./ 67.1 482.	

.

FLIGHT NO. 061 AIRCRAFT RUN NO. 5 TIME 54103.20 (SFC)	TOTAL WT = 33869. N 7614. LB	LOADED CG	X= 5.03 M= 197.9 I N Y= 00 = 0 Z= 1.85 = 72.7
AFRODYNAMIC FLIGHT STATE T. AIPSPEED= 104.7 KT A/C MACH NO* .165	DYNAMIC PRES 1.54 STATIC PRES 80.1 TOTAL TEMP- 265.8 STATIC TEMP- 264.4	KPA KPA OEG K OEG K	32.1 PSF 1672. PSF 478.5 DEG R 475.9 DEG R
RODY ALPHA- −2.7 DEG RODY BETA≖ 1.9 OEG	DENSITY- 1.06 DENSITY ALT 1528. SONIC SPEED 326.5 RATE OF CLIMB15	KG/M3 = M = M/SEC = M/MIN =	.00205 SLUG/FT3 5014. FT 1071. FPS -49. FPM

INFRIIAL FLIGHT STATE

AXIS	0G LI (M/S)	N VEL (FPS)	CGLINACC (G)	HUBL (M/S)	IN VEL (FPS)	HUR LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (rad/sec2)
¥ Y Z	53.76 1.79 -2.51	176.4 5.9 -8.2	055 .000 973	53.76 1.79 -2.51	176.4 5.9 -8.2	054 006 973	ROLL PITCH YAW	-1.5 -3.0 193.8	000 .001 003	029 002 006
CONTRO	L ANGLE	S	M.R. COLL= A1= R1=	0.3 - • 5 5.0	DEG DEG REG	HORIZ FIN- T.R. Coll= Pedal Pos=	7.8 DE0 1.3 DE 1.4 DE0	G G		

RUTOR	PARAMETERS	HOVER	TIP MACH.	•70	SHAFT ALPHA- CONTROL ALPHA-	-2.7 DEG -7.7 DEG	
		TIP	MAX-MACH-	• 86	DELTA PSI-	-1.9 DEG	
		•9P	WAX-MACH-	.53 •79	ENGINE POWER=	398. KW =	534. HP
		•9R	MIN-MACH=	.46	THRUST FACTOR-	•772E+07 N =	•174E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	- ROTOR PERFO	DRMANCE AND LOAD	DS
	FLIGHT NO. 63	MU- ∘236 V= 104.7 I	TOTAL CO KT MAST CO	•000225 .000217	AM8 TEMP= Temp U60=	-8.8 C = 16.19 F 9.2 C = 48.63 F
	RUN NO. 5				CAN TEMP-	-1.5 C = 29.38 F
	TIME 54103.06	NZ= .973 CLP= .00424	G OMEGA RPM/324	* 34.057 RADISE • 1.004	EC	
8 J I U B	ANGLES	THFTA 314 (DEG) Teeter ang (DFG)	∆0 ≢ 9.5 ∆0≡ −.6	Al=3 Al= -1.1	B1= 5.2 PEA B1= .1 PEA	AK-TO-PEAK' 10.5 AK-TO-PEAK- 2.2
RUTUR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	41901.	1495?.	2272.	-1878.	-232.
	HARMONIC-1	3457./ -33.6	1076./ -42.6	284./ -60.5	2107./ -31.6	323./ -50.3
	2	3/9+/ -44+6	64•/ -30•3 529./ 43.3	22./ 64.1	320./ -32.9	1/4./ -5/.8
	3 4	576./ 25.6	230./ 15.8	32./ -31.3	313./ 72.7	49./ 47.9
	5	119./ -66.4	31./ -49.4	61./ -15.6	186./ -20.2	38./ 8.1
	6	468./ 84.1	353./ 88.5	104./ 77.8	39./ -89.7	10./ 6.1
	7	364./ 63.4	282./ 60.1	79./ 39.3	111./ 14.0	8./ -12.0
	8		0/0/ 00	40./ -33.5		9.7 -84.0
	10	43./ -81.1	109./ 52.1	63./ 81.3	58./ 17.0	7./ 29.9
	11	24./ 78.4	21.7 - 84.2	27./ -38.5	13./ -18.2	5./ 13.1
	12	30./ -8.7	54./ 49.8	39./ 42.3	16./ -15.9	3./ 36.3
	PFAK-TO-PEAK	11625.	4177.	1155.	6760.	863.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN	-120.	155.	33.	-187.	-17.
	HARMONIC-1	641./ -57.3	329./ -70.2	346.1 -70.2	332./ -71.8	149./ -89.5
	2	288./ -69.4	192./ -82.0	209./ -78.7	174./ -74.4	61./ -59.4
	3	29./ 2.4	41./ 27.8	42./ 50.1	58./ 84.0	66./ 79.8
	Ι,	214./ 37.4	63./ 28.7	39./ 15.2	42./ 42.0	84./ 19.1
	5	76.7 -73.6	8./ 9.8	10./ 2.1	4./ -69.6	35./ 32.7
	6 7	54.7 175	5 / -1.9	4.1 -09.9		22.7 -59.9
	7	11./ -58.2	2.1 54 2	224/ 4841	6.7 56.0	37.7 (4.0
	9	22./ 77.1	16./ 64.1	5./ 72.3	21./ 84.2	17./ B7.6
	10	42./ -61.0	13./ -40.9	8./ -45.9	18./ -26.0	11./ -20.0
	11	9.1 74.3	4./ -7.0	5./ 38.9	3./ -49.1	4./ -17.6
	12	6./ 28.0	2.1 3.2	6./ 70.4	4./ 55.7	1./ -9.3
	PEAK-TO-PFAK	1932.	949.	1027.	960.	586.

 β

.

FL∎GHT NO. 063 RUN NO. 6 TIME 54157.80 (SE	AIRCRAFT TO	TAL WT = 33866. N 7614. LB	LOADED CG X= 5.03 Y=0 Z= 1.85	; M ■ 197.9 IN 10 ■ -•0 ; ■ 72•7
AERODYNAMIC FLIGH T. AIRSPEED- 11 A/C MAC4 NO= •	T STATE 4.2 KT 180	DYNAMIC PRES= 1.8 STATIC PRES- 80.2 TOTAL TEMP= 265.9 STATIC TEMP- 264.2	4 KPA 38.4 2 KPA 1675. 9 DEG K 478.6 2 DEG K 475.5	PSF PSF DEG P DFG P
BODY ALPHA Body Beta-	2.9 DEG 1.1 OEC	DENSITY- 1.00 DENSITY ALT= 1502 SONIC SPEED- 326. RATE OF CLIMB10	6 KG/M3 • .00205 S 2 M ■ 4927. F 4 M/SEC ■ 1071. F 0. M/MIN ■ -34. F	LUG/FT3 T PS PM
INERTIAL FLIGHT S	TATE			
AXIS CGLINVF (M/S) (FP	CG LIN ACC	HUB LIN VEL HUB LIN (M/S) (FPS) (G)	ACC AXIS ANG	PRS ANG PATES ANG ACC G) (RAD/SEC) (RAD/SEC2)
X 58.67 192 Y 1.16 3 Z -2.98 -9	9.5065 9.8 .007 9.8981	58.67 192.500 1.16 3.8 .00 -2.98 -9.898	94 ROLL - 97 PITCH -3 92 YAW 189	•7 •000 -•003 1 -•000 -•008 1 •003 •007
CONTROL ANGLES	M.R. COLL= A1= B1=	9.8 DEG HORIZ -•6 DEG 1.R•C 5.6 DEG PEDAL	FIN- 8.1 OEG OLL= 1.2 OEG PDS= 1.4 DEG	

•

.

•

ROTOR PARAMETERS	HOVER TIP MACH= .70	SHAFT ALPHA= Control Alpha'	-2.9 DEG -8.5 DEG	
	TIP MAX-MACH88	DELTA PSI*	-1.1 DEG	
	TIP MIN-MACH- 52 .9R MAX-MACH- 81	ENGINE POWER*	433. KW =	581. HP

	NASA	LANGLEY FLIGHT D	ATA AH-1G	- ROTOR PERFO	RMANCE AND LOAD	\$
	FLIGHT NO. 63 PUN NO. 6	MU= .257 V= 114.2 F	TOTAL CO MAST CO G OMEGA	• .000245 000235 - 34.029 RAD/SE	AMB TEMP- TEMP U60■ CAN TEMP- C	-9.0 C ≢ 15.81 F 10.0 C ■ 49.98 F -1.8 C ■ 28.68 F
	TIME 54157.65	CLP= .00427	RPM/324	1.003		
ROTOR	ANGLES	THETA 3/4 (DEG) TEETEQ ANG (DEG)	AO- 10.1 AO=6	Al=3 B Al= -1.2 B	1= 5.9 PEA 1=0 PEA	K-TO-PEAK- 12.1 K-TO-PEAK= 2.5
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	41157. 3652./ -40.9 312.1 -27.6 1934./ 36.1 452./ 17.8 159.1 44.9 422.1 67.7 233.1 47.5 123./ -48.5 23.1 -16.7 87./ 66.6 29.1 13.1 111.1 -43.9 12151. REAM .174 (N-M/DEG)	15119. 1228./ -47.3 45./ 3.9 540./ 36.9 209./ -7.4 124./ 85.0 261./ 70.4 168./ 68.3 67./ 82.1 156./ 17.8 218./ 36.4 25./ -34.4 31./ -19.8 4261. BEAM .350 (N-M/DEG)	2108. 223./ -72.8 130./ -67.8 30./ -70.3 48./ -3.6 36./ -68.0 70./ 40.7 56./ 20.8 40./ 88.1 52./ 28.9 65./ 24.2 21./ -22.4 10./ 71.9 1006. BEAM .449 (N-M/DEG)	-2149. 2326./ -36.0 2103./ -56.7 309./ -45.4 325./ 74.9 224./ 2.9 94./ -23.0 37./ 31.5 60./ -49.0 57./ 17.0 27./ 6.6 9./ 46.3 16./ -1.0 7964. REAM .606 (N-M/DEG)	-271. 358./ -49.5 219./ -54.4 71./ 9.4 41./ 37.1 43./ 6.0 8./ 14.8 10./ -9.4 5./ -52.8 3./ 18.0 7./ 21.1 7./ 21.1 7./ 29.1 4./ 8.9 999. REAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 11 12 PEAK-TO-PEAK	-99. 768./ -59.9 378./ -63.6 122./ 31.8 187./ 34.4 53./ -30.4 12./ 73.0 28./ -65.0 31./ -40.6 33./ 22.6 25./ -71.7 11./ -87.8 19./ -82.7 2396.	152. 391./ -68.7 238./ -82.1 24./ -10.9 59./ 21.8 5./ -45.1 3./ -1.7 10./ -39.1 5./ 52.3 17./ 30.8 12./ -47.8 6./ -67.4 9./ -47.0 1120.	26. 397./ -69.9 258./ -80.1 41./ 53.2 41./ 13.7 22./ 41.8 10./ 79.7 21./ -85.5 13./ -58.8 7./ 31.5 7./ -37.9 2./ -35.4 6./ -87.9 1160.	-200. 366./ -72.9 223./ -76.0 88./ 73.5 42./ 38.8 5./ 62.9 10./ -89.4 12./ -64.7 12./ -67.9 18./ 67.9 18./ 67.9 18./ -21.7 4./ 44.2 4./ -89.3 1088.	-6. 176./ 88.7 83./ -61.0 90./ 64.3 95./ 23.1 62./ 27.0 30./ -87.9 37./ -68.5 24./ -40.7 14./ 76.8 17./ -17.3 3./ -76.3 4./ -41.9 723.

'FLIGHT NO. 063 AIRCRAFT RUN NO. 7 TIME 54725.70 (SEC)	TOTAL WT = 33826. N 7605. LB	LOADED CG	X* 5.03 M 197. Y= 00 = Z= 1.85 • 77.8	9 IN 03
AERDDYNAMIC FLIGHT STATF T. AIRSPEED; 124.6 KT A/C MACH NO= .197	DYNAMIC PRES- 2.19 STATIC PRES- 80.4 TOTAL TEMP- 266.3 STATIC TEMP- 264.2	KPA = KPA = DEG K = DEG K =	45.8 PSF 1678. PSF 479.3 DFG P 475.6 OFG R	
RODY ALPHA3.0 DEG RODY BETA9 DEG	DENSITY 1.06 DENSITY ALT 1487 Sonic Speed 326.4 Rate of Climb48	KG/M3 = M ■ M/SEC = M/MIN =	•00206 SLUG/FT3 4880. FT 1071. FPS -157. FPM	

INFRTIAL FLIGHT STATE

4×12	CG LI (M/S)	N VEL (FPS)	CG L	IN ACC G)	HUB L (M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	64.01 .95 -3.40	210.0 3.2 -11.2	(.('	073 011 992	64.00 .95 -3.40	210.0 3.1 -11.2	071 .013 992	ROLL Pitch Yaw	-1.5 -3.8 187.7	005 .002 .003	.010 012 006
CONTRO	L ANGLE	2	M.R.	COLL= A1= B1=	10.5 5 6.3	OEG OEG OEG	HORIZ FIN= T.R. Coll= PEDAL POS=	8.6 DI 1.5 OF 1.6 DI	EG Fg EG		
ROTOR	PARAMET	ERS	HOVER	TIP MA	CH70	C	SHAFT ALPHA" ONTROL ALPHA*	-3.0 (-9.3 (DEG		
			TIP TIP	MAX-MA MIN-MA	CH= .89 CH= .5	0	DELTA PSI=	9 (DEG		

.9R MAX-MACH= .82	ENGINE POWER=	475. KW =	638. HP
•9R MIN-MACH= •43	THRUST FACTOR-	.771E+07 N =	•173E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO.	63	MU- •2	282 24 6 KT	۲ ₋	OTAL	CQ=	•0002	70		AMB	TEMP=	-8.9	C I	15.96	F
	PUN NO.	7	V- 10			MAGI	.u-	•0002	02		CAN	TEMP=	-1.8	C =	28.68	F
	TIME 54225.0	61	NZ= . CLP= .C	.992 G 00433		OME RPM/3	GA= 24=	33.949 1.001	RADI	SEC						
ROTOR	ANGLES	THETA TEETE	314 RANG	(DEG) (DEG)	∆0= ▲0=	10.7 –.6	ļ	Al= -	 2 1.5	81= 81=	6.7 	PE/ Pe/	AK-TO- A k-to-	- PEAK - PEAK	- 13.4 • 3.1	
ROTOR	LOADS (AMP)	PHASE)	DRAG BF	RACE G)	CHORO	.449 DEG)		CHORD (N-M	.803 /DEG)	PIT	CH L (N/C	INK (EG)	TOR:	SION N-m/d	.449 EG]	
	MEAN HARMONIC-	401 -1 37 2 2 3 24 4 6 5 3 6 4 7 2 8 9 1 10 11 12 1 14 12 1 14 12 1	32. 19./ -4 56./ -4 31./ 2 04./ - 69./ -7 60./ -6 68./ - 96./ -7 80.	1 6 6 8 1 2 2 2 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 3 - 2 - 2 - 3 - 5 - - - - - - - - - - - - -	1248./ 39./ 702./ 350./ 229./ 318./ 42./ 250./ 47./ 91./ 69./ 5196.	-53, -62, 20, -66, -15, -48, -29, -4, -8, -48,	260253513922	2078. 330. 101. 23. 56. 24. 46. 23. 24. 68. 1330.	/ -71.4 / -48. / -67. / -67. / -69.4 / -73.0 / -73.0 / -28.0 / -28.0 / -20.0 / -88.0	-24 4 22 2 24 0 3 1 3 7 2 8 1 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	53./ 58./ 51./ 45./ 45./ 45./ 45./ 57./ 57./ 42./ 10./ 12.	-41.1 -58.3 -61.2 64.9 -3.5 -32.4 1.2 -71.2 14.6 -7.0 39.3 -61.0	-31 39 20 1 1	14. 96./ 91./ 75./ 91./ 9	-50.4 -59.4 -3.1 15.1 4.3 3.3 -54.2 -43.9 -38.9 -27.8	
		RE (AM •174 N→M/DE(4 G)	BEAM . (N-M/	350 DEG)		BEAM (N-M	.449 /DEG)	BE/	AM .6 N-m/D	06 EG)	RE/	N-M/D	03 EG)	
	MEAN HARMONIC- 1 1	-1 8 2 4 3 1 4 2 5 6 7 8 9 10 11	47. 86./ -6 81./ -6 98./ 2 59./ -6 19./ -5 32./ 9./ 8 30./ 2 56./ -8 18./ 2	52.6 54.8 8.3 50.1 53.3 2.3 22.3 25.7 36.0 34.1 35.1	156. 447./ 284./ 35./ 84./ 9./ 2./ 6./ 19./ 18./ 18./	-68. -87. -53. -63. 19. 43. 40. 41. 41. -60. 51. 35.	1 0 6 3 2 6 1 2 1 4 2 8	33. 450. 300. 43. 50. 20. 10. 20. 10. 8. 15. 1.	/ -68. / -87. / 24. / -20. / -48. / 48. / 26. / 81. / 81. / 81. / 81. / 24. / -80. / -27.	-2 5 4 2 2 7 1 5 5 5 8 8 8 8 1 5	00. 03./ 65./ 19./ 55./ 2./ 16./ 13./ 14./ 21./ 25./ 9./ 3./	-74.1 -81.4 60.3 -14.2 63.8 57.0 57.0 52.8		8. 1./ 8./ 1./ <td>83.8 -63.8 54.4 -3.5 22.3 -80.5 70.4 -83.1 72.3 -40.1 85.2 47.0</td> <td></td>	83.8 -63.8 54.4 -3.5 22.3 -80.5 70.4 -83.1 72.3 -40.1 85.2 47.0	
	PEAK-TO-PEA	AK 29	47.		1353.	•		1364.		12	46.		91	2.		

.....

•

.

.

LOADED CG X= 5.03 M = 197.9 IN Y= -.00 = -.0 Z= 1.85 = 77.8 FLIGHT NO. 063 AIRCRAFT TOTAL WT **33785.** N RUN N1. 8 7595. LB RUN NO. 8 TIME 54338.20 (SEC)
 DYNAMIC
 PRES=
 2.54
 KPA
 •
 53.1
 PSF

 STATIC
 PRES=
 80.4
 KPA
 =
 1678.
 PSF

 TOTAL
 TEMP 266.0
 DEG
 K
 =
 478.8
 DFG
 P

 STATIC
 TEMP 263.7
 OEG
 K
 =
 474.6
 DFG
 R
 AERODYNAMIC FLIGHT STATF T. AIPSPEED= 134.0 KT A/C MACH ND= .212 DENSITY' 1.06 KG/M3 • ,00206 SLUG/FT3 DENSITY ALT • 1464. M • 4803. FT SONIC SPEED= 326.1 M/SEC • 1070. FPS RATE OF CLIMB- -37. M/MIN • -122. FPM BODY ALPHA: -4.7. DEG BODY BETA: .6 DEG INERTIAL FLIGHT STATE AXIS CG LIN VEL CG LIN ACC HUB LIN VEL HUB LIN ACC AXIS ANG PDS ANG RATES (M/S) (FPS) (G) (M/S) (FPS) (G) (DEG) (RAD/SEC) ANG ACC (RAD/SEC2) 68.72 225.5 .75 2.4 -5.05 -16.6 -.084 .014 -.967 68.73 225.5 •75 2•5 •5•05 -16•6 -.084 .002 -.967 -.058 ROLL -.7 PITCH -4.7 .007 -.005 X Y -.004 YAW 340.6 -.003 .001 Z M.R. COLL= 11.9 DEG A1= -.7 OEG B1= 7.2 DEG 9.1 DF.G 1.7 DEG CONTROL AHGLES HORIZ FIN= T.R. COLL= PEDAL POS-1.8 OEG ROTOR PARAMETERS SHAFT ALPHA' -4.2 DEG

HOVER	TIP MACH= .70	CONTROL ALPHA-	-11.4 DEG	
TIP	MAX-MACH= .91	DELTA PSI=	6 DEG	
TIP	MIN-MACH- •48			
.OR	MAX-MACH84	ENGINE POWER-	552. KW =	741. HP
. 9R	MIN-MACH42	THRUST FACTOR-	.773E+07 N =	.174E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTOR PERF	ORMANCE AND LOAP	20
	FLIGHT NO. 63	MU- •303 V* 134•0	TOTAL CO KT MAST CO	• .000313 • .000305	AMB TEMP= TEMP U60=	-9.5 C = 14.92 F 10.2 C = 50.34 F
	TIME 54338.05	NZ= .967 CLP00420	G OMEGA RPM/324	= 33.960 RAD/S	EC	-7.0 C • 27.20 F
ROTOR	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO= 11.8 AO=6	Al=4 Al= -1.9	B1= 7.9 PEA B1=5 PFA	AK-TO-PEAK* 15.9 A K-TO-PEAK= 4.0
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN Harmonic-1	38551. 4536./ -58.0	15555. 1437./ -62.5	2023. 362./ -73.9	-2986. 3105./ -45.1	-380. 453./ -50.7
	2 3 4	727./ -60.2 3195./ 33.9 693./ -8.8	82./ 50.8 942./ 33.0 416./ -24.7	99./ -34.2 40./ 21.1 81./ -42.2	2817./ -58.7 330./ -62.8 361./ 66.5	308./ -61.1 75./ -9.3 50./ -2.2
	56	416./ 56.8 299./ 89.1	238./ 69.0 226./ -66.4	55./ 89.4 35./ -55.7	269./ 5.7 193./ -13.8	55./ 23.8 19./ 11.3
	7 8 9	263./ 64.8 185./ -91.0 74./ -79.1	177./ 63.8 194./ -75.3 178./ -12.5	64./ 57.7 48./ -81.7 64./ -10.2	39./ 15.2 71./ -62.5 27./ -29.8	7•/ -73•0 6•/ -55•0 5•/ 12•0
	10 11	109./ 22.3 59./ -79.4	331./ 33.8 53./ -36.5	129./ 31.7 12./ -55.2	23./ -1.0 39./ 11.9	2./ 71.5 7./ 13.4
	PEAK-TO-PEAK	16114.	5752.	1450.	10974.	1244.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 IN-m/deg)	REAM .803 (N-M/DEG)
	MEAN HARMONIC-1	5. 1130./ -67.7	161. 501./ -69.1	49. 502./ -68.1	-176. 451./ -71.7	-29. 214./ 84.1
	3	283./ 15.2 281./ 13.5	5./ -22.8 91./ -7.5	66./ 45.9 53./ -24.7	162./ 53.3 59./ 13.2	177./ 51.1 129./ -9.1
	5 6 7	24./ -60.0 38./ 10.9	4./ /9.1 11./ 42.7 3./ 39.6	10./ -66.6 21./ 33.6	10•/ -52•5 15•/ 68•8 12•/ 62•2	87.7 8.3 27.7 -86.0 42.7 58.9
	8 9 1 0	21./ 20.6 12./ -30.0 34./ -89.4	6./ .5 7./ 15.5 13./ -58.4	9./ 54.8 7./ -54.9 8./ -68.2	11./ 46.5 8./ 57.8 19./ -53.6	24./ 79.9 10./ -75.7 16./ -42.5
	11 12 PEAK-TO-PEAK	7./ -7.4 22./ 16.2 3570.	6./ 51.7 7./ 64.1	1./ -54.3 6./ 41.4	7./ 42.3 5./ 74.7 1374	5•/ 48•6 4•/ 64•2
		39100				
FLIGHT NO. 063 RUN NO. 10 TIME 54541.60 (SEC)	AIRCRAFT TOT	TAL UT = 33698. 7576.	N LOADE LB	ED OG X= Y= Z=	5.03 M = 00 = 1.85 =	197.9 IN 0 77.8
---	-------------------	--	---	--	--	---
AERODYNAMIC FLIGHT S T. AIRSPFED= 158.3 A/C MACH ND= .250	ГАТЕ КТ	DYNAMIC PRES* Static PRES= total temp- static Temp=	3.53 KPA 79.8 KPA 267.9 OEG 264.6 DEG	■ 73. ■ 1665 K ■ 482. K ■ 476.	8 PSF 3. PSF 2 DFG R 3 DFG R	
800Y ALPHA= -6.1 800Y BETA5	DEG OEG	DENSITY- DENSITY ALT Sonic Speed- Rate UF CLIMB	1.05 KG/M 1565. M 326.6 M/SE -116. M/MI	13 = •002 ■ 5133 EC ■ 1072 [N ■ -38	04 SLUG/F 3. FT 2. FPS 0. FPM	T3
INERTIAL FLIGHT STATE	E					
AXIS CGUNVFL (M/S) (FPS)	CG LIN ACC (G)	HUB LIN VEL HU (M/S) (FPS)	IB LIN ACC (G)	AXIS	ANG POS (Deg)	ANG PATES ANG ACC (RAD/SEC) (RAD/SEC2)

¥	80.99	265.7	119	80.98	265.7	121	ROLL	- 1.1	005	048
Y	75	-2.5	.038	76	-2.5	.028	PITCH	-7.4	.002	.010
Z	-8.63	-28.3	971	-8.63	-28.3	971	YAW	337.7	.002	.015
CUNTRO	L ANGLE	S	M.R. COLL= A1= 81=	14.8 -1.5 1.1	DEG DEG OEG	HORIZ FIN= T.R. Coll* Pedal pos-	10.6 DEG 2.3 OFG 2.5 DFG			

Ŧ

-

 \mathcal{P}

ROTOR	PARAMETERS				SHAH ALPHA=	-6.1 DEG			
		HOVER	TIP MACH-	.70	CONTROL ALPHA-	–15.1 OFG			
		TIP	MAX-MACH=	.95	DELTA PSI=	•5 OEG			
		TTP	MIN-MACH-	• 45					
		•9R	MAX-MACH-	.68	ENGINE PUWER=	771.	KW =	1034.	HP
		•9R	MIN-MACH-	•38	THRUST FACTOR-	•771E+07	N =	173E+07	LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 63	3 MU = .356 V= 158.3 k	TOTAL CO	.000436	AMB TEMP# TEMP 1160#	-8.5 C = 16.61 F
	PUN NO. 1	0			CAN TEMP	-3.0 C • 26.58 F
	TIME 54541.4	NZ= .971 (5 CLP= .00421	G DMËGA RPM/324	34.084 RAD/SE0 1.005		
ROTOR	ANGLES	THETA 314 (DEG)	AU 14.7	A1= -1.1 B1	■ 10.6 PEA	K-TO-PEAK- 21.1
		IEEIER ANG (DEG)	AU0	Al= -2.4 81	L= -1.4 PFA	K-10-PEAK- 5.3
ROTOR	LOADS (AMP/P	HASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	34769.	16470.	1979.	-4203.	-555
	HARMONIC-1	7196./ -71.1	2367./ -71.3	538./ -81.0	4480./ -49.1	608.7 -51.1
	2	1327./ 65.6	557./ 15.6	179./ -17.9	4024 . / -52 . 2	450./ -63.4
	3	6082 ./ 39.0	1841./ 40.8	97./ 84.1	513./ 57.3	83./ -10.7
	4	1176./ -12.5	758./ -27.3	129./ -35.3	457./ 62.9	73./ -11.6
	5	786./ 64.6	487./ 84.8	127./ -79.8	137./ -27.1	22./ 44.7
	6	328./ 22.2	148./ 7.0	42.1 -38.4	269./ 16.2	30./ .1
	7	457./ 9.7	292.1 2.4	101./ -3.3	56./ 55.1	22./5
	8	165./ -78.5	102./ 78.8	40./ 82.8	30./ 62.3	4.1 63.4
	9	30./ 87.8	97./ 26.8	47./ 65.2	39.1 -32.4	6./ -28.9
	10	90./ -61.0	156./ 56.6	53./ 39.6	96./ 86.8	17./ -84.8
	11	117./ -23.2	121./ 10.8	34./ -6.2	22./ -76.2	5./ -64.1
		64./ -15.4	78./ 18.1	33./ 61.2	28./ 4.4	2./ 7.0
	PEAK-TO-PFAK	22829.	8364.	1772.	15129.	1788.
		BEAM .174	BEAM .350	BEAM .449	BEAM .605	REAM . 803
		(N-M/DEG)	(N-M/DEG)	(N-M/DEG)	(N-M/DEG)	(N-H/DEG)
	MEAN	308.	182.	60.	-157.	-59.
	HARMONIC-1	1940./ -70.8	664./ -69.2	622./ -67.1	562.1 -69.2	287./ 87.7
	2	742.1 -48.2	414./ -88.1	419./ 85.8	331./ 86.9	118./ -64.1
	3	714./ 13.2	31./ -27.0	117./ 40.9	288./ 35.2	334./ 30.6
	4	348./ 17.4	102./ -10.8	59.1 -35.9	59./ 18.6	118./ -18.0
	5	143./ -53.0	6./ -21.7	26./ -14.7	17./ -16.9	57./ -8.4
	6	75./ -59.9	8./ 2.6	26.1 -66.5	21./ 74.7	40./ -64.6
	7	81./ -34.1	11./ -38.3	25./ -13.9	9.1 32.4	44./ 19.1
	8	13./ -3.7	4./ 46.3	9./ 50.1	5./ -61.5	18./ -87.8
	9	4./ -78.4	7./ -4.3	7./ -76.5	12./ 61.2	13./ -88.2
	10	46./ 58.4	15./ 72.4	13./ 44.2	21./ 83.0	20./ 88.7
	11	16./ -82.3	3./ -5.6	7./ 48.9	1./ 61.1	1./ -45.4
		21./ 22.2	6./ 44.9	5./ 43.2	5./ 74.3	4./ -84.0
	PFAK-IU-PEAK	6229.	2007.	1874.	1757.	1434.

FL∎GHT NO. 063 AIRCRAFT TOTAL WT = 33705. N RUN NO. 9 7578. LB LDADED CG X = 5.03 ■ = 197.9 IN Y = -.00 = -.0 Z = 1.85 = 72.8 TIME 54467.20 (SEC)
 DYNAMIC
 PRES 3.02
 KPA
 63.0
 PSF

 STATIC
 PRES 79.7
 KPA
 =
 1664.
 PSF

 TOTAL
 TEMP 267.0
 OEG
 K
 =
 480.5
 DFG
 P

 STATIC
 TEMP 264.1
 DEG
 K
 =
 475.4
 DFG
 P
 AERODYNAMIC FLIGHT STATE T. AIRSPEED= 146.4 KT A/C MACH NO= .231 DENSITY = 1.05 KG/M3 = .00204 SLUG/FT3 DENSITY ALT = 1570. M = 5150. FT SONIC SPEED = 326.4 M/SEC = 1071. FPS RATE OF CLIMB = -103. M/MIN = -339. FPM BODY ALPHA= -4.7 DEG BODY BETA= .8 DEG INERTIAL FLIGHT STATE AXIS CG LIN VFL CG LIN ACC HUB LIN VEL HUB LIN ACC AXIS ANG PNS AMG QATES (M/S) (FPS) (G) (M/S) (FPS) (G) (DEG) (RAD/SFC) ANG ACC (RAD/SEC2) .000 -.102 .042 -.102 .012
 75.06
 246.3
 -.102

 1.12
 3.7
 .021

 -6.22
 -20.4
 -1.004
 75.07 246.3 ROLL -.4 X .006 .000 PITCH -6.1 Υ 1.12 3.7 332.0 .004 -.020 -6.2? -20.4 -1.004 YAW 7.

 CONTROL ANGLES
 M.R. COLL=
 13.0
 OEG
 HORIZ FIN=
 9.6
 OEG

 A1=
 -.7
 DEG
 T.R. COLL=
 2.7
 OFG

 B1=
 7.9
 DEG
 PEDAL POS=
 2.5
 OFG

.

.

ROTOR PARAMETERS	HOVER TI	IP MACH= .70	SHAFT ALPHA* Control Alpha-	-4.7 DEG -12.7 DEG	
	TIP MA	AX-MACH' •93	DELTA PSI=	9 DEG	
	TIP MI	IN-MACH* .47			
	.9R M/	AX-MACH86	ENGINE POWER*	647. KW =	867. HP
	.9R MI	IN-MACH= .40	THRUST FACTOR	.772E+07 N =	173E+07 LB

	NASA	LAMGLFY FLIGHT D	ATA AH-1G	- ROTOR PERF	ORMANCE AND LOAD	ns
	FLIGHT NO. 63	MU* •330 V= 146.4	TOTAL CO KT MAST CO	• • 000366 • • 000353	AMB TEMP- TEMP U60#	-1.0 C = 15.77 F 10.5 C = 50.94 F
	RUN NO. 9				CAN TEMP:	-3.0 C = 26.58 F
	TIME 54467.07	NZ= 1.004 CLP= ,00436	G OMEGA: RPM/324	= 34.081 FAD/S • 1.004	EC	
ROTOR	ANGLES	THETA 314 (DEG) TESTER ANG IOEGI	AO= 13.0 AO=6	Al=3 Al= -1.8	Bl= 8.9 PE/ Bl=6 PF/	АК–ТО–РЕАК- 17.9 АК–ТО–РЕАК- 3.9
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	37239.	15942.	2036.	-3502.	-456.
	HARMONIC-1	5775./ -64.3	1874./ -67.5	427./ -79.3	3785./ -48.9	528./ -52.6
	2	1078./ 67.6	400./ 2.3	160./ -31.9	3479.1 -59.2	390./ -66.0
	3	4438./ 31.3	1334./ 33.4	53./ 62.7	343./ 83.2	79./ -17.6
	4	840./ -6.7	570./ -30.0	93.1 -49.9	451./ 60.5	69./ -8.5
	5	500./ 55.4	352./ 81.4	100./ -74.5	140./ .4	31./ 54.6
	5			52.1 48.2	192.7 -23.5	16.7 -35.7
	r R	42./ =16.3	102./ -75.0	21•/ 44•1 12./ =66.8	32.7 = 70.0	
	ģ	30./ -22.4	141./ -6.0	47./ -11.6	57./ -69.1	4.1 -67.2
	10	38./ 14.5	258./ 4.7	107./ 7.6	79./ 69.9	12./ 64.3
	11	113./ -62.0	88./ -64.8	59./ -78.8	22.1 5.2	2./ 61.7
	12	30./ -15.5	17./ 86.0	12./ 14.3	22./ -19.9	3./ 5.1
	PEAK-TO-PEAK	21110.	6975.	1348.	12900.	1573.
		REAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DFG)	BEAM .803 (N-M/DEG)
	MEAN	143.	167.	51.	-170.	-37.
	HARMONIC-1	1487./ -70.1	590./ -70.3	574./ -68.9	520./ -71.7	255./ 84.3
	2	671./ -59.4	379./ 86.4	384./ 82.1	310./ 94.1	125./ -68.8
	3	469./ 7.2	16./ -28.9	91./ 41.0	224./ 39.2	251./ 35.7
	4	349./ 12.6	102./ -12.1	56./ -35.8	68./ 10.1	138./ -17.6
	5	111./ -56.5	1./ -80.6	30./ -17.1	15./ -30.1	70./ -13.2
	6	45./ -89.4	12./ 8.6	16./ -83.8	17./ 50.2	30./ 70.9
	/ o	31.1 -20.2		1/•/ 5•4	11.7 47.5	38./ 32.7
	n 0	20./ 41.0	2.7 -49.9	10./ 29.8	12+1 47+1	33.7 (0.2
	9 10	56./ 42.5	22./ 61.R	16./ 36.0	28./ 73.0	22./ 83.6
	11	14./ 85.7	6./ -21.7	4./ 1.9	5./ -2.2	4./ 20.6
	12	34./ 15.8	8./ 22.2	11./ 42.2	10./ 48.1	6./ 49.9
	PEAK-TO-PEAK	4789.	1781.	1713.	1612.	1238.

'FL∎GHT NO. 063 AIRCRAFT RUN NO. 11 TIME 54648.80 (SEC)	TOTAL WT ■ 33627. N 7560. LB	LOADED CG	X= 5.03 M Y=00 Z= 1.85	= 197.9 IN =0 = 72.9	
AERODYNAMIC FLIGHT STATE	DYNAMIC PRES 3.81	KPA =	79.5 PSF		
T. AIRSPEED= 164.5 KT A/C MACH N⊡= .259	TOTAL TEMP* 267.7 STATIC TEMP* 267.7	OEGK = DEGK =	481.9 DEG 475.5 DEG	R	
BODY ALPHA= -6.5 DEG BODY BETA* .8 DEG	DENSITY- 1.05 DENSITY ALT- 1598. SONIC SPEED- 326.4 RATE OF CLIMB= -99	KG/M3 = . M = M/SEC = M/MIN =	•00203 SLUG 5244. FT 1071. FPS •326• FPM	/FT3	
INERTIAL FLIGHT STATE					
AXIS CGLIN VEL CGLIN AG	CC HUB LIN VEL HUB LIN	ACC AXIS	ANG PIS	ANG RATES	ANG ACC

	(4/5)	(FPS)	((5)	[M/S]	(FPS)	(G)		(DEG)	(RAD/SEC)	(RAD/SEC2)
¥ Y Z	84.05 1.23 -9.51	275.8 4.0 -31.2	1 .0 °	132 107 196	84.06 1.24 -9.51	275.8 4.1 -31.2	137 017 996	ROLL P∎TC⊦ YAW	•1 + •7•6 334•?	.007 .001 003	114 .022 .011
CONTRO	L ANGLES	S	M.R.	COLL= A1= B1=	15.6 -1.3 9.4	OEG OEG OEG	HORIZ FIN* T.R. COLL* PEDAL POS=	10.9 C 3.8 C 3.9 D	DEG DEG D F G		

ROTOR PARAMETERS	HOVER	TIP MACH70	SHAFT ALPHA- CONTROL ALPHA-	-6.5 DEG -15.8 DFG	
	TIP	MAX-MACH= •96	DELTA PSI-	8 DEG	
	•9R	MIN-MACH44 MAX-MACH89	ENGINE POWER-	848. KW =	1138. HP
	• 9 R	MIN-MACH37	THRUST FACTOR*	.768E+07 N =	•173€+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FL∎GHT NO.	63	MU =	.370		TOTAL	CQ≠	.0004	82		AMB	TEMP=	-9.0	C I	15.	80 F
		11	V =	164.5	KΤ	MAST	CØ=	.0004	66		TEME	7 060=	11.3	C =	52.2	29 F
	KUN NO.		NZ=	.996	G	OM	EGA-	34.07	2 RAD	SEC	CAN	1606-	-3.0	C ·	20.0	00 F
	TIME 54648.	65	CLP-	.0043	3	RPM/	324=	1.004	_							
ROTOR	ANGLES	-	THETA 314	(DEG) AO=	15.4		A1=	7	81.	11.7	PEA	\К−ТО-	-PEAI	K* 22.	3
		-	TEETER AND	G (DEG) ∆0=	6		A1= -	2.4	81:	-1.3	PFA	K-TO-	PEA	(* 5	• 2
ROTOR	LOADS (AMP)	/PHA:	SE) DRAG (N/I	BRACE	CHORE	.449 /DEG)		CHORD (n-m	.803 /DFG)		PITCH L (N/[INK (EG)	TORS (N	SION 	.449 EG)	
	MEAN		33198.		16802.			1893.		-	4505.		-59	7.		
	HARMONIC	- 1	7846./	-69.0	2533.	1 -69	. 6	590.	/ -82.	2	4798./	-52.7	63	5./	-55.0	
		2	2143./	35.7	992.	/ 10	.9	243.	/ -13.	6	4082./	-54.7	44	0./	-67.7	
		3	7208./	30.2	2187.	/ 32	• 4	172.	/ 64.	4	699./	36.2	8	2.1	-19.7	
		4	1267./	-36.2	790.	1 -44	.9	139.	/ -53.	5	356./	37.0	8	4.1	-25.2	
		5	572./	.44.4	343.	/ 82	. 4	120.	/ -71.	. 8	293./	65.0	4	6./	53.3	
		6	311./	-33.8	260.	/ -51	. 4	121.	1 -74.	3	178./	40.3	1	9.1	-6.1	
		7	583./	-25.5	397.	/ -30	• 0	123.	/ -27.	1	64.1	26.5	3	2.1	7.6	
		8	162./	-89.2	53.	/ 72	.6	25.	/ 66.	.0	58./	-36.7		9./	-27.9	
		9	59./	51.1	105.	/ 42	• 2	63.	/ 49.	.0	22.1	-22.0		7./	-16.0	
		10	66./	-62.3	133.	/ 28	• 0	57.	/ 7.	0	116./	-74.6	2	1./	80.9	
		11	96./	-15.0	181.	/ -1	• 9	79.	/ -18.	.3	21./	-54.6		3./	2.1	
		12	54.1	-25.7	37.	/ 10	• 7	18.	/ -57.	. 8	6./	-47.0		2.1	-63.1	
	PEAK-TO-PEA	٩K	29486.		9464.			2098.		1	5506.		192	3.		
			BEAM •	174	BEAM	.350		BEAM	.449		BEAM .6	06	REA	м • 8	803	
			(N-M/I	DEG)	(N-M	/DEG)		(N-M	/DEG)		(N-M/F	(GB	(N	I-M/(DEG)	
	MEAN		512.		197.			63.			-151.		-6	1.		
	HARMONIC	-1	2197./	-72.7	721.	1 -72	•1	667.	/ -70.	.1	607./	-71.8	32	3./	86.7	
		2	807./	-43.7	420.	/ 88	.9	429.	/ 81.	.3	343./	81.0	12	9.1	-71.6	
		3	. 821./	4.4	32.	/ -41	.9	137.	/ 28.	3	333./	24.2	38	3./	20.6	
		4	338./	4.4	104.	1 -22	• 3	60.	/ -48.	.1	52./	10.7	10	4.1	-33.5	
		5	160./	-83.4	8.	/ -6	• 0	24.	/ -50.	.6	21./	-23.5	4	9.1	-48.6	
		6	14./	-76.7	8.	1 -22	.7	17.	/ 86.	.6	19./	47.6	2	3./	66.1	
		7	89./	-47.5	8.	1 -46	• 3	29.	1 -23.	.6	14./	17.3	4	9.1	• 3	
		8	16./	-21.5	1.	/ 59	.9	8.	/ 55.	1	3./	-77.3	2	2.1	73.1	
		9	2.1	-34.3	14.	/ 23	.1	4.	/ 67.	9	21./	39.7	2	1./	70.5	
		10	58./	76.9	26.	/ 81	• 4	11.	/ 72	.1	31./	85.9	3	0./	-79.5	
	-	11	27./	-55.3	9.	/ -17	. 8	5.	/ -87.	. 7	6.1	-53.6		8./	-22.4	
	1	12	6./	6.5	6.	/ 16	• 0	6.	1 -69.	.6	3./	38.4		4.1	-71.3	
	PEAK-TO-PEA	٩K	6824.		2149.	,		1976.			1880.		149	4.		

FLIGHT NO. 063 AIRCRAFT TOTAL WT = 33628. N RUN NO. 11 7560. LB LOADED CG X= 5.03 M = 197.9 IN Y= -.00 = -.0 Z= 1.85 = 72.9 RUN NO. 11 TIME 54649.20 (SEC)
 DYNAMIC
 PRES
 3.81
 KPA
 79.6

 STATIC
 PRES
 79.4
 KPA
 1659.

 TOTAL
 TEMP*
 267.7
 OEG
 K
 481.9

 STATIC
 TEMP*
 264.2
 OEG
 K
 475.5
 PSF AERODYNAMIC FLIGHT STATE PŜF T. AIRSPEED= 164.6 KT A/C MACH ND= .260 RFG R DEGR DENSITY- 1.05 KG/M3 • .00203 SLUG/FT3 DENSITY ALT- 1601. M • 5254. FT SONIC SPEED- 326.4 M/SEC = 1071. FPS RATE OF CLIMB- -93. M/MIN = -304. FPM BODY ALPHA= -6.4 DEG BODY BETA= .9 DEG INERTIAL FLIGHT STATE AXIS OG LIN VEL CG LIN ACC HUB LIN VEL HUB LIN ACC AXIS ANG PDS ANG RATES (M/S) (FPS) (G) (M/S) (FPS) (G) (DEG) (RAD/SFC) ANG ACC (RAD/SEC2) -.001 .067 -.132 84.11 276.0 -.131 84.10 275.9 ROLL P∎TCH -7.5 X 1.35 4.4 .023 1.35 4.4 .009 - 31.0 .011 Z -9.45 -31.0 -1.006 -9.45 -1.006 YAW 334.2 -.002 M.R. COLL: 15.6 OEG A1: -1.2 DEG B1: 9.6 DEG HORIZ FIN= 11.1 DFG T.R. COLL= 3.8 DEG PEDAL POS= 3.9 OEG CONTROL ANGLES SHAFT ALPHA= -6.4 DEG CONTROL ALPHA- -16.0 DEG POTOR PARAMETERS HOVER TIP MACH- .70 TIP MAX-MACH- .96 TIP MIN-MACH- .44 .9R MAX-MACH' .89 .9R MIN-MACH- .37 DELTA PSI- -.9 DEG

ENGINE POWER' 846. KW = 1135. HP THRUST FACTOR- .768E+07 N = .173E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTOR PERFO	ORMANCE AND LOAD	IS
	FLIGHT NO. 63	MU = .370 V= 164.6	TOTAL CO KT MAST CO	■ ,000480 ■ .000465	AM9 TEMP= TEMP U60= CAN TEMP-	-9.0 C ■ 15.80 F 11.3 C ■ 52.26 F -3.0 C ■ 26.58 F
	TIME 54649.05	NZ■ 1.006 CLP≖ ,00437	G OMEGA RPM/324	= 34.096 RAD/S = 1.005	EC	-3.0 C - 20.30 T
ROTOR	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO= 15.4 AO= ∽₀6	A145 A1= -2.4	B1= 11.2 PEA B1= -1.1 PFA	\К−ТО−РЕАК- 22.6 \К−ТО−РЕАК* 5.1
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	33519. 7549./ -75.5 1699./ 51.1 6862./ 31.6 1381./ -38.9 785./ 34.3 584./ -33.9 612./ -16.2 153./ -87.8 29./ -58.7 63./ -42.9 93./ -37.8 14./ 84.2 27708. BEAM .174 (N-M/DEG)	16713. 2452./ -75.7 763./ 16.9 2086./ 33.7 804./ -44.9 369./ 70.5 392./ -43.3 393./ -20.5 82./ 56.5 47./ 29.9 64./ -13.7 118./ -10.7 63./ -9.6 9108. BEAM .350 (N-M/DEG)	1916. 568./ -86.3 195./ -15.0 180./ 73.9 143./ -58.2 136./ -83.6 144./ -61.R 122./ 26.2 23./ 25.7 46./ -51.8 62./ -40.2 16./ 27.3 2126. BEAM .449 (N-H/DFG)	-4556. 4752./ -53.5 4042./ -54.8 661./ 30.8 401./ 45.6 253./ 71.8 158./ 36.1 87./ 254 58./ -38.6 40./ -43.9 111./ 83.6 22./ -44.2 10./ -25.1 15431. BEAM .606 (N-M/DEG)	-597. 633./ -55.1 432./ -68.0 75./ -22.8 79./ -20.6 37./ 54.5 23./ -27.7 35./ -3.0 8./ -19.6 8./ -72.1 20./ 72.5 4./ 2.4 3./ 87.7 1894. REAM .803 (N-H/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	469. 2155./ -75.3 793./ -47.7 797./ 4.3 360./ 10.8 131./ -73.6 50./ 75.7 75./ -46.8 13./ 45.6 17./ 87.1 54./ 48.2 16./ -77.5 18./ -19.4 6728.	194. 717./ -72.9 428./ 87.7 30./ -47.1 101./ -17.5 12./ 32.1 6./ -13.0 9./ -79.4 2./ 55.2 12./ 23.3 27./ 60.7 7./ -18.7 5./ -14.5 2110.	$\begin{array}{c} 64.\\ 665./ -70.3\\ 436./ 80.8\\ 140./ 27.7\\ 59./ -48.8\\ 28./ -47.9\\ 20./ 69.7\\ 25./ -28.6\\ 6./ 59.4\\ 5./ 89.5\\ 14./ 49.5\\ 3./ -81.6\\ 2./ 42.6\\ 1972.\end{array}$	-150. 605./ -72.0 350./ 81.0 331./ 23.5 60./ 22.2 22./ -12.0 24./ 47.3 14./ 29.0 3./ 75.2 20./ 38.0 33./ 72.3 8./ -58.0 4./ -2.8 1884.	-64. 318./ 86.7 139./ -71.4 378./ 19.9 98./ -24.3 56./ -50.8 31./ 56.9 48./ -8.3 20./ 65.7 21./ 63.9 26./ -89.3 7./ 3.8 3./ 61.2 1496.

.

FLIGHT ND. 063 AIRCRAFT RUN NO. 11 TIME 54649.60 (SEC)	TOTAL WT • 33624. N 7559. LB	LOADED OG X 5.0 Y Z 1.	3 M = 197.9 IN 00 = -⊷0 85 = 77.9
AERODYNAMIC FLIGHT STATE T. AIRSPEED- 164.4 KT A/C MACH NO= .259	DYNAMIC PRES= 3.81 Static Pres= 79.5 Total Temp= 267.7 Static Temp= 264.1	I KPA ■ 79.5 KPA = 1660. DEG K ■ 481.8 DEGK ■ 475.4	PSF PSF DFG R OFG R
BODY ALPHA= -6.3 OEG BODY BFTA= 1.0 REG	DENSITY* 1.05 DENSITY ALT= 1594. SONIC SPEED* 326.3 RATE OF CLIMB90	KG/M3 = •00203 M = 5229. M/SEC = 1071. M/MIN = -297.	SLUG/FT3 FT FPS FPM

AXIS	CG LI (M/S)	N VEL (FPS)	CG LIN ACC (G)	HUB L (M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (PAD/SEC)	ANG ACC (RAD/SEC2)
X Y 7	84.07 1.42 -9.33	275.8 4.7 -30.6	129 .011 -1.013	84.06 1•41 -9.33	275.8 4.6 -30.6	133 .005 -1.013	ROLL PITCH YAW	0 -7.4 334.2	003 .007 .005	029 .017 020
CONTRC	L ANGLE	S	M.R. COLL= A * B1=	15.6 -1.1 9.5	OEG DEG DEG	HORIZ FIN- T.R. COLL= PEDAL POS=	11.0 OEG 3.7 OEG 3.9 OEG			

ROTOR PARAMETERS	HOVER	TIP MACH* .70	SHAFT ALPHA* Control Alpha=	-6.3 DEG -15.8 DEG	
		MAX-MACH= .96	DELTA PSI=	-1.0 DEG	
	.9R	MAX-MACH* .89 MIN-MACH= .37	ENGINE POWER= THRUST FACTOR'	844. KW ■ •769E+07 N ■	1132. HP .173E+07 LB

FLIGHT NO. 63 MU*.370 TOTAL C0*.000479 AMR TFMP*9.0 C * 15.72 F RUN NO. 111 N7* 1.013 G OMEGA* 34.055 RAD/SEC TEMP UG0* 11.3 C * 52.25 F 52.55 F RUN NO. 111 N7* 1.013 G OMEGA* 34.055 RAD/SEC CAN TFMP* -3.0 C * 26.58 F TIME 54649.54 CLP* 0.00441 RPM/324* 1.004 CMEGA* 34.055 RAD/SEC REATOPEAK* 22.6 ROTOR ANGLES THETA 3/4 (DEG) A0* 15.4 A1* -5 R1* 11.3 PEAK-T0-PEAK* 5.0 ROTOR LOADS (AMP/PHASE) DRAG BRACE CHCRD .449 CHORD .803 PITCH LINK TORSION .449 MEAN 33588. 16681. 1920. -4536. -593. MEAN 33588. 16681. 1920. -4536. -593. MEAN 33584. 16681. 1920. -4536. -593. 4 1776.1 32.6 09.1 5.0 247.1 16.9 4095.1 -55.5 433.1 -68.9 3 6902 29.1 34.0 107.1 166.1 176.2 286.1 42.0 38.1 43.0 17.1 -65.2 200.1		NASA	LANGLEY FLIGHT D	ATA AH-1G	- ROTOR PERFO	RMANCE AND LOAD	15
NON NO. NZ= 1.013 G CLP=.00441 OMEGA* 34.055 RAD/SEC CLN FINE 5.0 CLP 20.30 F ROTOR ANGLES THETA 3/4 (DEG) AO* 15.4 A1= -5 R1= 11.3 PEAK-TO-PEAK* 22.6 ROTOR ANGLES THETA 3/4 (DEG) AO* -6 A1= -2.4 B1= -1.1 PEAK-TO-PEAK* 5.0 ROTOR LOADS (AMP/PHASE) DRAG BRACE CHORD .449 CHORD .803 PITCH LINK TORSION .449 MEAN 33588. 16681. 1920. -4536. -59.3 658.1 -140.4 2 1776.1 23.6 909.1 5.0 247.1 -16.9 4085.1 -55.5 443.1 -68.9 3 6002.7 207.1 31.9 164.1 73.9 665.1 34.0 -22.5.7 5 746.4 42.2 36.1 -23.4 63.1 -24.9 32.1 5.0 3 6 <td< th=""><th></th><th>FLIGHT NO. 63</th><th>MU= .370 V= 164.4 H</th><th>TOTAL CQ (T Mast CQ</th><th>• •000479 • •000459</th><th>AMB TEMP TEMP U60=</th><th>-9.0 C • 15.72 F 11.3 C • 52.25 F</th></td<>		FLIGHT NO. 63	MU= .370 V= 164.4 H	TOTAL CQ (T Mast CQ	• •000479 • •000459	AMB TEMP TEMP U60=	-9.0 C • 15.72 F 11.3 C • 52.25 F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		RUN NO. II	NZ= 1.013 (G OMEGA	* 34 055 RAD/SE	CAN TEMPE	-3.0 C - 28.58 F
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		TIME 54649.54	CLP= .00441	RPM/324	= 1.004	•	
ROTOR LOADS (AMP / PHASE) DRAG BRACE (N/DEG) CHORD .449 (N/DEG) CHORD .803 (N-H/DEG) PITCH LINK (N/DEG) TORSION .449 (N-H/DEG) MEAN HARMONIC-1 33588. 16681. 1920. -4536. -593. 2 1776.1 326.8 909.1 5.0 247.1 -16.9 4096.1 -55.5 443.1 -68.9 3 6902./ 29.7 2072.1 31.9 164.1 73.9 665.1 34.0 83.1 -25.7 5 746./ 44.2 2072.1 31.9 164.1 73.9 866.1 42.0 83.1 -25.7 5 746.7 44.2 368.1 74.0 112.1 -65.6 193.1 44.7 83.1 -25.7 6 409.7 17.1 16.1 66.1 33.1 44.7 24.7 5.0 8 103.1 66.1 63.1 67.8 14.1 39.7 61.1 -39.2 6.7 -26.6 9 29.1 42.7 17.1 16.1 65.7 12.6 <th>ROTOR</th> <th>ANGLES</th> <th>THETA 3/4 (DEG) TEETER ANG (DEG)</th> <th>AO* 15.4 AO=6</th> <th>Al= -5 R Al= -2.4 B</th> <th>1= 11.3 PEA 1= -1.1 PFA</th> <th>K-TO-PEAK= 22.6 K-TO-PEAK= 5.0</th>	ROTOR	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO* 15.4 AO=6	Al= -5 R Al= -2.4 B	1= 11.3 PEA 1= -1.1 PFA	K-TO-PEAK= 22.6 K-TO-PEAK= 5.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MEAN	33588.	16681.	1920.	-4536.	- 593.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HARMONIC-1	8369./ -73.1	2680./ -73.0	605.1 -84.0	4860./ -53.1	638.1 -54.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	1776.1 32.6	909.1 5.0	247.1 -16.9	4095.1 -55.5	443.1 -68.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	6902 ./ 29 .7	2072.1 31.9	164.1 73.9	665.1 34.6	83.1 -19.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	748./ 44.2	707.1 -45.4	127.1 -39.2	380.1 42.0	83 •/ -25.7 38.1 /3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	409./ -15.8	292 1 - 34 0	107 1 -65 6	193.1 4hR	23.1 5.0
8 103.1 66.1 67.8 14.1 39.7 61.1 -39.2 6.7 -26.6 9 29.1 42.7 117.1 16.1 66.1 35.2 45.1 2 8.7 -32.2 10 12.1 67.7 87.7 14.4 45.1 -35.4 121.1 81.9 22.7 63.3 11 64.1 -36.6 139.1 -6.1 67.7 -12.6 39.1 -80.2 3.7 73.2 12 59.7 -67.1 56.1 -53.8 6.1 45.8 13.7 16.0 3.7 73.2 PEAK-TO-PEAK 29553. 9578. 2023. 15552. 1919. 8EAM .803 (N-H/DEG) (N-H/DEG) (N-H/DEG) (N-H/DEG) (N-H/DEG) Next .803 (N-H/DEG) (N-H/DEG) 1919. 317.7 85.5 2 845.7 -46.4 434.7 88.8 438.7 81.1 348.7 81.9 135.7 -67.3 3 815.7 3.0 33.7 -46.3 </td <td></td> <td>7</td> <td>583.1 -22.9</td> <td>388.1 -23.8</td> <td>109.1 -16.6</td> <td>84.1 28.9</td> <td>321 59</td>		7	583.1 -22.9	388.1 -23.8	109.1 -16.6	84.1 28.9	321 59
9 29.1 42.7 117.1 16.1 66.1 35.2 45.12 8.7 -32.2 10 12.1 67.7 87.7 14.4 45.1 -35.4 121.1 81.9 22.7 63.3 11 64.1 -36.6 139.1 -6.1 67.7 -12.6 39.1 -80.2 3.7 52.3 12 59.7 -67.1 56.1 -53.8 6.1 45.8 13.7 16.0 3.7 73.2 PEAK-TO-PEAK 29553. 9578. 2023. 15552. 1919. BEAM .174 BEAM .350 8EAM .449 BEAM .606 BEAM .603 (N-H/DEG) (N-H/DEG) (N-H/DEG) (N-H/DEG) (N-H/DEG) MEAN 467. 198. 6615263. HARMONIC-1 2240.7 -74.3 727.7 -72.4 671.7 -70.0 607.7 -77.3 317.7 85.5 2 845.7 -46.4 434.7 88.8 438.7 81.1 348.7 81.9 135.7 -67.3 3 815.7 3.0 33.7 -46.3 139.7 27.6 332.7 23.2 380.7 19.3 4 346.7 7.2 104.7 -20.7 60.7 -47.4 56.7 16.4 98.7 -30.5 5 150.7 -80.6 10.7 -10.4 24.7 -46.4 22.7 -23.8 50.7 -46.4 6 21.7 81.6 7.7 -28.5 21.7 77.1 21.7 43.7 26.7 58.7 7 78.7 -52.5 6.7 -52.1 22.7 -21.6 12.7 25.3 45.7 -4.9 8 13.7 -12.9 5.7 54.4 8.7 42.5 1.7 33.1 20.7 67.4 9 9.7 81.8 9.7 -10.6 8.7 74.4 16.7 23.0 15.7 61.1 10 61.7 52.0 24.7 68.1 11.7 47.5 30.7 72.9 28.7 89.6 11 29.7 -83.0 5.7 -35.5 5.7 47.1 5.7 -77.7 5.7 -36.2 12 20.7 -53.5 5.7 47.1 5.7 -77.7 5.7 -36.2		8	103.1 66.1	63.1 67.8	14.1 39.7	61.1 - 39.2	6./ -26.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9	29.1 42.7	117.1 16.1	66.1 35.2	45.12	8./ -32.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	12.1 67.7	87./ 14.4	45.1 -35.4	121.1 81.9	22./ 63.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	64.1 -36.6	139.1 -6.1	67./ -12.6	39.1 -80.2	3. <i>1</i> 52.3
PEAR-IO-PEAR2953.9578.2023.15552.1919. $3EAM .174$ (N-M/DEG) $BEAM .350$ (N-M/DEG) $BEAM .449$ (N-M/DEG) $BEAM .606$ (N-M/DEG) $BEAM .606$ (N-M/DEG) $BEAM .606$ (N-M/DEG)MEAN HARMONIC-1 $487.$ $2 240./-74.3$ $2 845./-46.4$ $198.$ $32./-46.4$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $33./-46.3$ $139./-27.6$ $33./-27.6$ $33./-23.2$ $380./-19.3$ $380./-19.3$ $4 346./-7.2$ $104./-20.7$ $60./-47.4$ $56./-16.4$ $60./-47.4$ $56./-16.4$ $60./-47.4$ $56./-16.4$ $60./-47.4$ $56./-16.4$ $60./-46.4$ $60./-46.4$ $60./-46.4$ $60./-46.4$ $60./-46.4$ $60./-46.4$ $81.67./-28.521/-77.121/-43.726/-58.7778./-52.56/-62.122/-21.612/-25.345/-46.9813/-12.95/-54.48/-42.51/-33.120/-67.490/-61.490/-61.490/-61.410061./-52.024/-68.111/-47.530/-72.928/-89.611/-77.75/-76.21/-77.75/-36.21/-77.71/-77.75/-36.21/-77.7<$			59./ -67.1	56.1 -53.8	6.1 45.8	13./ 16.0	3./ 73.2
BEAM .174 (N-M/DEG) BEAM .350 (N-M/DEG) BEAM .449 (N-M/DEG) BEAM .606 (N-M/DEG) BEAM .803 (N-M/DEG) MEAN 487. 198. 66. -152. -63. HARMONIC-1 2240./ -74.3 727./ -72.4 671./ -70.0 607./ -77.3 317./ 85.5 2 845./ -46.4 434./ 88.8 438./ 81.1 348./ 81.9 135./ -67.3 3 815./ 3.0 33./ -46.3 139./ 27.6 332./ 23.2 380./ 19.3 4 346./ 7.2 104./ -20.7 60./ -47.4 56./ 16.4 98./ -30.5 5 5 150./ -80.6 10./ -10.4 24./ -48.4 22./ -23.8 50./ -46.4 6 21./ 81.6 7./ -28.5 21./ 77.1 21./ 43.7 26./ 58.7 7 78./ -52.5 6./ -62.1 22./ -21.6		PEAK-TO-PEAK	29553.	9578.	2023.	15552.	1919.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MEAN	487.	198.	66.	-152.	-63.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HARMONIC-1	2240 1 -74.3	727.1 -72.4	671./ -70.0	607./ -72.3	317./ 85.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	845.1 -46.4	434./ 88.8	438./ 81.1	348./ 81.9	135./ -67.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	815./ 3.0	33./ -46.3	139./ 27.6	332./ 23.2	380./ 19.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	346./ 7.2	104./ -20.7	60.1 -47.4	56./ 16.4	98./ -30.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	150./ -80.6	10./ -10.4	24./ -48.4	22./ -23.8	50./ -46.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6	21./ 81.6	7.1 -28.5	21./ 77.1	21./ 43.7	26./ 58.7
0 $13 \cdot / -12 \cdot 9$ $5 \cdot / 5 \cdot 4$ $8 \cdot / 42 \cdot 5$ $1 \cdot / 33 \cdot 1$ $20 \cdot / 67 \cdot 4$ 9 $9 \cdot / 81 \cdot 8$ $9 \cdot / -10 \cdot 6$ $8 \cdot / 74 \cdot 4$ $16 \cdot / 23 \cdot 0$ $15 \cdot / 61 \cdot 1$ 10 $61 \cdot / 52 \cdot 0$ $24 \cdot / 68 \cdot 1$ $11 \cdot / 47 \cdot 5$ $30 \cdot / 72 \cdot 9$ $28 \cdot / 89 \cdot 6$ 11 $29 \cdot / -83 \cdot 0$ $5 \cdot / -35 \cdot 5$ $5 \cdot / 47 \cdot 1$ $5 \cdot / -77 \cdot 7$ $5 \cdot / -36 \cdot 2$ 12 $20 \cdot / -52 \cdot 5$ $6 \cdot / -21 \cdot 3$ $1 \cdot / 7 \cdot 0$ $3 \cdot / 15 \cdot 1$ $1 \cdot / 43 \cdot 7$		7	78./ -52.5	6./ -62.1	22./ -21.6	12./ 25.3	45./ -4.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	13./ -12.9	5./ 54.4	8./ 42.5	1./ 33.1	20-/ 67-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9	907 0108 61 / 52 0	9.7 -10.6	8./ (4.4 11 / 47 F	16./ 23.0	15./ 61.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	29./ -83.0	5./ =35.5	5./ 47.1	5.1 -77 7	20.1 07.0 5.1 -34 3
		12	20./ -52.5	6./ -21.3		3.7 - 7.67	$1 \cdot 1 = 42 \cdot 7$
PEAK-TO-PEAK 7010. 2147. 1976. 1880. 1477.		PEAK-TO-PEAK	7010.	2147.	1976.	1880.	1472.

ÿ.

•

 FLIGHT NO.
 063
 AIRCRAFT TOTAL WI • 33581.
 N

 RUN NO.
 12
 7550.
 LB

 TIME 54693.20
 (SEC)
 7550.
 Control of the second LOADED CG X 5.03 M 197.9 IN Y -.00 -.0 Z 1.95 72.9
 DYNAMIC
 PRES=
 2.52
 KPA
 52.7
 PSF

 STATIC
 PRES=
 80.0
 KPA
 =
 1670.
 PSF

 TOTAL
 TEMP*
 266.6
 DEG
 K
 479.8
 DEG
 R

 STATIC
 TEMP 264.2
 DEG
 K
 475.6
 DFG
 R
 AERODYNAMIC FLIGHT STATE T. AIRSPEED- 133.9 KT A/C MACH NO. .211 DENSITY- 1.05 KG/M3 • .00205 SLUG/FT3 DENSITY ALT= 1535. M = 5036. FT SONIC SPEED* 326.4 M/SEC = 1071. FPS RATE OF CLIMB* -377. M/MIN = -1236. FPM BODY ALPHA= 2.3 DEG BODY BETA• 5.0 DEG INERTIAL FLIGHT STATE AXIS CG LIN VEL CG LIN ACC HUB LIN VEL HUB LIN ACC AXIS ANG PDS ANG RATES (M/S) (FPS) (G) (M/S) (FPS) (G) (DEG) (RAD/SFC) ANG ACC (RAD/SEC2) -.011 68.57 225.0 6.03 19.8 -.084 68.57 225.0 6.01 19.7 2.72 8.9 -.083 -.013 ROLL 2.9 X -2.7 -.001 -.001 Y -.064 -.067 -.984 PITCH YAW -.007 -.007 Z 2.72 8.9 -.984 M.R. COLL= 7.9 DEG A1= .8 DEG B1= 6.1 DEG CONTROL ANGLES HORIZ FIN= 8.4 DEG T.R. COLL PEDAL POS 1.5 DFG 1.6 OEG ROTOR PARAMETERS SHAFT ALPHA= 2.3 DFG

HOVER	TIP MACH* .71	CONTROL ALPHA*	-3.8 DEG	
TIF	MAX-MACH= .92	DELTA PSI=	-5.0 DEG	
TIF	P MIN-MACH50			
• 91	₹ MAX-MACH85	ENGINE POWER=	290. KW =	389. HP
.91	R MIN-MACH42	THRUST FACTOR-	•791E+07 N =	.178E+07 L8

	NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTOR PERFO	RMANCE AND LOA	ns
	FLIGHT NO. 63	MU= .298 V= 133.9 H	TOTAL CO KT MAST CO	• .000158 • .000150	AM8 TEMP= TFMP U60=	-8.9 C = 15.91 F 11.4 C = 52.49 F
	RUN NO. 12				CAN TEMP*	-3.0 C • 26.58 F
	TIME 54693.05	NZ= 984 (CLP= ,00415	G OMEGA RPM/324	- 34.459 RAD/SE = 1.016	C	
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO= 8.2 AO=7	A1= 1.3 B A1= -1.9 B	1 6.2 PE/ 1 • 4 PF/	AK–TO–PEAK– 13.2 AK–TO–PEAK* 4.0
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	45216.	14563.	2051.	-1582.	-261.
	HARMONIC-1	1139./ -53.1	340.1 -60.9	186./ 71.8	2963./ -50.0	462./ -64.8
	2	1336./ 80.7	338./ 55.8	54./ -39.5	3268./ -75.5	333./ -70.7
	3	3453./ -21.2	990./ -18.0	21./ 69.7	436./ -69.6	78./ -45.1
	4	954./ -59.6	607./ -73.7	78./ 73.4	562./ 17.2	123.7 -44.9
	5	(30.7 - 21.9)	374.7 13.2	142.1 40.7	200 /	28 / -63 8
	0 7		145./ 12.0	82.7 -8.8	204.1 42.4	9.1 75.4
	/ 8	137./ -55.2	157.7 - 27.4	33./ -69.2	176./ -12.2	6./ 35.9
	9	96./ 48.3	100./ 77.5	20./ 46.3	133./ 35.4	13./ 65.2
	10	43./ -9.4	238./ -86.0	80./ -87.5	77./ -2.9	12./ -1.6
	11	96./ -75.7	178./ 75.3	81./ 62.9	66./ 53.2	20./ 53.0
	12	57./ -67.5	43./ -27.5	30./ -35.5	28.1 -47.3	4./ -8.9
	PEAK-TO-PEAK	10027.	3909.	1172.	12056.	1451.
		REAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DFG)	REAM .803 (N-M/DEG)
	MEAN	-436.	49.	-49.	-256.	-4.
	HARMONIC-1	754./ -67.0	508./ -77.0	525./ -77.2	457./ -81.3	199./ 71.1
	2	580./ -84.9	341./ 69.1	351./ 66.5	296./ 68.0	126./ 88.3
	3	372./ 20.1	72./ 70.4	64./ -29.1	174./ 14.9	216./ 23.1
	4	540./ -38.9	159./ -59.1	79./ -74.3	97./ -45.0	220./ -61.8
	5	202./ -80.4	7./ -49.3	48./ -66.2	27./ -89.9	94./ -51.1
	6	97./ 18.5	13./ -80.9	34./ 22.3	26./ -13.7	76./ 3.4
	7	75./ 61.3	6./ 51.7	24.1 -75.6	23./ -28.6	68./ -31.3
	8	80./ -33.5	4./ -58.4	27./ -14.5	30./ -16.2	69./ 3.6
	g	85./ 20.9	36./ 50.5	28./ 36.9	26./ 71.5	13./ -41.7
	10	50./ -41.9	28./ .6	14./ -84.7	37./ 16.3	34./ 34.5
	11	19./ -8.2	10.7 49.6	12./ 89.2	11./ 34.4	0.7 51.7
		30.7 15.4	8./ 87./	0./ 48.6	/./ 84.9	4./ 10.4
	FEAR-IU-PEAK	3109+	1000.	1014.	1310.	TTA3+

.

'FLIGHT NO. 063 AIRCRAF RUN NO. 13 TIME 54946.70 (SEC)	TOTAL WT 9 33377. N 7504. LB	LOADED CG	X = 5.03 M = 197.9 IN Y =00 =0 Z = 1.86 = 73.0
AERODYNAMIC FLIGHT STATE T. Airspfed= 140.3 kt A/C Mach NO= .221	DYNAMIC PRES= 2.7 STATIC PRES= 79. TOTAL TEMP= 267.3 STATIC TEMP= 264.	4 KPA ■ 1 KPA ■ 3 OEG K ■ 7 DEG K ■	57.2 PSF 1651. PSF 481.1 DFG P 476.4 DFG P
ROOY ALPHA = -4.5 DEG BODY BETA = 1.3 OFG	DENSITY= 1.00 DENSITY ALT= 1667 Sonic Speed= 326. Rate of CLIMB= -26	4 KG/M3 = . 7 M • 7 M/SEC = 6 M/MIN =	.00202 SLUG/FT3 5469. FT 1072. FPS -84. FPM

AXIS	CG LI (M/S)	(FPS)	CG LIN ACC (G)	HUB L (m/s)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG PAS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y ■	71.95 1.67 -5.61	236.1 5.5 -18.4	093 .003 976	71.95 1.68 -5.61	236.1 5.5 -18.4	093 000 976	ROLL PITCH YAW	•0 -4•8 179.3	.005 .001 005	019 .001 010
CONTRO	L ANGLE	S	M.R. COLL A1 B1	■ 12.4 ■ ● • 6 ■ 7.7	DEG DEG DEG	HORIZ FIN= T.R. Coll= Pedal Pos=	9.5 OE 2.8 DE 2.9 DE	G G G		

ROTOR PARAMETERS	HOVER	TIP MACH= .7	SHAFT 70 CONTROL	ALPHA4.5 ALPHA12.2	OEG DEG	
		MAX-MACH= .	92 DEL	TA PSI1.3	OEG	
	• 9R • ବନ	MAX-MACH- • MIN-MACH- •	85 ENGINE 41 THRUST F	POWER" FACTOR* .766	598. K₩ ● E+07 N ■	802. HP .172E+07 LB

NASA LANGLEY FLIGHT OATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 63	MU= .315 V= 140.3 K	TOTAL CO= T Mast CQ=	•000340 •000328	AMB TEMP TFMP U60= CAM TEMP	-8.5 C = 16.75 F 11.7 C = 53.00 F -7.6 C = 27.28 F
	TIME 54946.55	NZ= .976 G CLP= .00423	G DMLGA= RPM/324=	34.130 RAD/SEC 1.006		
ROTOP	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO= 12.3 AO=6	Al=1 Bl= Al= -1.9 Bl=	8.5 PEA 6 PFA	K-TO-PEAK≢ 17.1 K-TO-PEAK* 4.0
ROTOR	LJADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 P (N-M/DEG)	ITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	38386. 5090./ -70.6 496./ -85.8 3757./ 26.7 855./ -11.8 600./ 65.2 303./ 75.8 169./ -53.8 103./ 83.6 41./ -3.0 45./ -1.3 4./ 39.5 127./ -63.1 18478.	15755. 1650./ -72.6 199./ -3.7 1112./ 28.3 524./ -30.5 395./ 83.1 153./ -76.4 175./ -51.9 103./ -82.0 195./ -14.3 288./ 29.0 63./ -60.6 37./ 72.8 6701.	1953. -3 373./ 87.0 3 117./ -48.5 3 51./ -70.1 6 62./ -44.0 6 125./ 88.9 1 16./ -59.9 6 63./ -81.7 1 10./ 63.0 6 67./ -17.4 1 120./ 28.7 3 32./ -83.1 3 32./ 63.4 11	298. 466./ -47.5 264./ -61.0 316./ -87.6 383./ 59.3 194./ 7.4 222./ -24.7 73./ -13.4 33./ -69.1 46./ -77.5 54./ 59.6 30./ -14.7 33./ -31.4 939.	-417. 491./ -52.6 356./ -65.8 75./ -21.3 60./ -10.5 47./ 32.4 19./ -15.4 8./ -43.6 3./ -12.6 2./ 41.3 9./ 34.8 3./ 12.8 3./ 12.8 3./ 24.9 1403.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 B (N-M/DEG)	EAM .606 (N-M/DEG)	REAM .803 (N-M/DEG)
	MEAN HARMONIC-1 -2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	10. 1319./ -72.2 627./ -65.2 380./ 5.0 315./ 7.2 115./ -65.1 38./ -60.5 55./ -17.3 16./ 9.7 16./ -67.2 58./ 45.0 13./ -70.9 29./ 14.8 4239.	156. 542./ -71.4 353./ 86.0 8./ -15.2 98./ -17.0 5./ -84.9 11./ 3.2 5./ -15.3 4./ -35.2 10./ -35.2 18./ 69.3 5./ -15.3 8./ 51.5 1663.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173. 481./ -72.9 289./ 85.5 192./ 40.7 59./ 5.7 13./ -57.0 16./ 61.8 14./ 41.9 13./ 51.0 5./ -8.0 23./ 80.4 5./ -5.5 10./ 43.5 472.	-36. 231./ 84.9 122./ -69.9 217./ 38.0 129./ -22.0 68./ -3.1 32./ 83.7 46./ 32.1 30./ 63.4 6./ 61.8 20./ 86.6 4./ 18.3 6./ 60.1 1140.

FLIGHT NO. 063 Run Ng. 14 Time 55020.70 (SFC)	AIRCRAFT TC	TAL WT = 33344 7496	N LOAD	ED CG X= 5.0 Y=0 Z= 1.6	3 M = 197.8 IN 0 =0 6 = 73.1	
AERODYNAMIC FLIGHT S T. AIRSPEFD= 151.6 A/C MACH NO234	KT	DYNAMIC PRE Static Pre total tem static tem	S= 3.21 KPA S= 79.1 KPA IP= 267.4 DEG IP- 264.4 DEG	■ 67.0 ■ 1653. K ■ 481.4 K ■ 475.9	PSF PSF DFG P DFG R	
RODY ALPHA= -5.8 Body Beta= .7	DEG Beg	DENSITY AL DENSITY AL SONIC SPEE RATE OF CLIM	Y* 1.04 KG/ T= 1645. M D* 326.5 M/S B48. M/M	M3 = .00202 S = 5399. F EC = 1071. F IN = -156. F	LUG/FT3 T PS PM	
AKIS CG LIN VEL	CG LIN ACC	HUB LIN VEL	HUB LIN ACC	AXIS ANG	POS ANG PATES	ANG ACC
(M/S) (FPS) X 77.57 254.5 Y .97 3.2 Z -7.85 -25.8	(G) 106 .015 992	(M/S) (FPS) 77.56 254.5 .96 3.1 -7.85 -25.8	(G) 107 .013 992	(DE ROLL - PITCH -6 YAM 172	G) (RAD/SEC) .4005 .4 .003 .8 .000	(RAD/SEC2) 009 .003 .022
CONTROL ANGLES	M.R. COLL= A1= B1=	14.2 DEG 9 OEG 8.6 DEG	HORIZFIN= T.R. COLL= Pedal Pos=	10.2 DEG 3.1 0EG 3.3 DFG		

•

-

.

4

•

t

ROTOR PARAMETERS	HOVER TIP MACH= .70	SHAFT ALPHA" –5 CONTROL ALPHA- –14	.8 DFG .4 DFG
	TIP MAX-MACH94	DELTA PSI-	•7 DEG
	•9R MAX-MACH- •87 •9R MIN-MACH= •39	ENGINE POWER' THRUST FACTOR- •7	734. KW = 984. HP 66E+07 N = .172E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTOR PERF	ORMANCE AND LUA	25	
	FLIGHT NO. h3	MU ≈ .341 V≈ 151.6 ł	TOTAL CO KT MAST CO	= .000418 = .000406	AMB TEMP= TEMP_U60=	-8.8 C • 16.24 12.3 C • 54.15	F F
	RUN NO. 14	NZ= .992 (CLP= .00430	G DMEGA RPM/324	■ 34.091 RAD/S ■ 1.005	EC	-2.6 C • 27.28	F
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO ■ 14.0 AO ■7	Al=5 Al= -2.1	B1= 10.0 PE/ B1= -9 PE/	AK-TO-PEAK- 19.9 AK-TO-PEAK= 4.5	
ROTOR	LOADS (AMP/PHA	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DFG)	TORSION .449 (N-M/DEG)	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PFAK	35496. 7041./ -66.4 1655./ 50.9 5403./ 34.4 893./ -18.5 613./ 61.6 105./ 46.1 338./ -8.1 109./ -70.3 60./ -56.0 12./ 3.5 115./ -31.6 19./ -57.8 24813. SEAM ,174	16362. 2290./ ~66.7 633./ 11.3 1612./ 36.6 644./ ~33.6 376./ 84.5 15./ 54.7 208./ ~6.0 45./ 69.0 109./ 16.1 135./ 9.6 85./ -37.5 62./ 12.0 7947. BEAM .350	1739. 479./ -83.3 181./ -27.9 73./ -82.3 127./ -46.7 109./ -75.6 21./ -61.9 82./ -62. 34./ 69.0 40./ 51.8 52./ -13.6 40./ -46.9 1640. BEAM .449	-3964. 4229./ -48.0 3866./ -53.2 464./ 66.3 457./ 55.4 73./ -12.3 266./ -6.1 11./ 23.6 13./ -36.4 46./ -57.6 92./ 65.2 29./ -8.2 22./ -16.7 14178. BEAM .605	-510. 565./ -51.6 441./ -67.2 85./ -18.2 66./ -13.3 21./ 75.1 26./ -14.6 20./ -19.7 2./ 26.2 4./ -29.5 14./ 64.6 2./ 86.8 3./ 11.1 1721. REAM _803	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9	(N-M/DEG) 265. 1832./ -69.6 720./ -52.1 614./ 6.2 341./ 14.0 120./ -55.6 66./ -62.9 82./ -37.2 25./ -6.6 17./ -76.3 50./ 37.6	(N-M/DEG) 185. 634./ -69.7 388./ 88.3 31./ -40.6 100./ -12.5 4./ -7.0 13./ -6.3 8./ -35.4 4./ -64.3 12./ -42.5 21./ 44.6	(N-H/DEG) 63. 593./ -68.5 392./ 82.7 106./ 41.8 54./ -39.5 24./ -20.4 24./ +59.5 29./ -16.3 15./ 43.0 8./ -68.7 1.2 29./ -20.4 24./ -20.4	(N-H/DEG) -160. 538./ -71.6 308./ 84.7 252./ 35.9 65./ 13.6 18./ -21.3 18./ 68.5 14./ 10.4 10./ 36.8 11./8	(N-M/DEG) -40. 272./ 84.3 111./ -62.1 289./ 30.2 122./ -17.9 53./ -13.8 35./ -73.1 49./ 7.3 25./ 57.0 10./ 31.3	
	11 12 PEAK-TO-PEAK	14./ -76.6 27./ 16.4 5884.	5./ -25.5 7./ 27.1 1876.	4./ 36.6 9./ 27.9 1751.	4./ -25.7 8./ 40.9 1678.	4./ +2.1 5./ 52.5 1321.	

FLIGHT NO. 063 RUN NO. 17 TIME 55689.90 (SEC	AIRCRAFT TO	0TAL WT = 3293 740	5. N LOADE 94. L8	D CG X= 5.0 Y= Z= 1.	02 M = 197.8 IN 00 =0 86 = 73.3	
AERODYNAHIC FLIGHT T. AIRSPEED- 109.9 A/C MAC4 ND= .1	STATE KT '3	OYNAMIC PR Static PR Total te Static Te	ES 1.82 KPA ES 85.6 KPA MP- 265.5 DEG MP 263.9 DEG	38.0 1792. K • 477.9 K • 475.0	PSF PSF DFG R DFG R	
80DY ALPHA 90DY 9ETA= 1.	8 DEG 4 DEG	DENSI DENSITY A SONIC SPE RATE OF CLI	ITY* 1.13 KG/M ILT= 808. M Edd- 326.2 M/Se MB= -117. M/MI	3 ■ .00220 ● 2649. C ■ 1070. N ■ -383.	SLUG/FT3 FT FPS FPM	
AXIS CG LIN VEL (M/S) (FPS)	CG LIN ACC (G)	HUB LIN VEL (M/S) (FPS)	HUB LIN ACC	AXIS ANG	PNS ANG RATFS EG) (PAD/SEC)	ANG ACC (RAD/SEC2)
X 56.49 185.3 Y 1.38 4.5 Z83 -2.5	088 .003 -1.279	56.25 184.6 1.39 4.6 83 -2.7	081 .020 7 -1.276	ROLL – PITCH – YAW 19	2.2 .007 2.9 .120 1.1 .010	.084 032 .101
CONTROL ANGLES	M.R. COLL= A1= B1=	9.0 DEG 3. DEG 4.2 DEG	HORIZ FIN* T.R. COLL= PEDAL POS=	7.5 DEG •2 DEG •4 DEG		
ROTOR PARAMETERS	HOVER TIP MA	.сн* •70 с	SHAFT ALPHA- CONTROL ALPHA-	8 DEG		

TIP	MAX-MACH8	B7 DELTA PS	61- -1.4 DEG		
TIP	MIN-MACH* .53	3			
.9R	MAX-MACH-	BO ENGINE POWE	R= 398. KW	■ 533.	HP
•9R	MIN-MACH= .4	46 THRUST FACTO	R* .836E+07 N	= .188E+07	LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTOR PERFO	ORMANCE AND LOAD)S	
	FLIGHT NO. 63 BUN NO. 17	MU= •246 V= 109.9	TOTAL CO Kt Mast Co	<pre>.000206 .000191</pre>	AMB TEMP= TEMP U60= Can TEMP=	-9.3 C • 15.33 10.1 C • 50.23 -3.4 C • 25.88	F F F
	TIME 55689.82	NZ= 1.276 CLP* •00498	G DMEGA RPM/324	■ 34.265 RAD/SI ■ 1.010	EC		
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO= 9.1 AO=7	A1=∎ A1=9	B1= 4.5 PFA B1= .6 PFA	K-TO-PEAK= 9.3 K-TO-PEAK= 2.2	
ROTOR	LOADS (AMP/PHA	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	43199. 3899.1 -6.0 660.1 -27.2 2018.1 36.4 444.1 33.5 259.1 -37.1 1126.1 -38.3 151.1 -80.1 41.7 -66.2 150.1 51.5 52.1 -31.4 103.1 -24.9 136.1 -52.0 11606.	14789. 1049./ -14.6 275./ -49.2 603./ 36.1 188./ 26.3 49./ -2.7 815./ -43.8 78./ 75.7 35./ -21.9 106./ -83.9 74./ -28.2 54./ 19.2 50./ -39.8 4397.	2114. 248./ -56.3 21./ -1.3 38./ 14.5 21./ -48.7 24./ 53.9 161./ -45.4 58./ -72.1 12./ -35.9 59./ -84.6 40./ -41.8 22./ -12.2 26./ -72.9 996.	-1805. 1893./ -36.9 1720./ -37.3 228./ -6.7 363./ -84.2 88./ -15.1 65./ 60.7 36./ -26.4 10./ -86.9 29./ 23.6 6508.	$\begin{array}{c} -269. \\ 323./ -54.8 \\ 178./ -25.2 \\ 60./ 29.7 \\ 66./ 51.9 \\ 23./ -64.0 \\ 31./ 45.3 \\ 8./ 46.7 \\ 9./ 82.7 \\ 5./ -24.0 \\ 8./ 22.1 \\ 9./ -2.0 \\ 5./ -14.1 \\ 925. \end{array}$	
		XEAM .174 (N-M/DEG)	BEAU .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	REAM .605 (N-M/DEG)	REAM .803 (N-M/DEG)	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	97. 524./ -46.4 327./ -48.8 69./ -82.7 323./ 53.8 108./ -40.8 69./ -72.2 39./ 31.4 38./ 28.8 57./ 62.3 43./ -58.9 2./ -68.5 43./ -52.6 1929.	129. $379./ -67.7$ $245./ -72.5$ $52./ -5.5$ $99./ 41.2$ $16./ -58.7$ $9./ 53.6$ $8./ 50.1$ $12./ 88.8$ $37./ 72.2$ $17./ -36.6$ $8./ -25.6$ $15./ -45.3$ $1187.$	$\begin{array}{c} -31.\\ 404./ -69.2\\ 286./ -71.5\\ 50./ 37.1\\ 59./ 29.3\\ 25./ 50.9\\ 7./ 46.8\\ 25./ 65.3\\ 11./ 1.8\\ 16./ 58.3\\ 12./ -45.4\\ 5./ -18.6\\ 14./ -74.1\\ 1281. \end{array}$	-277. 404./ -71.5 249./ -73.1 68./ 74.4 81./ 56.0 21./ -33.7 10./ -14.2 16./ -51.0 15./ -45.8 36./ 88.1 21./ -11.4 1./ 81.8 11./ -64.3 1274.	$\begin{array}{c} 80.\\ 228./ -86.9\\ 105./ -84.8\\ 88./ 75.4\\ 144./ 39.0\\ 58./ 75.5\\ 53./ -67.9\\ 61./ -71.7\\ 30./ -26.3\\ 30./ -71.5\\ 22./ -6.4\\ 5./ -33.9\\ 4./ -19.0\\ 886.\end{array}$	

.

.

.

.

FLIGHT NO. 063 RUN NO. 24 TIME 56055.20 (SEC)	AIRCRAFT TOTA	_ WT ● 32662. N 7343. LB	LOADED CG X = 5.02 M Y =00 Z = 1.87	■ 197.7 IN ■ ■ ■ 0 ■ 73.5
AERODYNAMIC FLIGHT S	TATE	DYNAMIC PRES 1.76	KPA ■ 36.6 PSF	
T. AIRSPEED- 109.1 A/C MACH NO* .172	КТ	TOTAL TEMP- 266.2 STATIC TEMP- 264.6	OEG K • 479.2 DEG OEG K • 476.3 OFG	P
BODY ALPHA -3.0 BODY BETA- 2.1	OEG OEG	DENSITY= 1.11 DENSITY ALT- 983. SONIC SPEED' 326.7 RATE OF CLIMB* 1.	KG/M3 = .00216 SLUG/ M = 3224. FT M/SEC = 1072. FPS M/MIN = 2. FPM	FT3
INERTIAL FLIGHT STATE	E			
AXIS CG LIN VEL (M/S) (FPS)	CG LIN ACC HU	JB LIN VEL HUB LIN 1/S) (FPS) (G)	ACC AXIS ANG POS (DEG)	ANG RATES ANG ACC (RAD/SEC) (RAD/SEC2)
X 56.00 183.7 Y 2.05 6.7 Z -2.96 -9.7	065 50 002 2 961 -2	0.01 183.8063 2.05 6.7 .002 2.96 -9.7962	ROLL4 PITCH -3.0 YAW 346.9	001 .017 006007 .003011
CONTROL ANGLES	M.R. COLL= A1= B1=	9.0 DEG HORIZ F 5 DEG T.R. CO 5.4 DEG PEDAL P	IN= 7.9 OEG LL= 1.2 OEG DS= 1.3 DEG	
ROTOR PARAMETERS	HOVER TIP MACH	SHAFT AL .70 CONTROL AL	PHA= -3.0 DEG PHA= -8.4 OEG	
	TIP MAX-MACH	87 DELTA	PSI= -2.1 OEG	

TIP MAX-MACH87 TIP MIN-MACH- .52	DELTA PSI=	-2.1 OEG	
•9R MAX-MACH" •80	ENGINE POWER*	405. KW =	543. HP
•9R MIN-MACH= .45	Thrust Factor=	.812E+07 N =	.183E+07 LB

NASA LANGLEY FLIGHT OATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 63 RUN NO. 24 TIME 56055.13	MU246 V≖ 109.1 KT NZ962 G CLP00385	TOTAL CO Mast CO Omega- RPM/324=	.000218 .000207 33.958 RAD/SEC 1.001	AMB TFMP= TEMP U60= CAN TEMP-	-8.5 C ■ 16.67 F 10.6 C ■ 51.00 F -3.0 C ■ 26.58 F
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (Deg)	AO= 9.2 AO=7	A1■ ■ 81 A1■ -1.4 B1	5.4 PEAI	К–ТО–РЕАК- 10.9 К–ТО–РЕАК- 2.8
ROTOR	LOADS (AMP/PHA	ASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4949. 946./ -48.8 57./ -69.2 487./ 31.1 238./ -2.4 100./ -89.0 250./ 73.1 223./ 34.9 59./ -59.7 84./ -15.7 197./ 30.3 37./ 56.7 38./ 89.4 3737.	2091. 247./ -67.2 40./ -50.7 27./ 17.5 18./ -37.9 43./ -59.2 39./ 50.2 52./ 16.0 27./ -63.7 24./ 4.4 76./ 35.2 14./ 50.7 23./ 54.9 939.	2000. 2277./ -37.0 1999./ -62.0 384./ -49.5 364./ 63.7 249./ 8 123./ -53.5 105./ -3 78./ -77.2 36./ -4.2 36./ -4.2 33./ -86.0 13./ -35.7 7957.	$\begin{array}{c} -267. \\ 361./ & -53.4 \\ 208./ & -57.6 \\ 67./ & -7.5 \\ 53./ & 35.0 \\ 40./ & 10.2 \\ 8./ & -32.0 \\ 9./ & -11.1 \\ 8./ & 80.3 \\ 4./ & -31.3 \\ 4./ & 17.7 \\ 10./ & -44.9 \\ 5./ & -54.4 \\ 1012. \end{array}$
		BEAM .174 ((N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	$\begin{array}{c} -260. \\ 695. / -61.0 \\ 369. / -72.5 \\ 94. / 36.9 \\ 271. / 26.4 \\ 78. / -21.0 \\ 37. / -69.5 \\ 49. / 24.1 \\ 25. / 66.8 \\ 17. / -47.1 \\ 41. / -57.4 \\ 11. / 85.8 \\ 32. / 58.4 \\ 2430. \end{array}$	110. 378./ -70.3 235./ -88.2 26./ -11.4 80./ 16.0 4./ -62.3 2./ -46.9 7./ 13.6 2./ -24.2 8./ 8.7 16./ -38.3 13./ 84.8 8./ -86.9 1118.	$\begin{array}{c} -9.\\ 390./ -71.4\\ 252./ -86.3\\ 37./ 48.0\\ 45./ 7.5\\ 25./ 22.6\\ 16./ -82.2\\ 27./ 39.1\\ 11./ 62.0\\ 3./ -88.9\\ 11./ -50.4\\ 3./ -29.4\\ 11./ 52.4\end{array}$	-224. 361./ -74.3 205./ -82.9 73./ 68.3 55./ 33.0 7./ 42.7 13./ -66.0 13./ -82.9 10./ -48.7 7./ 58.8 19./ -34.6 7./ 86.1 8./ 86.7 1069.	$\begin{array}{c} -14. \\ 160. / 88.9 \\ 64. / -68.3 \\ 83. / 57.4 \\ 105. / 15.4 \\ 52. / 8.2 \\ 39. / -79.3 \\ 41. / 76.5 \\ 24. / -56.2 \\ 7. / -72.5 \\ 17. / -27.0 \\ 4. / -63.2 \\ 5. / -82.0 \\ 688. \end{array}$

FLIGHT NO RUN NO. TIME 5611	063 27 9.47 (S	EC)	AIRCRAFT	TOTAL	WT =	32672. 7345.	N L B	LOAOEO	CG	X =	5.02 M 00 1.87	■ 197.7 IN ■0 ■ 73.5	
AERODYNAM	11C FLIG	HT STA	ATF	C	YNAMI	C PRES	1.84	KPA		38.4	PSF		
T. AIRS A/C MAC	PEED= 1 H ND= .	11.6 H ,176	кт		TOTA	L TEMP	266.8 265.2	DEG K DEG K	•	480.2 477.3	OFG	R P	
BODY A Body	LPHA= BETA=	4 (2.3 (OEG OFG	RÆ	DENSI SONIC ATE OF	ENSITY TY ALT SPEED CLIMB	1.11 1025. 327.0 -118	KG/M3 M M/SEC M/MIN	*	•0021 3362. 1073. •387	5 SLUG FT FPS FPM	/FT3	
INFRTIAL	FLIGHT	STATE											
D ZIXA M)	G LIN V /S) (F	EL (PS)	CG LIN AC (G)	CC HUE (M/	SLIN S) (VEL HI FPS)	JB LIN (G)	ACC	AXI	۱ ۵ 2	NG PAS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X 57 Y 2	.36 18; .34	8.2 7.7	082 015	57 a 2 a	17 1	87.6 7.7	080 015		ROL PIT(L CH	8 -2.4	•005 •094	003 010

-.015

-.009

.068

þ

7 -.44 -1.4 -1.249 -1.4 -1.247 YAW 328.6 -.43 7.6 OEG •9 OEG HORIZ FIN-CONTROL ANGLES M.R. COLL= 9.0 OEG T.R. COLL= PEDAL PDS= -.3 DEG ∆1= B1= 1.1 OEG 4.6 OFG

ROTOR PARAWETERS	HOVER TIP MACH= .70	SHAFT ALPHA= Control Alpha=	4 OEG -5.0 OEG	
	TIP MAX-MACH= .88	DELTA PSI=	-2.4 OEG	
	•9R MAX-MACH- •81 •9R MIN-MACH- •81	ENGINE POWER= Thrust factor-	383. K¥ ■ •821£+07 N ■	514. HP 185E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS TOTAL CQ: ,000202 Mast CQ: .000189 FLIGHT NO. 63 MU= .250 AMB TEMP= -8.0 C = 17.61 F TEMP U60= 10.6 C = 50.99 CAN TEMP= -3.0 C = 26.58 V≖ 111.6 KT F F RUN NO 27 NZ= 1.247 G OMEGA= 34.277 RAD/SEC CLP= .00493 RPM/324= 1.010 TIME 56119.33 THETA 314 (DEG) TEETER ANG (DEG) PEAK-TO-PEAK= •0 PEAK-TO-PEAK= ROTOR ANGLES A0= 9.0 A1= B1= 4.6 9.5 #0# -.7 A1= -.8 81= • 5 18 CHORD .449 (N-M/DEG) ROTOR LOADS (AMP/PHASE) DRAG BRACE CHORO .803 PITCH LINK TORSION .449 (N/DEG) (N-M/DEG) (N/DEG) (N-M/DEG) 2174. -1806. MFAN 43553. 14904. -263. 337./ -57.0 3236./ -18.0 874.1 -27.8 254./ -63.3 1929./ -40.8 HARMONTC-1 254.7 -63.3 34.7 -72.3 13.7 12.8 30.7 -26.2 16.7 38.8 129.7 -60.5 182./ -35.7 679./ -13.5 229./ -34.1 1848./ -47.1 2 239./ -34.1 499./ 30.0 238./ 11.7 34./ 5.1 660./ -60.0 56./ 8.1 62./ 37.6 1761./ 28.3 667./ 28.5 342./ -30.2 3 183./ -30.0 379./ 88.1 105./ -5.8 29./ -48.2 4 24./ -83.8 5 17./ 55.7 8./ 47.1 926.1 -59.9 6 68./ 24.4 72.1 47.6 7 88./ -42.2 30./ 65.1 34./ -32.7 52./ -6.5 49./ -71.9 8 26./ 52.1 10./ 78.2 71./ 57.5 43./ -57.1 18./ -38.5 106./ 54.5 38./ 78.6 70./ 9.7 9 92./ 65.4 59./ 78.1 65./ 55.7 4./ 23.8 13./ 12.1 10./ -20.6 10 36./ 83.9 11 51./ -72.4 31./ 3.0 47./ 89.8 141./ -68.4 35./ 19.0 12 73./ -69.5 2./ -61.7 PEAK-TO-PEAK 939. 954. 9499. 6866. 3657. . REAM .174 BEAM .350 8EAM .449 BEAM .606 REAM .803 (N-M/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) MEAN з. 115. -39. -285. 67. HARMONIC-1 535./ -55.4 387./ -70.8 409.1 -72.2 394./ -74.7 217./ -87.8 355./ -60.2 66./ 74.5 285./ 47.7 288./ -78.3 50./ 35.2 248./ -80.0 254./ -78.8 105./ -88.5 2 47./ -15.0 89./ 33.7 13./ -79.6 85./ 65.3 69./ 48.0 15./ -41.4 99./ 63.6 128./ 30.2 63./ 51.2 3 54./ 20.8 33./ 39.7 7./ 37.0 4 87.1 -49.6 5 7./ -44.3 61./ 88.4 6./ 57.2 49./ -78.8 6 65./ 50.6 32.9 13./ 45.3 39.1 73./ -89.7 16./ -68.8 34./ 70.6 18./ -66.7 4./ 8.1 10./ -88.8 31./ 56.4 15./ -88.2 3./ -38.0 32./ -59.5 29./ 80.3 17./ -52.4 8 19./ 13.9 5./ -48.1 50./ 54.0 13./ 51.2 9 15./ 78.6 2./ 48.9 7./ 67.4 56./ 74.7 10 4.1 -62.3 11 25./ -81.0 9.1 -63.7 6./ -82.4 2.1 -8.4 12 PEA<-TO-PEAK 1930. 1187. 1285. 866. 1223.

LOADED CG X= 5.02 M = 197.7 IN Y= -.00 = -.0 Z= 1.83 = 72.2 AIRCRAFT TOTAL WT = 34814. N 7027, LB FLIGHT NO. 065 RUN NO. 1 TIME 52878.50 (SEC) DYNAMIC PRES= 0.00 KPA = 0.0 PSF STATIC PRES= 102.7 KPA = 2145. PSF TOTAL TEMP= 274.9 DEG K = 494.8 DEG R STATIC TEMP= 274.9 DEG K = 494.8 DEG R AERODYNAMIC FLIGHT STATE T. AIRSPEED= 0.0 KT A/C MACH ND= 0.000 DENSITY = 1.30 KG/M3 = .00253 SLUG/FT3 DENSITY ALT = -641. M = -2102. FT SONIC SPEED = 332.9 M/SEC = 1092. FPS RATE DF CLIMB = 0. M/MIN = 0. FPM BODY ALPHA= 19.5 DEG BUDY BETA= -9.7 DEG INERTIAL FLIGHT STATE AXIS CG LIN VEL CG LIN ACC HUB LIN VEL HUB LIN ACC AXIS ANG POS ANG RATES (M/S) (FPS) (G) (M/S) (FPS) (G) (DEG) (RAD/SEC) ANG ACC (RAD/SEC2) 0.00 0.0 0.00 0.0 0.00 0.0 -.009 .050 -.010 .048 -2.5 -1.0 0.00 0.0 ROLL -.014 -.013 x 0.00 0.0 -1.001 PITCH .019 .004 Y -.049 0.00 0.0 -1.001 YAW 276.4 .016 Z HORIZ FIN= T.R. COLL= PEDAL POS= M.R. COLL= 10.2 DEG A1= -2.9 DEG B1= -1.5 OEG 6.0 DEG CONTROL ANGLES 7.2 OEG 7.3 DEG SHAFT ALPHA= CONTROL ALPHA= 0.0 DEG 1.5 OEG KUTOK PARAMETERS HUE HEIGHT= 1.9 R HOVER TIP MACH= .68 TIP NAX-MACH- .68 TIP MIN-MACH= .68 .9R MAX-MACH= .62 .9R MIN-MACH= .62 DELTA PSI= 0.0 DEG

_

.

THRUST FACTOR= .951E+07 N = .214E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	- ROTOR PERFO	ORMANCE AND LOAD	20
	FLIGHT ND. 65	MU≠0.000 V= 0.0 k	TOTAL CO	• 000274 • 000267	AM8 TEMP- Témp u60®	1.7 C ■ 35.14 F 17.4 C ■ 63.28 F
	RUN NO. 1				CAN TEMP*	25.7 C • 78.31 F
	TIME 52878.38	NZ= 1.001 (CLP= .00366	6 OMEGA RPM/324	* 34.058 RAU/SE • 1.004	:C	
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (Deg)	AO= 8.5 AO=2	A1= -2.0 A1= .7	81=9 PEA 81= -1.4 PEA	AK–TO–PEAK* 4.5 AK–TO–PEAK= 3.1
ROTOK	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	39039	11222.	1162.	-2064.	-238.
	HARMONIC-1	1527./ 21.0	589./ 19.7	71./ 7.9	1075./ -52.8	35./ 61.0
	2	808./ 88.2	269./ -84.1	71./ -82.4	368./ 33.8	45./ 67.6
	3	460./ -30.9	106./ -44.7	14./ 75.0	153./ -83.8	43./ -30.5
	4	324 . / 86 . 3	214./ 77.5	44.1 25.6	115./ 37.0	26./ 85.7
	5	499.7 54.8	286./ 38.1	90./ 15.6	196./ 78.3	39./ -46.2
	6	745./ 31.5	474./ 24.5	127./ 13.6	135./ 82.2	18./ -90.0
	7	141.7 -29.4	211./ -71.2	62.7 -64.6	105./ 66.3	6./ 79.1
	8	187.7 -03.9	67.7 -47.0	9.7 11.3	8./ 23.2	5./ -49.8
	.9	/4 • / 1 • 8	160./ 87.5	74.7 85.8	25.7 61.4	6.7 -54.3
	10	24.7 -03.5	89.7 59.8	40.7 41.1	92.7 33.7	13./ 66.4
	11	127.7 88.5	82.1 -12.3	12.7 -74.7	15./ 18.1	10.7 -88.3
	PEAK-TO-PEAK	5969.	2826. 2826.	672.	2840.	5./ 41.4 266.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN	66.	300.	166.	-17.	-199.
	HARMONIC-1	144./ 36.1	27./ -71.6	50./ 73.7	111./ 62.2	153./ 49.7
	2	124./ 27.4	76./ 33.5	91./ 35.5	93./ 41.8	46./ 52.4
	3	21./ 45.1	25./ 16.3	25./ 33.7	23./ 11.0	48./ 12.1
	4	199./ 63.0	59./ 53.2	26./ 35.1	37./ -86.2	83./ -83.1
	5	161./ 22.9	13./ 31.9	21./ 19.7	49./ 17.2	48./ -12.5
	6	52./ 79.9	8./ -71.4	15./ 85.6	7./ 48.5	31./ 2.8
	7	80./ 63.7	13./ 88.5	31./ 68.3	7./ 7.5	21./ 38.5
	6	38./ 16.7	6./ 63.3	16./ 6.3	12./ -64.4	28./ -47.3
	9	12./ -12.2	6./ 30.1	12./ -22.5	15./ 59.5	21./ 84.5
	10	51./ -11.6	20./ 17.1	7./ -51.7	20./ 15.1	14./ 24.7
	11	11./ -40.9	3./ -55.8	10./ -17.7	4./ 57.2	9./ 67.2
	12	11./ 19.7	2./ 20.8	10./ 17.3	9./ 13.0	9./ 24.1
	P t AK-TO-P EAK	946.	319.	379.	479.	611.

p

FLIGHT NO. 065 AI RUN NU. 2 TIME 53611.90 (SEC)	RCRAFT TOTAL ₩Ĩ ■	34481. 7752.	N LB	LOADED	œ	X= 5 Y= - Z= 1.8	02 M 00 84	■ 19 ■ ■	07.7 0 72.4	Ν
AEROOYNAMIC FLIGHT STAT T. AIRSPEED- 106.9 KT A/C MACH NO166	TE DYNAN STAT TOT STAT	MIC PRES TIC PRES TAL TEMP TIC TEMP	1.89 97.5 = 275.0 = 273.5	KPA KPA OEG K OEG K	1 2 2	39.4 2037. 494.9 492.2	PSF PSF DEG OEG	R R		
BODY ALPHA= -2.3 DE Body beta= 1.3 of	EG EG DENS SONI RATE C	DÉNSITY Sity ALT IC Spéed Of Climb	1.24 -151. 332.1 -43.	KG/M3 M M/SEC M/M1N	2 . 3 2	00241 -494. 1089. -142.	SLUGA FT FPS FPM	/FT3		
INERTIAL FLIGHT STATE										

AXIS	CG LI (M/S)	N VEL (FPS)	CG LIN ACC (G)	HUB LII (M/S)	N VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (rad/sec)	ANG ACC (RAD/SEC2)
× Y Z	54.91 1.25 -2.24	180.2 4•1 -7•4	067 .001 990	54.91 1.24 -2.24	180.2 4.1 -7.4	066 003 990	ROLL Pitch Yaw	7 -3.1 268.0	004 001 000	021 005 004
CONTRO	L ANGLE	S	M.R. COLL≠ A1= 81=	9.0 4 4.5	DEG DEG DEG	HORIZ FIN= T.R. Coll= PEDAL POS=	7.6 OE •7 OE •9 DE	G G G		
RUTOR	PARAMET	ERS			_	SHAFT ALPHA=	-2.3 D	EG		

HOVER	TIP MACH=	•69	CONTROL ALPHA*	-6.8 OEG	
TIP	MAX-MACH-	.85	DELTA PSI=	-1.3 DEG	
TAP	MIN-MACH=	•52			
• 9R	MAX-MACH-	•78	ENGINE POWER=	413. KW =	554 • HP
•9R	MIN-MACH=	• 45	THRUST FACTUR=	•912E+07 N =	.205E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTUR PERFO	DRMANCE AND LOAD	DS
	FLIGHT NO. 65 RUN NO. 2	MU= •240 V= 106.9	TOTAL CQ: Kt Mast CQ:	• .000197 • .000210	AMB TEMP= Temp U60= Can Temp=	•3 C = 32.56 F 19.0 C = 66.28 F 9.0 C = 48.25 F
	T∎ME 53611.75	NZ= .990 CLP= .00371	G DMEGA RPM/324	= 34.151 RAD/SE = 1.007	EC	
RUTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO= 8.4 AO=5	A1 =2 A1 = -1.4	B1= 4.8 PE B1= .1 PE	AK-TO-PEAK= 10.0 AK-TO-PEAK= 2.7
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	$\begin{array}{c} 41725.\\ 3166./ -31.9\\ 360./ -1.6\\ 1771./ 29.6\\ 663./ 26.7\\ 40./ -45.9\\ 984./ -70.2\\ 214./ 74.1\\ 232./ -33.7\\ 72./ 3.7\\ 86./ -85.5\\ 59./ -13.3\\ 126./ 57.3\\ 10687. \end{array}$	11516. 942./ -38.9 52./ 17.0 511./ 27.3 383./ 24.2 47./ -48.7 719./ -71.2 191./ 75.2 145./ -59.5 73./ 18.1 220./ -61.3 57./ -41.9 32./ 83.3 4103.	1 391. 267./ -57.9 40./ -40.9 48./ -1.6 41./ 3.4 31./ -29.5 151./ -82.1 31./ 34.3 46./ -55.9 20./ 20.5 90./ -62.1 24./ -34.3 40./ 59.8 1030.	-1963. 2332./ -38.5 1949./ -49.2 396./ -29.8 432./ 75.5 184./ 13.6 116./ -20.9 92./ 12.7 68./ -71.6 55./ 58.0 33./ 3.6 19./ -71.4 18./ -18.5 8043.	$\begin{array}{c} -279.\\ 374./ & -54.6\\ 200./ & -42.9\\ 72./ & 7.5\\ 76./ & 42.9\\ 37./ & 38.6\\ 4./ & -74.4\\ 10./ & 20.2\\ 7./ & -80.3\\ 6./ & -11.1\\ 5./ & 76.5\\ 6./ & -24.2\\ 1./ & 48.3\\ 1049. \end{array}$
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 FE AK-TO-PEAK	$\begin{array}{c} -307. \\ 664 \cdot / & -60.1 \\ 411 \cdot / & -63.7 \\ 69 \cdot / & 77.7 \\ 352 \cdot / & 40.9 \\ 73 \cdot / & -28.8 \\ 47 \cdot / & 7.3 \\ 60 \cdot / & 8.6 \\ 15 \cdot / & 27.0 \\ 18 \cdot / & 47.1 \\ 54 \cdot / & -46.2 \\ 11 \cdot / & -77.3 \\ 25 \cdot / & 60.4 \\ 2442 \cdot \end{array}$	49. 411./ -69.5 259./ -81.7 42./ -6.9 104./ 30.0 6./ 54.9 0./ 13.9 12./ 6.4 2./ -28.8 17./ 55.8 16./ -31.7 10./ -65.3 8./ -66.1 1240.	-66. 425./ -69.8 278./ -80.8 45./ 43.3 52./ 18.1 25./ 40.4 15./ -35.3 27./ 33.4 12./ 54.7 2./ 81.4 14./ -41.7 3./ -11.8 12./ -81.6 1271.	-322. 403./ -72.1 222./ -78.1 77./ 77.4 77./ 39.8 3./ 3.4 19./ -30.4 12./ -50.2 10./ -48.0 16./ 70.8 22./ -19.5 9./ -79.6 10./ -79.7 1193.	18. 177./ -84.3 70./ -79.8 91./ 66.9 124./ 27.6 55./ 33.7 43./ -49.9 35./ 85.6 21./ -51.8 16./ 89.8 16./ -19.2 6./ -48.6 792.

р. (

' FLIGHT NO. 065 RUN NO. 11 Time 54154.17 (Sec) LOAOEO CG X = 5.02 M = 197.7 IN Y = -00 = -0 Z = 1.84 = 72.4 AIRCRAFT TOTAL WT = 34516. N 7760. L8
 DYNAMIC
 PRES=
 1.99
 KPA
 =
 41.5
 PSF

 STATIC
 PRES 97.5
 KPA
 =
 2036.
 PSF

 TOTAL
 TEMP=
 275.1
 DEG
 K
 =
 495.1
 OEG
 R

 STATIC
 TEMP=
 273.5
 DEG
 K
 =
 492.3
 DEG
 R
 AERUDYNAMIC FLIGHT STATE T. AIRSPEED- 109.7 KT A/C MACH NO= .170 DENSITY = 1.24 KG/M3 = ,00241 SLUG/FT3 DENSITY ALT = -144. M = -471. FT SONIC SPEED = 332.1 M/SEC = 1089. FPS RATE OF CLIMB = 116. M/MIN = 382. FPM BODY ALPHA= BODY BETA= •9 DEG •9 DEG INERTIAL FLIGHT STATE AXIS OG LIN VEL CG LIN ACC HUB LIN VEL HUB LIN ACC AXIS ANG PUS ANG RATES (M/S) (FPS) (GI (M/S) (FPS) (G) (DEG) (RAD/SEC) ANG ACC (RAD/SEC2) -.085 -.009 56.29 184.7 56.42 185.1 -.082 ROLL z.9 -.003 -.090 X 2.8 Y .85 2.8 .84 -.027 PITCH .062 -.013 Z .87 2.9 -1.287 .88 -1.286 YAW 244.2 -.016 -.013 8.9 OEG -•4 DEG 3.8 DEG CONTROL ANGLES M.R. COLL= HORIZ FIN-7.3 DEG •5 DEG •7 DEG A1= B1= T.R. COLL= PEDAL POS= SHAFT ALPHA= .9 OEG CONTROL ALPHA= -2.9 DEG KUTOR PARAMETERS HOVER TIP MACH= .69

 TIP
 MAX-MACH= .86
 DELTA PSI= -.9 DEG

 TIP
 MIN-MACH= .52

 .9R
 MAX-MACH= .79

 ENGINE
 POWER= 358. KW = 480. HP

 .9R
 MIN-MACH= .45

 THRUST
 FACTOR= .918E+07 N = .206E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	RUTOK PERF	ORMANCE AND LOAD	DS
	FLIGHT NG. 65	MU= .245 V■ 109.7 H	TOTAL CO KT MAST CO	= .000169 = .000181	AM6 TEMP= Temp U60=	•3 C ■ 32.61 F 19•8 C = 67.63 F
	RUN NO. 11				CAN TEMP=	7.9 C = 46.15 F
	TIME 54154.07	NZ= 1.286 (CLP= .00479	G OMEGA RPM/324	= 34.298 RAD/S = 1.011	EC	
ROTOR	ANGLES	THETA 314 (DEG) Teeter ang (deg)	AD = 8.0 AD =5	Al=3 Al=7	B1= 4.0 PE/ B1= .4 PE/	4K-TO-PEAK= 8.3 4K-TO-PEAK= 1.7
RUTOR	LUAOS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .603 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	43756.	11483.	1328.	-1643.	-267.
	HAFMONIC-1	3503./ -8.5	946./ -13.9	274./ -52.4	2043./ -36.9	350./ -55.7
	2	747.1 -42.5	261./ -58.1	22./ -5.1	1798./ -32.5	186./ -20.0
	3	2058./ 33.8	549./ 34.3	37./ -20.6	310./ -15.5	58./ 22.1
	4	632./ 37.0	433./ 22.6	65./ -2.3	491./ -88.3	88./ 47.0
	5	391./ -34.7	119./ -22.0	13./ -67.6	165./ 8.7	40./ 87.6
	6	1201./ -54.3	840./ -57.2	179./ -65.1	64./ -75.5	23./ 10.2
	7	302 • / 68 • 0	222./ 62.8	87./ 74.7	96./ -18.2	8./ 17.0
	8	112./ 64.5	81./ 40.8	20./ 66.4	54./ -51.0	5./ 71.9
	9	18.7 -51.8	228./ 38.9	93./ 44.1	87./ 48.6	6./ -64.0
	10	82.7 50.9	8/./ 88.9	60.7 -69.5	55.7 -15.3	9.7 -34.0
	11		22.1 31.1	20.7 -57.4	3/./ -86.9	6./ 21.2
	PEAK-TO-PEAK	10676.	4072.	1029.	7305.	8./ -88.0 987.
			DE 414 - 3 50			
		(N-M/DEG)	(N-M/DEG)	(N-M/DEG)	(N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN	-70.	38.	-106.	-396.	112.
	HARMONIC-1	581./ -46.3	433./ -66.3	450./ -68.9	429./ -71.8	227./ -85.4
	2	361./ -48.7	266./ -73.4	302./ -72.5	266./ -72.8	105./ -86.8
	3	119./ -67.3	61./ -13.9	56./ 35.0	87./ 74.5	105./ 75.4
	4	437./ 45.7	131./ 34.2	64./ 24.2	93./ 44.4	166./ 31.1
	5	139./ -37.2	23./ -70.4	30./ 49.6	25./ -40.0	62./ 75.5
	6	99./ 72.3	1./ 27.1	13./ 7.3	13./ -4.7	51./ -45.4
	7	92.7 -1.6	17./2	31./ 33.3	17./ -77.3	60./ 86.6
	a	14./ 20.2	8./ 88.8	8./ -25.8	16./ -48.6	32./ -33.5
	9	51.7 38.0	32./ 61.7	14./ 35.4	29./ 79.5	22./ -71.0
	10	44./ -42.0	20.7 -25.9	11./ -46.3	26./ -15.9	25./ -4.7
	11	$\frac{22 \cdot 7}{2} - \frac{27 \cdot 1}{2}$	10.7 -57.1	13./ -35.2	5./4	9./ -45.1
		2478	1380	1642	13.7 -75.5	5./ -46.7
	I LAN-IU-I LAN	L7104	T-00.	1796.	1343.	998 .

į,

FLIGHT NU. 06 RUN NJ. 12 TIME 24181.60	5 (SEC)	AIRCRAFT	TUTAL WT = 34 7	112• N 7659• LB	LDADED CG	X= 5.02 M Y=00 Z= 1.84	= 197.6 IN =0 = 72.6	
AERODYNAMIC F	LIGHT S	TATE	CYNAMIC Static	PRES= 2.00 PRES= 97.6	KPA = KPA ■	41.7 PSF 2038. PSF		
T. AIRSPEED A/C MACH NO	• 109.9 • 170	КТ	TUTAL STATIC	TEMP= 275.1 TEMP= 273.5	OEG K = DEG K =	495.1 OEG 492.3 OEG	R R	
BUDY ALFHA Buoy beta	5.2 2.5	OEG DEG	DEN Density Sonic S Rate DF (ISITY= 1.24 ALT= -152 FRED= 332.1 CLIMB= 343.	KG/M3 = 4 M = M/SEC = M/MIN =	00241 SLUG -498. FT 1089. FPS 1125. FPM	YFT3	
INERTIAL FLIGH	HT STATI	E						
AXIS OG LI (M/S)	N VEL (FPS)	CG LIN AC (G)	C HUB LIN VE (M/S) (FP	L HUBLIN S) (G)	ACC AXIS	ANG POS (Deg)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)

	(M/S)	(FPS)	(G)	(1	/51	(FPS)	(G)		(DEG)	(RAD/SEC)	(RAD/SEC2
X Y Z	56.26 2.48 5.13	184.6 8.2 16.8	121 029 -1.815	55 2 5	•92 •47 •14	183.5 8.1 16.9	119 023 -1.810	ROLL PITCH YAW	7 11.0 244.8	009 .165 .001	.030 009 .020
CUNTROL	ANGLE	S	M.R. CC)LL= A1= B1=	8.8 1 2.3	DE G DEG DEG	HOR1Z FIN= T•R• COLL= PEDAL POS=	6.8 OEG .0 OEG .4 DEG			

ROIOR PARAMETERS	HOVER	TIP MACH*	•70	SHAFT ALPHA= CUNTROL ALPHA=	5.3 3.0	OEG OEG	
	TIP TI?	hax-MACH= Min-MacH=	.87 •53	DELTA PSI=	-2.5	DEG	
	•9R •9R	MAX-MACH* MIN-MACH=	•30 •46	ENGINE POWÉR= Thrust fact ûk=	.947	252. KW ≢ E+07 N ≇	337. HP •213E+07 Ld

	NASA	LANGLEY FLIGHT D	ATA AH-1G	KOTOR PERF	ORMANCE AND LOA	SO
	FLIGHT NO. 65	MU= .241 V≖ 109.9	TOTAL CO KT MAST CO	<pre>.000112 .000115</pre>	AMB TEMP= Témp U60=	•3 C = 32.60 F 19.8 C = 67.64 F
	RUN NO. 12	N.7 - 4.040	0 01501	+ 14 010 0.04	CAN TEMP=	7.9 C = 46.15 F
	TIME 54181.45	NZ= 1.810 CLP= .00643	RPM/324	= 1.029	EC	
RUTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO = 7.5 AO = -•4	Al=2 Al= .4	B1= 2.2 PE B1= 1.2 PE	AK-TU-PEAK= 4.7 AK-TU-PEAK= 2.3
KUTOR	LUADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	48509.	11111.	1424.	-1215.	-231.
	HARMONIC-1	6561./ 3.4	1722./ 4.3	330./ -37.9	1733./ -30.9	295./ -00.6
	2	985./ -39.5	582./ -51.3	38./ -84.0	808./ -18.3	98./ 7.5
	3	2935./ 13.3	874./ 13.8	67./ -19.8	438./ 46.3	60./ 50.1
	4	793./ 36.4	540./ 15.6	86./ -9.8	471./ 78.4	62.1 46.7
	5	730./ -20.9	272./ -20.8	64./ -56.5	252./ -43.6	13./ 9.9
	b	1426./ -32.5	982./ -37.0	204./ -31.3	199./ -1.4	43./ 31.2
	7	298./ -39.4	195./ -17.4	81./ -58.7	126./ 10.3	18./ 62.9
	8	101./ 69.6	105./ -59.7	58./ -72.7	5./ -80.0	12./ 53.6
	9	98./ -30.4	61./ 65.8	52./ -89.1	102./ ->9.7	7./ -10.0
	10	75./ 36.6	158./ -55.8	87./ -59.1	79./ 35.4	4./ 3.9
	11	91./ 18.3	41./ -86.4	10./ 31.6	51./ -69.6	7./ 9.7
	12	117./ 70.9	31./ -13.9	10./ -69.0	6./ 25.8	5./ -74.0
	PEAK-TO-PEAK	17525.	6896.	1249.	4870.	723.
		BEAM .174 (N-m/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN	358.	73.	-109.	-465.	264.
	HARMONIC-1	579./ -16.3	433./ -63.0	476./ -66.7	467./ -71.1	287./ 89.5
	2	188./ -35.3	199./ -66.8	251./ -63.5	263./ -64.5	147./ -81.0
	3	280./ -14.6	125./ -5.3	98./ 16.5	90./ 55.4	105./ 70.2
	4	444./ 23.5	133./ 17.7	69.1 29.6	85./ 24.4	184./ 23.2
	5	160./ -55.2	24.1 -62.6	25./ 54.5	33./ -34.1	80./ 89.7
	6	118./ -64.2	13./ 71.1	9./ 33.8	8./ 76.5	50./ -71.2
	7	88./ 21.2	17./ 51.4	43./ 52.9	9./ 63.2	62./ -88.5
	8	26./ -23.7	5./ -53.1	11./ 79.3	9.1 -76.5	27.1 -66.3
	9	63./ -72.8	40.1 -47.6	10./ -44.8	46.1 -42.0	39./ -38.3
	10	108./ -5.2	38./ 15.8	30./ 17.6	44./ 23.8	32./ 20.1
	11	25./ 24.8	9./ 87.0	13./ 38.8	7./ 77.9	2.1 -37.0
	12	31./ -81.3	6./ -68.9	15./ -80.8	11./ -75.4	5./ -20.4
	PEAK-TU-PEAK	2583.	1317.	1372.	1308.	1187.

FLIGHT NO. 065 AIRCRAFT RUN NO. 15 TIME 54494.40 (SEC)	TOTAL WT = 33889. N 7619. LB	LOADED OG X= 5 Y= - Z= 1	.02 M = 197.6 IN .00 ■0 .85 = 72.7
AERODYNAMIC FLIGHT STATE T. AIRSPEED. 107.9 KT A/C MACH ND167	DYNAMIC PRES- 1.69 Static Pres- 95. Total Temp= 274.4 Static Temp- 272.9	KPA • 39.4 5 KPA • 1995. DEG K • 493.9 DEG K • 491.2	PSF PSF DEG R OEG R
BODY ALPHA -2.8 DEG BUDY BETA= 1.9 DEG	DENSITY= 1.22 Density Alt* 45 Sonic Speed= 331.7 Rate of Climb= -57	KG/M3 = .00237 M = 147. M/SEC = 1088. M/MIN = -188.	Y SLUG/FT3 FT FPS FPM
INERTIAL FLIGHT STATE			

.

AXIS	CG LI (M/S)	N VEL (FPS)	CGL (IN ACC G)	HUB LI (M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.39 1.80 -2.74	181.7 5.9 -9.0	 	069 010 987	55.39 1.79 -2.74	181.7 5.9 -9.0	068 011 987	ROLL PITCH YAW	4 -3.8 100•8	002 000 002	002 008 001
CONTRO	L ANGLE	S	MR.	COLL= A1= B1=	9.1 3 4.7	DEG DEG DEG	HORIZ FIN= T.R. COLL= PEDAL POS=	7.7 OE 1.0 DE 1.1 DE	iG iG iG		
RUTOR I	PARAMET	ERS	HOVER	TIP MA	.CH* .69	C	SHAFT ALPHA= Ontrol Alpha=	-2.8 C -7.5 D	DEG DEG		
					CH= .8	5	DELTA PSI*	-1.9 C	EG		

TIP MIN	-MACH52							
•9R MAX	HACH= ₀79	ENGINE	POWER=	408.	KW	=	547.	ΗP
.9R MIN	I-MACH= .45	THRUST	FACTOR'	•892E+07	N	-	.201E+07	L B

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT ND. 65 RUN NO. 15	MU* •243 V = 107.9 k N7= •987 (TOTAL CO KT MAST CO	• .000199 • .000215 • 34.071 RAD/SE	AMB TEMP= TEMP U60= CAN TEMP*	-•3 C = 31.49 F 19•8 C = 67.61 F 7.9 C = 46.15 F
	TIME 54494.32	CLP= .00372	RPM/324	1.004	•	
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (DEG)	AO∓ 8.5 AO≠5	A1 =1 B A1 = -1.4 B	1= 5.0 PEA 1≖ .1 PEA	K-TO-PEAK= 10.0 K-TO-PEAK= .2.7
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	41558. 3288./ -36.6 504./ 20.8 1669./ 24.3 733./ 25.9 116./ 42.8 926./ -81.5 169./ 59.5 225./ -60.0 38./ -64.0 73./ 87.4 41./ -38.4 117./ 28.4	11801. 1029./ -45.6 141./ 38.4 514./ 22.8 362./ 17.5 76./ 85.0 642./ -86.5 147./ 80.3 174./ -77.9 95./ 19.9 194./ 85.3 48./ -17.9 73./ -81.9 4212.	1236. 297./ -62.7 75./ -83.3 41./ -3.6 49./6 31./ -37.4 139./ 83.8 21./ 72.3 57./ -69.4 44./ 32.6 93./ -89.6 13./ 4.8 45./ 66.6 1104.	-1995. 2356./ -38.8 2014./ -52.6 374./ -41.7 392./ 67.6 238./ 4.7 122./ -28.0 87./ 7.0 59./ -75.5 43./ 34.1 45./ 34.8 30./ -73.0 17./ -29.5 8279.	-281. 370./ -55.6 201./ -49.6 74./ 1.0 67./ 33.8 41./ 21.9 8./ 17.7 10./ -4.4 4./ 76.2 4./ 1.2 3./ 68.5 6./ -28.1 1./ 25.0 1029.
		BEAM ,174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .006 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 2 7	-374. 701./ -62.6 411./ -68.3 79./ 59.3 311./ 32.1 86./ -30.5 33./ -8.6 53./ 1.7 13./ 45.5 23./ 32.1 51./ -64.8 3./ 49.4 32./ 61.6	43. 411./ -70.4 256./ -84.1 36./ -16.7 94./ 19.2 5./ 37.5 3./ 22.0 11./ 9.8 2./ -83.6 17./ 35.4 20./ -39.0 11./ 77.8 8./ 68.5	-63. 425./ -70.8 273./ -83.5 41./ 38.2 50./ 8.8 27./ 28.5 13./ -51.8 28./ 31.5 12./ 58.9 3./ 16.5 13./ -46.3 2./ 66.0 10./ 68.2	-313. 394./ -73.3 218./ -81.0 77./ 69.2 61./ 32.3 2./ 7.6 15./ -52.5 12./ -68.4 9./ -63.3 19./ 51.9 21./ -34.6 6./ -82.1 10./ 74.8	19. $174./ -87.3$ $66./ -75.5$ $90./ 61.4$ $112./ 15.8$ $57./ 19.3$ $36./ -62.7$ $38./ 72.5$ $22./ -62.6$ $15./ 73.9$ $16./ -22.6$ $5./ -66.1$ $7./ -82.5$
	PEANTIUNPEAK	2,211.	1238.	1270.	1135.	757.

 FLIGHT NO. 065 RUN NO. 16 TIME 54532.90 (SEC)
 AIRCRAFT TOTAL WT = 33889. N 7619. LB
 LOADED G X. 5.02 M = 197.6 IN Y= -.00 Z

 AERODYNAMIC FLIGHT STATE
 DYNAMIC PRES- 1.89 STATIC PRES- 95.7 KPA
 199.4 PSF 1998. PSF TOTAL TEMP- 274.3 DLG K = 493.8 OEG R STATIC TEMP- 272.8 DEG K = 491.0 OEG R

 BODY ALPHA" -.0 DEG BODY BETA* -1.6 DEG
 DENSITY - 1.22 KG/M3 = .00237 SLUG/FT3 DENSITY ALT* 24. M
 70. FT SONIC SPEED- 331.6 M/SEC = 1088. FPS RATE OF CLIMB = -147. M/MIN = -481. FPM

INERTIAL FLIGHT STATE

AXIS	CG LII (m/s)	N VEL (FPS)	CG LIN ACC (G)	(M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.40 -1.51 03	181.8 -5.0 1	078 .025 -1.236	55.26 -1.52 02	181.3 -5.0 1	073 .036 -1.235	ROLL PITCH Y aw	-34.2 -1.7 4.7	010 .069 103	•044 -•021 -•002
CONTRO	DL ANGLE	S	M.R. COLL A Bi	• 9.2 • - • 5 • 3.8	DE G DE G OEG	HORIZ FIN= T.R. Coll: Pedal PoS=	7.3 OEG •6 DEG 1.2 OEG	9		
ROTOR	PARAMET	ERS	HOVER TIP	/ACH= •6 ℃	9 C	SHAFT AL PHA = ONTROL ALPHA-	0 OE -3.8 DE	EG 2 G		

HOVER		CONTROL ALITIA-		
TIP	MAX-MACH* .8	B6 DELTA PSI-	1.6 OEG	
דוף 9 R - ס וף	MIN-MACH= • MIN-MACH= •	52 79 ENGINE POWER* 45 THRUST FACTOR*	376. KW =	504. HP
• 7 h	WIIN-WACH-			

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO.	65	MU= V=	•242	кт	TOTAL	CQ=	.00018	2		AM8 TEMP		4 C	:	31 67	.33	F
	RUN NO.	16		107.7	-	10/101			•		CAN	TEMP*	7.5 C		45	•45	F
	TIME 54532.8	83	NZ= ClP=	1.235 •0046	с 2	OI R PM /	//EGA* 324=	34.181 1.007	RAD/S	SEC							
ROTOR	ANGLES		THETA 3/4 TEETER AND	(DEG ∋ (DEG) AO) AO	8.2	;	Al=	• 7 • 9	B1= 81-	4.0 •4	PE/ PE/	АК-ТО-Р АК-ТО-РІ	EAK	(= *	8.3 1.9	
ROTOR	LOADS (AMP)	/рна	SE) DRAG	BRACE	CHO (N	ND .444)	CHORD	.803 DEG)	PIT	CH I (N/I	LINK Deg)	TORSIC (N-I	DN 1/D	.449 EG)		
	MEAN		43060.		1170	.		1256.		-174	2.		-264				
	HARMONIC-	-1	4335./	-1.9	118	5./ -11	•1	296./	-42.9	9 196 9 168	3./	+29.4	326		-50.	7	
		2 3	2070./	48.0	60	2./ 47	.1	70./	15.9) 100	5./	-29.2	61	.,	37.	7	
		4	545./	45.1	33	7./ 43		47./	3.5	42	9.1	-73.8	72		63.	8	
		5	404./	-25.9	9	5./ -41	•0	28./	-77.9) 11	4.1	26.6	33	./	89.	0	
		6	996./	-31.8	71	1./ -33	•0	148./	-41.2	2 4	6.1	-43.7	22.		29.	5	
		1	191.7	-88.6	87	2./ -88	• 4	49./	-75.5	0 0	0.7	43.4	11.		77.	8	
		8	20./	82.9	<u>.</u>		•0	24./	14.3	5 4		-70 5		., .	-09.	9	
		10	22.1	-26 6	10		1 • 4 7 • 5	23.1	-05.7	0 2 5	7 /	-/0.2	3.		- 34.	7	
	-	11	122./	- 34 • 4	10	1.1 42	. 3	15./	36.7	, <u>,</u>	5.1	-8.6	7	·, .	07. _81	f 0	
	1	12	106./	-16.8	1	5./ 35	.3	19./	-6.3	2	7.1	36.3	2		-48.	2	
	PEAK-TO-PE	AK	11206.	1000	409	·	•••	1204.		681	6.	5015	902			-	
			BEAM .: (N-M/(L74 Deg)	BEAN (N	/ .350 -M/DEG)	BEAM .4 (N-M/	449 DEG)	BEA (N	M .6	06 DEG)	BEAM (N-1	• 8: 1/D	03 EG)		
	MEAN		-146.		4	5.		-89.		-36	4 .		94				
	HARMONIC	-1	580./	-36.7	40	1./ -61	• 2	426./	-63.6	5 41	6.1	-67.1	225	./ .	-83.	1	
		2	341./	-40.7	24	0./ -65	.4	272./	-66.0	22	6.1	-65.4	83	./	-79.	7	
		3	86./	-40.4	6.	1./ 13	• 3	55./	53.0) 7	6.1	-79.5	94.	. / .	-84.	2	
		4	347./	62.1	110)./ 51	•1	59./	41.0) 7	7./	59.7	138.	./	47.	9	
		5	99./	-39.2	19	9 ./ - 69	•1	23./	77.6	b 1	5./	-39.4	65	./	-83.	4	
		6	86./	-90.0		3./ 1	• 8	10./	26.1	l 1	5.1	18.4	51	./ ·	-20.	2	
		7	36./	30.8		7./ 32	5	20./	90.0) 1	6.1	-11.5	47.	./ ·	-33.	8	
		8	36./	63.6		5./ -70	.7	9.1	29.8	3	9.1	11.9	29	./	25.	9	
		9	39./	-88-2	2	7./ -79	.8	11./	-80.7	2	6./	-54.0	20	•/	-29.	1	
		10	49./	16.4	2	2./ 39	.5	16./	22.7	r 2	1.8	42.9	24	•/	48.	2	
	-	11	11./	/3.8	1	5./ -18	.6		23.7		3./	-65.1	3	•/	8.	z	
			34./	-1/.2	1 1 1	3./ -13	5.1	13./	-29.5	, 1	0./	-15.5	5	• /	-9.	1	
	FEAN-IU-PE	нn	2224.		121	5.		1317.		121	υ.		911.				

· · ·

			2 - 1.00	¥ 72.8
AERODYNAMIC FLIGHT STATE DY T. AIRSPEED. 109.1 KT	(NAMIC PRES■ 1.94) Staticpres- 95.7 Total temp* 274.2	KPA ≇ KPA ≇ DEG K ≇	40.5 PS 2000. PS 493.6 OE	SF GR
A/C MACH ND • .169 S BODY ALPHA- 1.5 OEG BOOY BETA • 2.4 DEG D	DENSITY- 1.22 DENSITY ALT* 15. SONIC SPEED= 331.6	DEG K = KG/M3 = M = M/SEC =	490.8 OF .00237 SLU 48. FT 1088. FPS	EG R 16/ft3

.

-

....

.

AXIS	CG LI (m/s)	N VEL (FPS)	CG LIN ACC (G)	HUB LIN (M/S) (VEL HUB LIN ACC FPS) (G)	AXIS	ANG POS (Deg)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	56.07 2.34 1.45	183.9 7.7 4.8	093 023 -1.411	55.83 1: 2.26 1.46	83.2092 7.4021 4.8 -1.408	ROLL PITCH YAW	-41.9 -4.0 283.7	043 .115 117	002 008 008
CUNTRO	L ANGLE	S	M.R. COLL- Al- Bl-	9.3 DE •0 OE 2.7 DE	G HORIZ FIN- G T.R. Coll= G Pedal Pos=	6.8 DE .8 DE 1.5 DE	G G		
ROTOR	PARAMET	ERS			SHAFT ALPHA-	1.5 [EG		

HOVER TIP MACH69	CONTROL ALPHA=	-1.2 DEG	
TIP MAX-MACH86 TIP MIN-MACH= .52	DELTA PSI*	-2.3 OEG	
•98 MAX-MACH= •79 •98 MIN-MACH= •45	ENGINE POWER= THRUST FACTOR	331. KW = .904E+07 N =	444. HP •203E+07 LB

	NA	SA LANGLEY	FLIGHT D	ATA AH-1G	ROTOR PER	FORMANCE AND LOAI	DS	
	FLIGHT NO.	65 MU V	• •244 • 109.1 k	TOTAL KT MAST	CQ= .000158 CQ= .000173	AM8 TEMP= TEMP U60=	5 C = 31.15 19.5 C = 67.13	FF
	RUN NO.	17 NZ	= 1.408 (G OM	EGA- 34.280 RAD/	SEC	7.1 C s 44.75	r
	TIME 54682.9	2 CLP	• .00521	RPM/3	24 1.010			
ROTOR	ANGLES	THETA 31 TEETER A	4 (DEG) NG (DEG)	AO = 8.0 AO =5	Al=1 Al=2	B1= 3.3 PE B1= .8 PE	AK-TO-PEAK* 7.1 AK-TO-PEAK- 1•8	
ROTOR	LOADS (AMP/	PHASE) DRA (N	G BRACE	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
	MEAN HARMONIC- 1 1 PEAK-TO-PEA	44557. 1 4420. 2 862. 3 1866. 5 533. 6 1357. 7 333. 8 74. 9 68. 0 11. 1 61. K 11735.	/ -6.0 / -14.7 / 15.8 / 32.2 / -34.0 / -69.4 / 76.1 / 65.5 / 85.3 /3 / -85.6 / -21.1	11533. 1128./ -12. 267./ -41. 555./ 21. 400./ 11. 170./ -35. 886./ -76. 247./ 77. 88./ -87. 153./ 43. 128./ 74. 28./ -61. 69./ -81. 4593.	1385. 4 256./ -50. 5 72./ -88. 0 29./ -67. 4 89./ 1. 9 31./ -34. 5 182./ -85. 9 96./ 67. 7 35./ -87. 5 84./ 44. 7 75./ 78. 5 18./ 2. 1 18./ -84. 1116.	$\begin{array}{c} -1520.\\ 6 & 1846./ & -34.5\\ 0 & 1660./ & -32.2\\ 2 & 312./ & 2.5\\ 7 & 453./ & 85.2\\ 5 & 139./ & -15.6\\ 5 & 137./ & -53.9\\ 2 & 97./ & -28.4\\ 9 & 41./ & -33.7\\ 5 & 99./ & 51.3\\ 6 & 49./ & -14.3\\ 5 & 34./ & 84.5\\ 2 & 14./ & -40.7\\ 6814. \end{array}$	-251. 316./ -58.3 175./ -19.9 54./ 30.1 82./ 40.0 41./ -88.9 33./ -6.5 8./ 32.1 5./ 77.3 4./ -83.6 8./ -50.0 7./ -8.1 7./ 53.0 902.	
		BEAM (N+M	•174 /DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)	
	MEAN HARMONIC- 1 1 1 1 1	-10. 1 569. 2 329. 3 128. 4 391. 5 164. 6 125. 7 81. 8 30. 9 59. 0 57. 1 20. 2 56.	/ -34.7 / -52.8 / -52.9 / 31.9 / -56.7 / 74.2 / -18.6 / 11.0 / 37.0 / -72.2 / -62.5 / 43.5	42. 424./ -67. 246./ -77. 69./ -20. 122./ 20. 26./ -80. 5./ 222. 17./ -10. 11./ 79. 34./ 55. 20./ -32. 10./ 76. 22./ 68.	-107. 3 450./ -70. 7 281./ -77. 3 61./ 16. 0 65./ 14. 9 25./ 30. 8 3./ 76. 0 34./ 23. 5 8./ -28. 9 15./ 30. 5 12./ -61. 9 11./ -72. 3 14./ 38.	-404. 6 431./ -75.7 2 253./ -78.2 0 84./ 63.4 3 81./ 29.9 2 33./ -56.7 8 12./ 15.7 0 17./ 82.0 5 21./ -68.0 1 34./ 74.6 8 4./ -80.9 9 13./ 67.2	142. 253./ 87.1 97./ 85.6 99./ 68.9 164./ 16.1 69./ 71.8 48./ -72.0 71./ 74.9 39./ -55.8 33./ -79.4 24./ -27.4 7./ 82.0 4./ -79.7	
	I LAN-IO-FEA	. 23434		13300	T.4T.C.P	1100.	70749	

53

Ì

FLIGHT ND. 065 RUN NO. 18 TIME 54782.70 (SEC)	AIRCRAFT	TOTAL WT =	33702. 7577.	N LB	LOADED	œ	X= 5. Y= Z= 1.	02 M 00 85	≠ 19 ≡ ■	97.5 0 72.8	IN
AERODYNAMIC FLIGHT ST	TATE	DYNAM STAT	IC PRES	1.93 95.9	KPA KPA	# :	40.3 2002.	PSF PSF			
T. AIRSPEED- 108.9 A/C MACH ND= .169	KT	TOT	AL TEMP	= 274.4 272.8	DEG K DEG K	2	493.9 491.1	DEG Deg	R R		
800Y ALPHA- 3.9 800y Beta= 3.2	DEG DEG	L DENS SONIC RATE DI	DENSITY- ITY ALT SPEED- CLIMB-	1.22 6. 331.7 -323.	KG/M3 M M/SEC M/MIN	: : : :	.00238 20. 1088. -1061.	SLUGA FT FPS FPM	FT3		

AX IS	CG LIN (M/S)	VEL (FPS)	CG LIN ACC (G)	HUB L: (M/S)	IN VEL (FPS)	HUB LIN ACC (g)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.80 3.15 3.77	183.1 10.3 12.4	110 041 -1.709	55.43 3.09 3.78	181.9 10.1 12.4	135 031 -1.702	ROLL PITCH YAM	-48.0 -5.4 39.4	033 .181 137	.022 027 037
CONTRO	L ANGLES	3	M.R. COLL= A1= B1=	9.4 •1 2.1	DEG DEG DEG	HORIZ FIN= T.R. Coll= Pedal Pos=	6.6 OEC •8 DE 1.7 DEC	G G		

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

ROTOR PARAMETERS	HOVER	TIP MACH-	.70	SHAFT ALPHA* CONTROL ALPHA'	3.9 OEG 1.8 DEG	
	TIP	MAX-MACH' MIN-MACH=	•86 •53	DELTA PSI=	-3.2 DEG	
	•9R •9R	MAX-MACH- MIN-MACH'	•80 •46	ENGINE POWER- THRUST FACTOR-	275. KW ■ •921E+07 N ■	369. HP •207E+07 LB

TOTAL CQ= .000128 MAST CQ= .000138
 AMB TEMP:
 -.3
 C
 :
 31.40
 F

 TEMP U60:
 19.7
 C
 :
 67.54
 F

 CAN TEMP 7.1
 C
 :
 44.75
 F
 FLIGHT NO. 65 MU= .241 V = 108.9 KT RUN NO. 18 NZ= 1.702 G OMEGA= 34.592 RAD/SEC RPM/324= 1.020 CLP= ,00619 TIME 54782.64 THETA 314 (DEG) AO = 7.9 TEETER ANG (DEG) AO = -.5 A1= -.3 A1= •1 KUTUR ANGLES Bl≠ 2.5 Bl≠ 1.1 PEAK-TO-PEAK= PEAK-TO-PEAK* 5.2 2.2 KOTOR LOADS (AMP/PHASE) DRAG BRACE CHORD ,449 PITCH LINK CHORD .803 TORSION .449 (N/DEG) (N-M/DEG) (N-M/DEG) (N/DEG) (N-M/DEG) MEAN 47182. 11321. 1425. -1349. -242. HARMONIC-1 5898./ 3.5 1443./ 3.8 303./ -40.2 1564./ -29.9 284./ -62.6 1373./ -56.2 2569./ 14.8 722./ 15.4 651./ -52.1

 1564.7
 -29.9

 930.7
 -9.7

 344.7
 28.0

 395.7
 88.1

 144.7
 -50.7

 232.7
 -28.7

 612./ -63.5 784./ 15.9 487./ 8.1 2 55./ -59.6 112./ 7.9 3 69./ -15.9 63./ 43.2 96./ -19.7 57./ -75.3 68./ 35.8 20./ 86.3 48./ -5.1 4 239./ -51.6 5 215./ -62.9 95./ 84.5 41./ 57.0 1372./ -58.7 1003./ -63.2 6 110./ -9.7 30./ -41.8 185./ -56.5 7 434./ -79.2 14./ 38.4 146./ 63.2 62./ 68.1 8 43./ -80.4 10./ 44.7 104./ 52.2 336./ 86.7 21./ 49.9 10./ -34.7 12./ -30.2 67./ 58.2 a 109./ -81.5 73./ -74.4 154./ -60.6 164./ 80.3 44./ 43.5 91./ 1.0 33./ 79.6 23./ 78.8 10 11 8./ -18.1 152./ -72.1 12 61./ -40.4 32.1 -34.9 8./ 46.0 PEAK-TO-PEAK 17069. 4746. 6892. 1357. 713. BEAM .606 (N-M/DEG) BEAM .174 BEAM .350 BEAM .449 BEAM .803 (N-M/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) MEAN 67. 232. -105. -446. 236. 415./ -65.6 192./ -74.8 519./ -15.7 171./ -26.0 462.1 -69.0 247.1 -73.5 453./ -74.1 257./ -75.7 83./ 51.2 76./ 29.7 289./ 86.2 144./ 84.5 102./ 67.7 158./ 19.4 80./ 76.3 HARMONIC-1 2 229./ -34.8 367./ 24.6 192./ -74.8 108./ -17.8 115./ 16.8 17./ -70.3 9./ -3.0 3 82./ 5.3 63./ 21.4 24./ 48.9 4 124./ -68.9 122./ 83.3 98./ 8.6 5 30./ -58.4 13./ 23.9 13./ 76.5 6 7./ -55.2 39./ -80.8 18./ 8.8 12./ -76.2 47./ -77.5 46./ 30.9 5./ 72.3 13./ -89.9 7 72./ 69.2 9./ -80.2 35./ -73.0 48./ -64.8 8 18./ -76.6 56./ 83.4 93./ -39.9 9 51./ -67.7 33./ -20.0 8./ 86.3 10./ 57.1 28./ -18.9 6./ 56.3 2./ 65.5 10 37./ -11.5 2./ -73.3 22./ -28.1 7./ -36.9 11 12./ -37.5

17./ 36.9

1375.

11./ 47.1

1169.

1307.

ų.

e

12

PEAK-TU-PEAK

49./ 49.2

1240.

FLIGHT NO. 065 AIRCRAF RUN NO. 19 Time 54923.80 (SEC)	T TOTAL WT = 33631. N 7561. LB	LOADED CG	; X = 5.02 M = 197.5 IN Y = -,00
AERODYNAMIC FLIGHT STATE T. AIRSPEED* 107.1 KT A/C MACH NO* .166	DYNAMIC PRES= 1.86 STATIC PRES= 95.5 TOTAL TEMP- 274.5 STATIC TEMP- 273.0	KPA KPA OEG K OEG K	38.9 PSF 1994. PSF 494.0 DEG R 491.3 DEG R
BODY ALPHA≖ -1.0 OEG BODY BETA- 1.2 DEG	DENSITY = 1.22 DENSITY ALT = 53 Sonic Speed = 331.8 Rate of Climb* -41.	KG/M3 = • M	.00237 SLUG/FT3 172. FT 1088. FPS ~133. FPM

AXIS	CG LI (M/S)	N VEL (FPS)	(G LIN ACC (G)	HUBLI (M/S)	N VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.10 1.17 93	180.8 3.8 -3.1	076 008 -1.201	54.97 1.12 93	1 80 • 3 3 • 7 -3.3	081 003 -1.200	ROLL PITCH YAW	-33.4 -2.2 69.0	026 .063 093	.019 .012 023
CONTRO	L ANGLE	S	M.R. COLL Al: Bl:	9.5 -2 3.3	DEG DEG DEG	HORIZ FIN= T.K. Coll= Pedal Pos=	7.1 OE •9 OE 1.4 OE	G G G		
RUTOR	PARAMET	ERS				SHAFT ALPHA-	-1.0 0	EG		

RUTOR PARAMETERS	HOVER TIP N	/ACH= .69	SHAFT ALPHA- Control Alpha=	-1.0 OEG -4.3 DEG	
	TIP MAX-M TIP MIN-M	IACH= .85 IACH= .52	DELTA PSI'	-1.2 OEG	
	.9R NAX-N .9R MIN-M	/ACH* .78 1ACH= .45	ENGINE POWER= Thrust factor=	390. KW ■ •892E+07 N ■	523. HP •200E+07 LB

NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTOR PERFOI	RMANCE AND LOAD	20
FLIGHT NO. 65	MU≖ .241 V= 107.1	TOTAL CO KT MAST CO	■ ,000190 ■ .000206	AMB TEMP TEMP U60=	2 C = 31.65 F 19.8 C = 67.70 F 71 C = 44.75 F
TIME 54920.65	NZ= 1.200 CLP= .00449	G OMEGA RPM/324	- 34.098 RADISE(• 1.005	CAN TETT	7.1 C - 44473 F
RUTOR ANGLES	THETA314 (DEG) TEETER ANG (DEG)	AO= 8.4 AO=5	▲1 =4 8 ▲1 =7 8	l= 4.1 PEA l= .4 PEA	АК–ТО–РЕАК' 8.6 АК–ТО–РЕАК* 1.6
ROTOR LUADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (n-m/deg)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
MEAN HARMONIC-1 2 3 4 5 6 7 7 8 9 10 11 12 PEAK-TO-PEAK	42574. 3950./ -14.9 533./ -40.9 1976./ 36.7 670./ 30.2 228./ -37.0 1072./ -67.2 70./ -53.7 71./ 62.1 46./ 24.4 67./ -29.8 105./ -68.0 111./ -54.6 11191. BEAM .174 (N-M/DEG)	L1876. 1077. / -24.5 205. / -65.9 572. / 36.3 363. / 20.8 47. / -72.2 723. / -72.0 65. / -44.3 52. / 2.8 71. / 87.5 306. / -65.1 41. / -42.3 52. / -12.0 4471. BEAM .350 (N-M/DEG)	1244. 289./ -51.7 45./ -68.5 51./ 2.9 14./ 33.4 165./ -82.4 17./ -17.4 16./ -23.9 56./ 86.0 133./ -65.7 20./ -33.9 24./ -61.0 1222. BEAM .449 (N-M/DEG)	-1800. 2060./ -33.0 1758./ -39.9 342./ -21.8 408./ 87.5 158./ 14.2 70./ -54.8 89./ 21.3 56./ -42.7 66./ 63.8 44./ 18.3 43./ -70.5 16./ -30.8 7179. BEAM .606 (N-M/DEG)	-272. 325./ -53.4 190./ -35.2 62./ 16.4 66./ 49.1 45./ 55.0 22./ -8.1 11./ 43.5 6./ 76.4 3./ 54.6 4./ 15.8 4./ 50.3 2./ -71.6 916. BEAM .803 (N-M/DEG)
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	$\begin{array}{c} -172.\\ 612./ -44.9\\ 334./ -55.3\\ 70./ -61.5\\ 304./ 44.0\\ 91./ -56.7\\ 77./ 66.8\\ 48./ 3.9\\ 24./ 14.9\\ 45./ 45.7\\ 53./ -49.7\\ 12./ 41.1\\ 34./ -85.9\\ 2208. \end{array}$	45. 402./ -67.5 241./ -76.4 56./ .6 99./ 31.7 13./ 76.5 7./ -33.1 10./ 3.8 6./ 77.8 28./ 67.0 18./ -7.2 11./ -72.5 13./ -76.6 1228.	-87. 429./ -68.8 269./ -76.8 56./ 41.1 56./ 19.4 24./ 47.4 7./ 35.5 20./ 45.4 7./ -20.6 11./ 58.7 16./ -41.9 5./ -2.5 11./ -81.9 1315.	-359. 414./ -72.2 220./ -74.8 80./ 80.0 67./ 40.2 12./ -83.9 13./ -14.4 13./ -69.5 11./ -46.4 28./ 85.5 25./ -7.9 8./ 83.2 10./ -77.4 1208.	87. 215./ -89.8 72./ -83.7 98./ 76.0 122./ 25.3 66./ 61.5 39./ -52.1 44./ -78.3 26./ -26.3 25./ -77.4 21./ -1.4 3./ -84.7 6./ -76.8 876.

FLIGHT NO. 065 AIRCRAFT RUN NO. 20 TIME 55001.60 (SEC)	TOTAL WT = 33591. N 7552. LB	LOADED CG	X 5. Y - Z 1.8	02 M = 197.5 IN 00 =0 35 = 72.8
AERODYNAMIC FLIGHT STATE T. AIRSPEED" 109.0 KT A/C MACH NO* .169	DYNAMIC PRES 1.94 Static pres 96.0 Total TEMP= 274.3 Static TEMP- 272.8	KPA = KPA ■ DEG K ■ OEG K ■	40.5 2005. 493.8 491.0	PSF PSF DEG R DEG R
BODY ALPHA- 2.0 OEG BODY BETA= 1.3 OEG	DENSITY- 1.23 DENSITY ALT9 Sonic Speed - 331.6 Rate of Climb* -294.	KG/M3 = M = M/SEC = M/MIN =	•00238 -28. 1088. -965.	SLUG/FT3 FT FPS FPM

AXIS	CG LI (M/S)	N VEL (FPS)	CG LIN ACC (G)	HUBLI (m/s)	N VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG PUS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	56.03 1.30 1.92	183.8 4.3 6.3	107 011 -1.503	55.74 1.21 1.93	182.9 4.0 6.3	105 011 -1.499	ROLL PITCH YAW	-48.7 -4.7 157.3	047 .142 137	021 014 .002
CONTRO	L ANGLE	S	M.R. COLL= A1= B1=	9.4 24	oeg Deg Deg	HORIZ FIN= T.R. COLL= PEDAL POS=	6.7 OE •6 DE 1.5 OE	G G		
ROTOR	PARAMET	TERS		CH* .69		SHAFT ALPHA*	2.0 C	EG		

		CONTROL ALPHA-	•07	INACH	HOVER
	-1.2 DEG	DELTA PSI=	.86	MAX-MACH"	TIP
			•52	BIN-MACH=	TIP
441. HP	329. KW ■ .913F+07 N ≉	ENGINE POWER=	• 79	MAX-MACH=	• 9 R - 9 P
					• 7 6

NASA LANGLEY FLIGHT OATA AH-1G ---- ROTOR PERFORMANCE AND LOAOS

	FLIGHT NO. 65	MU243	TOTAL CO	.030155	ANB TEMP=	4 C ■ 31.30 F
	RUN NO. 20	V- 10760 I			CAN TEMP-	7.1 C • 44.75 F
		NZ= 1.499 (G OMEGA	- 34.418 RAD/SEC		
	TIME 55001.45	CLP= .00547	RPM/324	1.014		
			AO - 01	A1- 5 B3	- 20 DEA	
KUTUK	ANGLES	TEETER ANG (DEG)	AO= -5	A1= B1	. 2.9 PEA	K-TO-PEAK* 1.8
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD •449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	45156.	11648.	1387.	-1527.	-261.
	HARMUNIC-1	5314./ 1.4	1377./ -4.7	309./ -41.2	1754./ -30.5	303./ -57.7
	2	558./ -33.3	286./ -54.7	11./ -12.0	1395./ -18.1	153./ -5.0
	3	1995./ 26.1	563./ 21.8	38./ -24.8	381./ 16.1	55./ 47.7
	4 5	2/0./ 40.0	328•/ 29•2 192./ - 42.8	53./ -77.9	429.7 -03.0	41./ -66.9
	5	1665./ -43.3	1134./ -47.2	245./ -48.7	173./ -19.4	45./ 14.2
	7	452./ -75.0	257./ -43.7	116./ -79.4	136./3	10./ 42.7
	8	49./ 72.6	42./ -17.8	31./ -82.5	35./ -30.3	6./ 78.0
	9	63./ .5	132./ 82.4	70./ 84.1	113./ -79.6	11./ -29.2
	10	107./ -7.0	254./ -88.4	108./ -82.5	112./ 6.1	15./ -3.3
	11		21.7 -27.8	7.7 60.3	23.7 83.3	2.7 11.3
	PEAK-TO-PEAK	14607.	5877.	1294.	6206.	843.
		BEAM .174 (N-m/deg)	BEAM .350 (N-M/DEG)	BEAM ,449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN	98.	54.	-109.	-424.	179.
	HARMONIC-1	606./ -25.2	426./ -63.7	459./ -67.6	439./ -73.3	266./ 86.5
	2	293./ -38.7	225./ -71.7	264./ -70.7	258./ -71.9	115./ -89.9
	3	155./ -39.4	80./ -12.0	63./ 24.6	84./ 69.7	102./ 76.9
	4	3/() 41.2		61./ 30.9	77.7 36.6	161./ 25.4
	5	$179 \cdot 7 = 43 \cdot 0$ $128 \cdot 7 = 85 \cdot 4$	8./ 27.3	7.7 - 21.4	$31 \cdot 7 - 30 \cdot 9$ 12.7 49.9	10.7 87.4
	7	116./ 22.2	21./ 30.8	51./ 48.2	21./ -89.2	84./ 87.7
	8	26./ 36.7	10./ -73.4	8./ -25.1	23./ -43.1	40./ -37.9
	9	73./ 77.5	41./ -83.4	17./ 67.5	46./ -66.0	44./ -50.2
	10	77./ -43.0	29./ -6.8	17./ -23.2	37./ 2.3	29./ .0
	11	12./ -38.0	10./ -69.4	7./ -27.7	5./ -65.2	7./ -83.7
	12	48./ 82.4	15./ -76.3	19./ 66.9	12./ -79.7	3./ -78.4
	PEAK-T0-PEAK	2617.	1307.	1393.	1305.	1066.

,

•

FL∎GHT ND. 065 Run NO. 21 Time 55224.43 (SEC)	AIRCRAFT TOTA	AL WT * 33480. 7527.	N LOADED LB	0 OG X= 5.02 M Y= -00 Z= 1.85	• 197.1 IN • • 0 • 72.9	
AERODYNAMIC FLIGHT SI T. AIRSPEED' 107.2 A/C MACH NO166	ATE KT	DYNAMIC PRES Static pres Total temp Static Temp	5 1.86 KPA 95.2 KPA - 274.4 DEG k 2 272.9 DEG k	■ 38.8 PSF ■ 1988. PSF ■ 493.9 DEG (■ 491.2 DEG	R R	
BODY ALPHA2.4 BODY BETA9	DEG OEG	DENSITY Density ALI Sonic Speed Rate of Clime	Y= 1.22 KG/M3 T= 80. M D- 331.7 M/SEC B= -50. M/MIN	3 ■ .00236 SLUG/	FT3	
AXIS OG LIN VEL (M/S) (FPS)	- CGLINACCH (G) (IUB LIN VEL H M/S) (FPS)	HUB LIN ACC (g)	AXIS ANG POS (DEG)	ANG RATES (rad/sec)	ANG ACC (rad/secz)
X 55.08 180.7 Y .90 2.9 Z -2.31 -7.6	067 5 000 990 -	5.06 180.7 .91 3.0 2.31 -7.6	065 001 990	ROLL7 PITCH -3.3 YAN 275.1	•006 •008 -•002	002 010 .014
CONTROL ANGLES	M.R. COLL= A1= B1=	9.3 DEG 1 OEG 4.3 DEG	HORIZ FIN- T.R. COLL= PEDAL POS=	7.5 OEG •2 OEG •3 DEG		

ROTOR PARAMETERS	HOVER TIP MACH69	SHAFT ALPHA* Control Alpha=	-2.4 DEG -6.7 DEG	
	TIP MAX-MACH= .85	DELTA PSI .	9 OEG	
	•9R MAX-MACH* a78 •9R MIN-MACH* •45	ENGINE POWER- Thrust Factur=	397. K₩ = •887E+07 N =	532. HP •199E+07 LB

	NASA	LANGLEY FLIGHT D	DATA AH–1G – –	ROTOR PERFOR	RMANCE AND LOAD)S
	FLIGHT NO. 65	MU= .241 V= 107.2	TOTAL CO KT MAST CO	= .000195 = .000214	AMB TEMP= Temp U60=	3 C = 31.48 F 19.8 C = 67.59 F
	TIME 55224.33	NZ= .990 CLP= .00370	G OMEGA RPM/324	- 34.062 RAD/SE = 1.034	CAN TEMP"	7.1 C ■ 44.75 F
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (Deg)	A0= 8.3 A0=6	Al=	1= 5.0 PEA 1= .0 PEA	К–ТО–РЕАК- 10.4 К–ТО–РЕАК- 2.9
ROTOR	LOADS (AMP/PH	IASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 11 12 PEAK-TO-PEAK	41645. 2930./ -36.6 237./ -40.6 1735./ 33.5 747./ 24.2 173./ 32.5 877./ -71.0 221./ 66.7 196./ -49.9 31./ -27.0 80./ 64.2 58./ -44.8 47./ 75.0 9601.	12016. 874./ -45.4 48./ -30.5 530./ 34.3 324./ 20.1 95./ 82.4 625./ -73.4 137./ 67.3 135./ -71.0 122./ 36.4 274./ -80.3 43./ 75.7 101./ -68.9 4268.	1214. 262./ -63.3 68./ -63.9 45./ -2.7 41./ -6.4 29./ -48.4 136./ -78.1 24./ 69.2 47./ -64.2 56./ 36.5 116./ -85.0 5./ -48.0 43./ -87.2 1158.	-1941. 2290./ -37.4 1952./ -52.2 371./ -34.6 409./ 73.4 214./ 8.2 108./ -30.0 89./ 24.6 73./ -55.9 55./ 35.0 31./ 38.5 37./ -75.2 18./ 28.0 7909.	-272. 370./ -54.5 203./ -47.0 69./ 2.4 68./ 43.2 35./ 25.9 5./ -53.3 8./ 19.1 7./ -80.7 4./ -13.0 4./ 70.7 6./ -19.4 1./ 5.7 1026.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 7 8 9 10 11 12 PEAK-TO-PEAK	-387. 675./ -59.6 387./ -65.1 83./ 66.3 309./ 37.0 84./ -21.9 28./ -24.3 51./ 32.4 21./ 74.8 24./ 29.1 51./ -55.0 16./ 54.5 21./ 84.0 2438.	37. 403./ -68.5 255./ -82.8 35./ -7.1 95./ 27.5 4./ 50.2 2./ 20.6 10./ 32.5 1./ -54.2 19./ 47.2 18./ -24.7 9./ -82.9 7./ -66.0 1212.	$\begin{array}{c} -73.\\ 417./ -69.2\\ 274./ -82.0\\ 41./ 46.5\\ 49./ 14.7\\ 26./ 34.9\\ 13./ -53.1\\ 26./ 47.2\\ 9./ 80.7\\ 3./ 41.1\\ 13./ -44.8\\ 2./ -6.7\\ 9./ 83.5\\ 1244. \end{array}$	-324. 390./ -70.8 221./ -79.4 75./ 76.6 65./ 39.7 4./ 58.0 15./ -61.9 8./ -43.6 18./ 73.9 22./ -19.5 6./ 80.5 7./ -82.3 1153.	27. 177./ -84.4 72./ -76.6 85./ 69.4 119./ 24.3 54./ 24.2 39./ -58.0 40./ -89.8 21./ -41.4 14./ -85.8 17./ -5.5 4./ -64.3 4./ -82.9 756.

.

Ì

FLIGHT NJ. 065 AIRCRAFT RUN NO. 22 TIME 55276.70 (SEC)	TOTAL WI = 33409. N 7511. LB	LOADED OG	X= 5.02 M = 197.5 IN Y= 00 0 Z= 1.85 = 73.0
AERODYNAMIC FLIGHT STATE	DYNAMIC PRES 1.87	KPA ≭	39.0 PSF
	Static Pres 95.5	KPA ■	1994. PSF
T. AIRSPEED- 107.4 KT	TOTAL TEMP* 274.2	OEG K ■	493.5 DEG R
A/C MACH NU≕ .167	STATIC TEMP= 272.7	DEG K ■	490.8 OEG R
BODY ALPHA* -2.2 OEG BODY BETA • 2.8 DEG	DENSITY 1.22 DENSITY ALT 44 SONIC SPEED= 331.6 RATE OF CLIMB -45.	KG/M3 = . • M = M/SEC = M/MIN =	.00237 SLUG/FT3 144. FT 1088. FPS -149. FPM

AXIS	CG LI (m/s)	N VEL (FPS)	0G LI (G	N ACC	HUB LI (M/S)	N VEL (FPS)	HUBLIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.12 2.72 -2.10	180.8 8.9 -6.9	0 0 -1.1	80 18 25	55.03 2.71 -2.10	180.5 8.9 -6.9	082 016 -1.125	ROLL PITCH Y aw	24.1 -1.6 45.8	005 .043 .079	.013 .013 010
CONTRO	L ANGLE	S	M.R.	COLL= A1= 81=	9.3 •1 3.5	OEG DEG D£	HORIZ FIN= T.R. COLL= PEDAL PDS=	7.1 OEG 1 DEG 4 DEG			
ROTOR	PARAMET	ERS					SHAFT ALPHA*	-2.2 DE	G		

ROTOR PARAMETERS	HOVER TIP MACH= .69	CONTROL ALPHA=	-2.2 DEG -5.7 DEG	
	TIP MAX-MACH= .85 TIP MIN-MACH= .52	DELTA PSI=	-2.8 OEG	
	•9R MAX-MACH= •79 •9R MIN-MACH= •45	ENGINE POWER- Thrust factor =	378. KW ≖ .895E+07 N ■	507. HP •201E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	- ROTOR PERFO	RMANCE AND LOAD	DS	
	FLIGHT NO. 65	MU= .241 V 107.4 H	TOTAL CO (T Mast Co	• 000183 • 000200	AMB TEMP- Témp u60=	5 C = 31.11 19.8 C ■ 67.58	F
	RUN NO. 22	N7- 1105		- 24 452 - 040 455	CAN TEMP=	7.1 C ■ 44.75	F
	TIME 55276.55	CLP= .00416	RPM/324	1.007			
ROTOR	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO = 8.2 AO =5	A1= .0 B A1=8 B	l= 4.1 PE/ 1= .4 PE/	AK-TO-PEAK- 8.5 AK-TO-PEAK= 1.8	3
RUTUR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD -449 (N-M/DEG)	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
	MEAN HARMONIC-1 2	42264 3378./ -21.6 733./ -42.0	11872. 929./ -30.8 230./ -54.2	1249. 286./ -60.3 37./ -86.6	-1795. 2142./ -39.7 1801./ -45.8	-265. 347./ -58.2 188./ -39.2	
	3	1882./ 24.8 631./ 15.3	535./ 22.6 319./ 8.6	53./ -15.6 41./ -33.0	373./ -34.7 394./ 73.0	67./ 3.8 77./ 35.2	
	5	166./ -45.8 1100./ -78.6	20./ 52.7 783./ -78.5	28./ -7.5	143./ -3.7 37./ -35.0	23./ 43.8 8./ -13.5	
	8	117./ -70.8	59./ -39.2	23./ -42.1	69./ -75.7	6./ 79.0	
	10 11	181./ -64.3 129./ 76.7	179./ -60.9	77./ -61.9	60./ 1.8	6./ 5.1 4./ 19.2	
	12 PEAK-TO-PEAK	100./ -89.1 10668.	57./ -41.9 4284.	36./ -76.7 1248.	28./ -39.2 7375.	3./ 38.0 974.	
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)	
	MEAN	-253.	33.	-91.	-353.	66.	
	HARMONIC-1	583./ -54.7	406./ -71.3	429.1 -72.2	412./ -74.4	209./ -87.7	
	23	83./ -85.5	49./ -15.7	47.1 34.5	77./ 72.0	02+/ 02+0 95-/ 67-6	
	4	326./ 32.0	100./ 24.0	54./ 10.8	73./ 34.5	125./ 20.1	
	5	69./ -58.3	12./ 76.4	25./ 34.3	6./ -60.2	54./ 39.9	
	6	49./ 24.4	1./ 6.6	10./ -50.8	16./ -46.0	45./ -65.8	
	7	40./ -18.3	10./ -14.0	22./ 24.5	14./ -64.2	39./ 88.2	
	8	4./ -36.8	7./ 62.5	4./ 72.3	11./ -73.7	24./ -56.2	
	9	33./ 39.8	29./ 43.2	11./ 55.0	32./ 57.7	25./ 75.2	
	10	55./ -68.7	20./ -50.9	17./ -68.4	25./ -40.7	19./ -26.0	
	11	16./ -23.2	8./ 65.0	7./ -51.4	7./ 29.2	3./ 20.6	
	12	33./ 79.7	9./ 86.3	10./ 68.6	9./ 89.3	6./ -86.6	
	PEAK-IO-PEAK	2223.	1236.	1294.	1248.	860.	

ł!

1 :

FLIGHT NO. 065 AIRCRAFT RUN NO. 25 TIME 55583.30 (SEC)	TOTAL WT = 33222. N 7469. LB	LDADED OG X= 5 Y= - Z* 1.	.01 M = 197.4 IN •00 = -•0 86 = 73•1
AERODYNAMIC FLIGHT STATE T. AIRSPEED* 107.5 KT A/C NACH NO= .167	DYNAMIC PRES= 1.8 STATIC PRES= 95.8 TOTAL TEMP= 274.5 STATIC TEMP* 273.0	8 KPA = 39.3 KPA = 2000. OEG K = 494.1 DEG K = 491.3	PSF PSF DEG R DEG R
BODY ALPHA7 DEG Body Beta* 2.1 OEG	DENSITY= 1.22 DENSITY ALT= 22 SONIC SPEED=331. RATE OF CLIMB287.	KG/M3 = .00237 • M = 72 8 M/SEC = 1088. • M/MIN = -943.	SLUG/FT3 FT FPS FPM

AXIS	CG LIN (M/S)	I VEL (FPS)	CG LIN ACC (G)	HUB LI (m/s)	IN VEL (FPS)	HUBLIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.28 2.05 72	181.4 6.7 -2.4	106 013 -1.405	55.03 2.11 71	180.5 6.9 -2.3	113 013 -1.402	ROLL PITCH YAW	44.9 -4.0 65.6	.030 .123 .129	.016 .029 027
CONTROL	ANGLES	;	M.R. COLL= A1= 81=	9.5 • 1 2.4	DEG OEG OEG	HORIZ FIN= T.R. COLL= PEDAL POS=	6.7 DEG -1.2 OEG -1.5 OEG			

RUTJR PARAMETERS	HOVER	TIP MACH*	.69	SHAFT AL PHA= CONTROL ALPHA*	7 DEG -3.2 DEG	
	TIP TIP	MAX-MACH- NIN-MACH=	•86 •52	DELTA PSI=	-2.2 DEG	
	•9R •9R	MAX-MACH- MIN-MACH*	.79 • 45	ENGINE POWER= THRUST FACTOR-	315. KW ■ •906E+07 N ■	423. HP •204E+07 LB

NASA	LANGLEY FLIGHT D	ATA AH–1G	- ROTOR PERFOR	RMANCE AND LOAD	DS
FLIGHT NO. 65	MU ≖ •241 V≖ 107.5	TOTAL CQ KT MAST CQ	• .000151 • .000167	AMB TEMP= Temp U60= Can temp	2 C = 31.68 F 19.8 C = 67.61 F 7.1 C = 44.75 F
TIME 55582.86	NZ= 1.402 CLP= .00512	G OMEGA RPM/324	- 34.268 RAD/SE 1.010	C	
RUTOR ANGLES	THETA314 (DEG) TEETER ANG (DEG)	AO = 8.1 AO = −.6	A1=2 B A1=∎ B	1= 3.0 PEA L= .6 PEA	K–TO–PEAK* 6.2 K–TO–PEAK= 1.4
RUTOR LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	44206. 3927./ -9.6 702./ -17.4 1892./ 31.2 653./ 37.6 553./ -51.3 1590./ -47.2 438./ -79.2 83./ 88.0 43./ 29.3 84./ 73.7 61./ -47.3 100./ -54.3 11735. BEAM .174 (N-M/DEG)	11518. 1002./ -15.0 317./ -38.4 569./ 28.7 383./ 23.0 223./ -53.7 1146./ -52.5 221./ 87.0 107./ 78.5 259./ 59.0 289./ 84.6 73./ 23.4 60./ -35.5 5135. BEAM .350 (N-M/DEG)	1360. 295./ -55.7 37./ 74.9 41./ -27.4 60./ 4.8 58./ -74.0 245./ -55.9 105./ 87.5 40./ 88.6 113./ 57.7 133./ 88.8 43./ 43.8 23./ -43.1 1322. BEAM .449 (N-M/DEG)	-1646. 1820./ -42.2 1345./ -25.1 293./ 17.6 401./ -76.2 109./ -68.1 189./ -31.6 67./ -5.9 70./ 15.2 141./ 76.3 101./ 24.5 66./ -57.5 5./ 83.7 6084. BEAM .606 (N-H/DEG)	-269. 328./ -62.4 132./ -9.3 67./ 30.6 68./ 55.1 18./ -57.2 42./ 8.2 8./ -6.1 3./ -2.1 9./ -47.5 7./ -24.3 4./ 59.4 7./ 80.4 834. BEAM .803 (N-M/DEG)
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TU-PE AK	-46. 445./ -42.8 264./ -50.2 107./ -20.3 325./ 53.7 143./ -79.2 187./ 84.5 68./ 45.5 68./ 15.4 81./ 62.6 67./ -20.4 18./ 43.2 47./ 77.9 2151.	46. 401./ -68.4 238./ -73.9 70./ -1.4 103./ 41.0 21./ -69.3 8./ 5.7 13./ 46.1 12./ 85.8 43./ 79.3 25./ 11.1 17./ -59.3 15./ -80.0 1236.	-109. 432./ -70.4 283./ -73.2 62./ 34.9 55./ 31.2 16./ 61.5 21./ -82.7 44./ 69.8 19./ -10.8 19./ 70.8 21./ -7.3 11./ 7.4 20./ 75.1 1368.	-404. 427./ -71.8 271./ -75.8 80./ 77.7 71./ 52.0 26./ -65.0 20./ 35.0 21./ -58.7 21./ -58.7 21./ -58.5 34./ 14.8 8./ -74.1 14./ -88.9 1295.	147. 253./ -83.0 138./ 86.0 102./ 86.3 137./ 34.2 67./ 85.9 31./ -42.1 81./ -77.1 41./ -29.3 40./ -68.9 26./ 2.4 6./ -73.6 3./ -71.8 997.

FLIGHT NO. 066 AIRCRAFT RUN NO. 1 TIME 53130.80 (SEC)	TOTAL WT = 36646 .N 8239.LB	LOADED OG X= 5. Y= -, Z= 1.	03 M = 198.1 IN .00 =0 82 = 71.7
AERODYNAMIC FLIGHT STATE T. AIRSPEED- 0.0 KT A/C MACH NO= 0.000	DYNAMIC PRES= 0.00 STATIC PRES= 102.0 TOTAL TEMP= 275.3 STATIC TEMP- 275.3	KPA • 0.0 KPA = 2130. DEG K • 495.6 DEG K • 495.6	PSF PSF OEG R DEG R
BODY ALPHA- 6.0 OEG BODY BETA- 7.5 OEG	DENSITY- 1.29 DENS∎ TY ALT■ -544 SONIC SPEED■ 333.2 RATE OF CLIMB- 0	KG/M3 = .00250 M = -1784. M/SEC = 1093. M/MIN = 0.	SLUG/FT3 FT FPS FPM

AXIS	CG LIN (M/S)	VEL (FPS)	CG LIN ACC (G)	HUB L (M/S)	IN VEL (FPS)	HUBLINACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	0.00 0.00 0.00	0.0 0.0 0.0	035 .039 981	0.03 0.00 0.00	0.0 0.0 0.0	050 .038 980	ROLL PITCH YAU	-1.8 -1.1 244.2	002 .003 005	004 .071 .010
CONTROL	ANGLES		M.R. COLL= A1= B1=	10.0 -2.8 -2.4	oeg Deg Oeg	HORIZ FIN* T.R. COLL= PEDAL POS=	6.1 OE 7.4 DE 7.6 DE	G G G		
ROTOR P	ARAMETER	RS				SHAFT ALPHA=	0.0 C	eg Hu	B HEIGHT= 1.9	R

HOVER TIP MACH= .6	8 CONTROL ALPHA*	2.4 OEG	No nerum - 1.3 K
TIP MAX-MACH- •6 TIP MIN-MACH= •6	8 DELTA PSI*	0.0 DEG	
•9R MAX-MACH= •6 •9R MIN-MACH* •6	1 1 THRUST FACTOR*	•935E+07 N =	.210E+07 LB

	NASA	LANGLEY FLIGHT DA	ATA AH-1G•	 ROTOR PERFORM 	RMANCE AND LOAD)2
	FLIGHT NO. 66	MU=0.000 V= 0.3 k	TOTAL CO KT MAST CO	• 000290 • 000280	AMB TEMP- TEMP U60=	2.2 C 35.95 F 16.4 C 61.49 F
	KUN NU. 1	N7= .980 (- 33 902 PAD/SF	CAN TEMP"	21.5 C = 70.62 F
	TIME 53130.65	CLP= .00392	RPM/324	• •999		
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (DEG)	AO= 8.6 AO=4	Al= -1.9 B Al= 1.5 B	1= -2.2 PE/ 1= -2.0 PE/	AK-TO-PEAK= 6.0 AK-TO-PEAK= 4.9
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TU-PEAK	38055. 1412./ 58.9 871./ 11.3 1413./ 51.9 361./ -7.9 367./ 90.0 518./ 26.9 298./ 3.9 80./ 16.8 85./ -89.6 42./ 2.1 119./ 24.3 116./ 86.0 6479. BEAM .174 (N-M/DEG)	12126. 377./ 82.0 131./ 3.7 362./ 45.8 291./ -46.0 153./ 86.5 331./ 29.6 261./ -15.9 28./ -75.6 183./ -17.7 65./ -80.9 53./ 42.1 38./ -88.6 2728. BEAM .350 (N-M/DEG)	1624. 45./ 81.5 25./ 33.1 55./ 16.4 60./ -88.6 88./ 73.3 127./ 29.9 88./ 8.2 9./ 31.9 93./ -32.4 47./ 85.1 9./ -55.0 30./ 68.9 863. BEAM .449 (N=M/DEG)	-2132. 1311./ -31.8 510./ 83.6 188./ 10.2 152./ -69.6 110./ 42.8 63./ 56.9 97./ -34.6 47./ -42.6 151./ 32.2 64./ 80.0 16./ -79.6 3808. BEAM .606 (N=M/DEC)	-252. 43./ -27.8 73./ -76.4 31./ 35.9 44./ -65.6 32./ 86.7 3./ -5.9 14./ 26.9 14./ 16.4 18./ 13.4 30./ 38.9 8./ -67.5 8./ -64.3 353. BEAM .803 (N=M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	206. 300./ 62.2 142./ 40.3 161./ -79.6 240./ -53.6 77./ -63.1 51./ -23.0 77./ -78.9 37./ -45.3 63./ -40.9 90./ -4.8 18./ 47.0 17./ -56.2 1345.	351. 70./ 17.8 63./ 88.3 66./ -89.8 62./ -58.5 15./ -62.1 9./ -25.9 18./ -44.0 13./ -22.8 37./ -33.5 38./ 18.7 13./ 28.2 8./ -26.8 395.	208. 87./ -5.4 74./ -73.2 56./ 74.2 23./ -66.6 7./ 1.0 11./ 35.0 29./ -61.3 19./ -31.8 27./ -45.7 28./ -21.6 9./ -59.9 11./ -79.1 403.	42. 148./ -21.2 92./ -63.2 37./ 57.0 50./ -35.7 23./ -57.3 19./ -6.4 21./ 36.7 10./ 13.2 41./ -22.8 43./ 24.8 13./ 24.8 13./ 44.1 11./ -28.6 616.	-192. 142./ -47.9 21./ -70.3 51./ -83.8 70./ 4.7 76./ 81.2 57./ 43.5 47./ 76.9 12./ 59.0 35./ -3.1 36./ 41.8 13./ 74.1 4./ 15.3 643.

•

ł

FLIGHT NO. 066 AIRCRAFT RUN NO. 3 TIME 53977.10 (SEC)	TOTAL W T = 36092. N 8114. LB	LOADED OG X 5 Y - Z 1	.04 M = 198.5 IN •00 = •0 .82 = 71.8
AERODYNAMIC FLIGHT STATE T. AIRSPEED 108.4 KT A/C MACH ND169	DYNAMIC PRES= 1.86 Static pres= 92.2 Total temp= 270.6 Static temp= 269.1	KPA 38.9 KPA 1925. DEG K 487.1 DEG K 484.3	PSF PSF DEG R DEG R
BODY ALPHA* 1.8 DEG BODY BETA* .5 OEG	DENSITY= 1.1 DENSITY ALT= 269 Sonic Speed= 329.4 Rate of Climb= -279	9 KG/N3 • .00232 • M = 883 M/SEC = 1081. M/MIN • -916.	SLUG/FT3 FT FPS FPM

t

AXIS	CG LIN (M/S)	VEL (FPS)	OG LIN ACC (G)	HUB LII (m/s)	VEL (FPS)	HUBLIN ACC (G)	AXIS	ANG POS (Deg)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.72 .46 1.75	182.8 1.5 5.7	069 .002 -1.344	55.48 .46 1.75	182.0 1.5 5.7	065 .005 -1.341	ROLL PITCH YAW	-44.3 -3.8 299.8	.000 .115 122	.000 018 001
CONTROL	ANGLES		M.R. COLL= A1= 81=	9.4 -•4 4.3 (DEG DEG DEG	HORIZ FIN= T.R. Coll* Pedal P DS =	7.6 OEC 1.5 DEC 2.4 DEC			

ROTOR PARAMETERS	HOVER T	TIP MACH=	.70	SHAFT ALPHA= Control alpha=	1.8 DEG -2•5 DEG	
	TIP M	MAX-MACH=		DELTA PSI=	5 DEG	
	9R N 9R 1	MAX-MACH* MIN-MACH=	.79 • 46	ENGINE POWER- THRUST FACTOR-	377. KW = .883E+07 N =	506. HP .199E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 66	6 MU= ₀242 V= 108•4 k	TOTAL CO MAST CO	.000185	AMB TEMP* TEMP U60 =	-4.1 C = 24.63 F 15.0 C = 59.01 F
	RUN NO. 3				CAN TEMP:	4.4 C = 39.86 F
	TIME 53976.95	NZ= 1.341 (CLP= •00543	G OMEGA- RPM/324=	- 34.298 RAD/SEC 1.011		
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (Deg)	AO= 8.8 AO=7	Al=4 BI Al= -1.0 BI	L= 4.5 PEA L■ ₀6 PEA	K-TO-PEAK- 9.3 K-TO-PEAK- 2.4
ROTOR	LOADS (AMP/PH	(ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMON1C-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	43988. 4780./ 1.6 848./ -47.5 2400./ 47.8 625./ 28.3 542./ -48.8 1276./ -38.8 28./ -43.3 134./ -54.2 110./ 74.5 54./ -49.8 105./ -46.6 85./ -71.4	12718. 1230./ 2.2 407./ -52.1 653./ 48.7 282./ 10.7 97./ -62.6 896./ -46.4 82./ -42.4 103./ -36.2 96./ 74.5 249./ -21.9 131./ 14.9 97./ -3.2 5677.	2305. 279./ -47.9 37./ 5.9 38./ 14.6 75./ -8.3 52./ -71.5 170./ -44.3 28./ -72.7 28./ -62.4 51./ 79.9 120./ -29.5 30./ 27.9 25./ -45.7 1109.	$\begin{array}{c} -1830.\\ 1859./ & -31.0\\ 1575./ & -30.9\\ 311./ & 24.9\\ 431./ & -75.1\\ 105./ & -35.0\\ 152./ & 20.1\\ 67./ & 33.5\\ 64./ & -12.0\\ 76./ & 78.2\\ 54./ & 46.7\\ 64./ & -50.6\\ 23./ & -2.8\\ 6185. \end{array}$	$\begin{array}{c} -277.\\ 307./ & -55.1\\ 173./ & -18.9\\ 78./ & 38.2\\ 63./ & 50.2\\ 34./ & -74.1\\ 42./ & 40.0\\ 14./ & 56.2\\ 8./ & 63.1\\ 8./ & 3.8\\ 4./ & 35.4\\ 6./ & 49.7\\ 6./ & 87.0\\ 899.\end{array}$
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 ΕΕΔΚ_ΤΟ-ΡΕΔΚ	188. 557./ -33.0 302./ -47.8 64./ -22.6 376./ 60.4 162./ -54.2 115./ -78.9 51./ 39.1 60./ 18.4 53./ 58.2 46./ 2.4 12./ 22.2 59./ -81.7 2443.	130. 404./ -63.6 247./ -71.0 69./ 11.6 117./ 44.3 28./ -64.6 10./ 43.9 7./ 36.2 7./ -87.3 29./ 83.9 14./ 24.9 17./ -30.0 18./ -61.0	-48. 428./ -66.1 279./ -69.5 62./ 41.2 63./ 31.1 19./ 64.3 3./ -11.3 26./ 77.2 20./ 12.7 13./ 65.3 14./ -1.1 4./ -35.7 15./ 85.1	-319. 430./ -69.7 249./ -70.2 74./ 79.3 85./ 62.3 34./ -50.2 13./ 24.3 18./ -46.5 14./ -6.6 29./ -71.5 23./ 24.4 9./ -3.6 11./ -82.8	131. 253./ -87.5 100./ -83.4 90./ 88.1 152./ 42.8 76./ -81.1 53./ -56.1 62./ -62.0 36./ 2.4 27./ -45.2 21./ 13.1 7./ -78.3 4./ 82.2 946.
	PEAK-TO-PEAK	2443.	1255.	1354.	1295.	946.

•

FLIGHT NO. 066 AIRCRAFT RUN NO. 3 TIME 53980.80 (SEC)	TOTAL WT • 36063. N 8108. LB	LDADED OG X= 5.04 Y=0 Z= 1.82	. M = 198.6 IN 10
AERODYNAMIC FLIGHT STATE T. Airspeed- 107.4 kt A/C Mach NO= .168	DYNAMIC PRES- 1.84 STATIC PRES- 92.4 TOTAL TEMP' 270.7 STATIC TEMP- 269.2	KPA = 38.3 KPA = 1930. OEG K = 487.2 OEG K = 484.5	PSF PSF OEG R OEG R
BODY ALPHA- 2.6 OEG BODY BETA- 1.4 OEG	DENSITY- 1.20 DENSITY ALT- 249 SONIC SPEED- 329.4 RATE OF CLIMB* -223.	KG/M3 = .00232 S M = 816. F M/SEC = 1081. F M/MIN = -733. F	LUG/FT3 T PS PM
INERTIAL FLIGHT STATE			

AXIS	CG LIN (M/S)	(FPS)	0G LII (G	N ACC	HUB LI (M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X Y Z	55.18 1.39 2.47	181.0 4.6 8.1	0 0 -1.4	78 09 39	54.91 1•38 2.48	180.2 4.5 8.1	079 005 -1.435	ROLL PITCH YAW	-40.4 -2.8 266.4	006 .132 126	002 .001 .002
CONTROL	ANGLES	;	M.R.	COLL= A1= B1=	9.4 - • 4 3.8	oeg Deg Oeg	HORIZ FIN- T.R. COLL= PEDAL POS=	7.4 OEG 1.6 DEG 2.4 OEG			

		TIP •9R	MIN-MACH= MAX-MACH=	• 53 .79	ENGINE POWER-	-1.4	351. KV =	470. HP	
		TIP	MAX-MACH-	.86	DELTA PSI-	-1.4	DEG		
ROTOR P	ARAMETERS	HO\/FR	TIP MACH=	.70	SHAFT ALPHA-	2.6 -1.2	OEG		

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

FLIGHT NO. 66 RUN NO. 3	MU- ∙240 V= 107.4 ł	TOTAL CQ (T Mast CQ	• .000170 • .000176	AM8 TEMP- TEMP U60= CAN TEMP-	-4.0 C • 24.82 15.0 C • 59.05 4.4 C • 39.86	F F F
TIME 53980.65	NZ= 1.435 (CLP= .00578	G OMEGA- RPM/324	34.374 RAD/SEC 1.013			
ANGLES	THETA 314 (DEG) Teeter ang (DEG)	AO = 8.7 AO = −.7	A1 =2 B1 A1 =5 B1	■ 3.8 PEA ■ 9 PEA	K–TO–PEAK- 8.1 K–TO–PEAK= 2.2	
LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	<pre>[DRSIDN .449 (N-M/DEG)</pre>	
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	44844. 5824./ -3.5 451./ -22.5 2460./ 37.3 739./ 44.1 592./ -53.2 1463./ -58.1 222./ 66.8 100./ -72.4 54./ -59.8 16./ 74.0 116./ -66.6 6./ 83.8 14879.	12674. 1509./ -4.6 314./ -42.7 696./ 40.7 339./ 31.1 164./ -75.9 1037./ -60.3 131./ 27.1 83./ -68.5 60./ -86.0 231./ -34.0 89./ -47.9 85./ 29.4 5748.	2326. 322./ -44.7 40./ -24.0 40./ 2.3 59./ -6.2 73./ -86.8 202./ -58.9 61./ 55.0 32./ 40.4 50./ -65.1 119./ -48.7 7./ -76.5 27./ 34.3 1320.	-1723. 1848./ -30.0 1297./ -30.3 348./ 24.0 405./ -79.8 62./ -78.9 241./ 5.8 50./ 9.9 35./ 3.4 110./ -87.7 98./ 1.1 46./ -55.0 27./ 27.2 5821.	-281. 288./ -55.0 146./ -9.3 68./ 49.1 68./ 47.4 49./ -63.4 60./ 22.4 11./ 37.0 10./ 38.3 11./ -24.6 12./ 19.3 7./ 20.1 6./ -82.5 812.	
	BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)	
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 2 PEAK_TO_PEAK	299. 626./ -28.6 280./ -46.4 126./ -3.8 384./ 52.2 156./ -65.3 127./ 89.0 53./ 34.4 48./ 11.5 65./ 65.5 85./ -25.2 2./ -11.6 48./ 89.6	140. 405./ -63.6 229./ -70.4 83./ 10.6 117./ 39.6 26./ -69.6 16./ 45.9 12./ 31.5 7./ 82.8 31./ -83.9 28./ 1.4 15./ -53.9 13./ -71.8	-48. 434./ -66.6 266./ -68.5 69./ 37.6 58./ 34.0 16./ 70.0 6./ -20.6 29./ 61.2 16./ 9.1 16./ 66.8 23./ -18.9 6./ -21.9 20./ 81.2	-337. 429./ -70.8 250./ -70.7 83./ 72.6 81./ 53.6 34./ -51.4 15./ 27.1 14./ -50.0 16./ -34.0 34./ -5.0 34./ 5.0 7./ -29.4 12./ -87.0	164. 256./ -89.6 115./ -85.0 98./ 83.5 155./ 37.1 77./ -63.1 47./ -62.6 59./ -74.3 31./ -13.5 30./ -41.9 31./ -1.0 8./ 77.0 4./ -55.6	
	FLIGHT NO. 66 RUN NO. 3 TIME 53980.65 ANGLES LUADS (AMP/PH. MEAN HARMONIC-1 12 PEAK-TO-PEAK MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 2 PEAK-TO-PEAK	FLIGHT NO. 66 MU240 RUN NO. 3 NZ= 1.435 TIME 53980.65 CLP00578 ANGLES THETA 314 (DEG) ANGLES THETA 314 (DEG) TEETER ANG (DEG) MEAN 44844. HARMONIC-1 5824./ 5 592./ -3.5 2 451./ 5 592./ -53.2 6 1463./ 7 222./ 6 1463./ 7 222./ 6 1463./ 7 222./ 6 1463./ 7 22.2/ 6 1463./ 7 22.2/ 6 1463./ 7 22.6/ 8 100./ 10 16./ 11 116./ 12 6./ 8 200./ 9 54./ 9 52./ 14879. MEAN 27./ 12 6./ 280./ -46.4	FLIGHT NO. 66 MU	FLIGHT NO. 66 MU	FLIGHT NO. 66 MJ240 TOTAL C0:.000176 TEMP RUN NO. 3 NZ: 1.435 G OMEGA- 34.374 RAD/SEC CAN TEMP-U60-CAN TEMP-U60-CAN TEMP TIME 53980.65 CLP .00578 RPM/324*1.013 CAN TEMP-U60-CAN TEMP ANGLES THETA 314 (DEG) A0* 8.7 A1* -2 B1* 3.8 PEA TEETER ANG (DEG) A0* -7 A1* -5 B1* .9 PEA LOADS (AMP/PHASE) DRAG BRACE CHORO .449 CHORO .803 PITCH LINK (N/DEG) MEAN 48844. 12674. 2326. -1723. HARMONIC-1 5824./ -3.5 1509./ -4.6 322./ -44.7 1846./ -30.0 2 451./ -22.5 314./ -42.7 40./ -24.05./ -30.3 3 2460./ 37.3 696./ 40.7 74.0 1297./ -30.3 3 246./ -53.2 164./ -75.9 73./ -86.8 62./ -78.9 6 1463./ -58.1 1037./ -60.3 32.2./ 405./ 34.9 9 54./ -59.8 <t< td=""><td>FLIGHT NO. 66 MU- :240 TOTAL C0: :000170 AMB TEMP4.0 C :24.82 RUN NO. 3 NZ: 1.435 G OMEGA- 34.374 RAD/SEC TEMP- 4.4 C :39.86 TIME 53980.65 CLP: .00578 OMEGA- 34.374 RAD/SEC RAD/SEC CAN TEMP- 4.4 C :39.86 ANGLES THETA 314 (DEG) A0: 8.7 A1: -2 B1: 3.8 PEAK-TO-PEAK- 8.1 TEETER ANG (DEG) A0: -7 A1: -5 B1: 9 PEAK-TO-PEAK- 2.2 LUADS (AMP/PHASE) DRAG BRACE CHORO .449 CHORO .803 PITCH LINK IDRSIDN .449 (N/DEG) (N/DEG) (N-H/DEG) (N-H/DEG) (N/DEG) (N/DEG) (N/DEG) (N/DEG) MEAN 44844. 12674. 2326. -1723. -281. (N/DEG) (N/DEG)</td></t<>	FLIGHT NO. 66 MU- :240 TOTAL C0: :000170 AMB TEMP4.0 C :24.82 RUN NO. 3 NZ: 1.435 G OMEGA- 34.374 RAD/SEC TEMP- 4.4 C :39.86 TIME 53980.65 CLP: .00578 OMEGA- 34.374 RAD/SEC RAD/SEC CAN TEMP- 4.4 C :39.86 ANGLES THETA 314 (DEG) A0: 8.7 A1: -2 B1: 3.8 PEAK-TO-PEAK- 8.1 TEETER ANG (DEG) A0: -7 A1: -5 B1: 9 PEAK-TO-PEAK- 2.2 LUADS (AMP/PHASE) DRAG BRACE CHORO .449 CHORO .803 PITCH LINK IDRSIDN .449 (N/DEG) (N/DEG) (N-H/DEG) (N-H/DEG) (N/DEG) (N/DEG) (N/DEG) (N/DEG) MEAN 44844. 12674. 2326. -1723. -281. (N/DEG) (N/DEG)

 FLIGHT NO. 066 RUN NO. 3 TIME 53985.40 (SEC)
 AIRCRAFT TOTAL WT = 36092. N 8114. LB
 LOADED CG X = 5.04 M = 198.5 IN Y = -00 Z = 1.82
 IN

 AERODYNAMIC FLIGHT STATE T. AIRSPEED- 103.0 KT A/C MACH NO = .161
 DYNAMIC PRES = 1.69 STATIC PRES = 92.5 TOTAL TEMP- 270.6 STATIC TEMP- 270.6 OEG K = 487.1 OEG R
 S5.3 PSF 1931. PSF OEG K = 487.1 OEG R

 BODY ALPHA*
 .5 DEG BODY BETA DENSITY - 1.20 DENSITY ALT = 244. SONIC SPEED = 329.5 RATE OF CLIMB- -186.
 KG/M = .00232 SLUG/FT3 M/MIN = -609. FPM

INERTIAL FLIGHT STATE

.

AXIS	CG LIN (M/S)	VEL (FPS)	CG LIN ACC (G)	HUB LIN VI (M/S) (FI	EL HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC 2)
X Y Z	53.00 .22 .47	173.9 .7 1.5	060 .008 -1.260	52.77 17: .21 .47	3.1060 .7 .014 1.5 -1.257	ROLL PITCH YAW	-46.3 -3.2 233.4	008 .113 120	.012 001 036
CONTROL	ANGLES		M.R. COLL= A1= B1=	9.4 OEG 7 OEG 4.1 OEG	HORIZ FIN* T.R. COLL= PEDAL POS=	7.5 OEG 1.7 OEG 2.4 DEG			

ROTOR PARAMETERS	HOVER TIP MACH= .69	SHAFT ALPHA= Control Alpha-	•5 OEG -3.6 DEG	
	TIP MAX-MACH85 TIP MIN-MACH- .53	DELTA PSI"	2 OEG	
	•9R MAX-MACH- •78 •9R MIN-MACH= .46	ENGINE POWER= THRUST FACTOR*	393. KW = .878E+07 N =	527. HP .197E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

D. 66 Mi 3	J ≡ •232 J≡ 103.0 KT Z≡ 1.257 G	TOTAL CQ= .0 MAST CQ= .0	00195 00204	AMB TEMP3 TEMP U60= 15. CAN TEMP= 4	.9 C ■ 24.92 F .0 C ■ 58.99 F .4 C ■ 39.86 F	
5.25 CL	• .00514	RPM/324= 1.0	05			
THETA 3 TEETER	/4 (DEG) AO= ANG (DEG) AO=	8.9 Al= 6 Al=	6 Bl= -1.0 Bl=	4.3 PEAK- •5 PEAK-	TO–PEAK- 9.1 TO–PEAK- 2.4	
IP/PHASE) DR/ (1	AG BRACE CHORI N/DEG) (N-1	0.449 CH 1/DEG) (ORO .803 PIT N-M/DEG)	TCH LINK T (n/deg)	ORSION .449 (N-M/DEG)	
42898 1C−1 4783 2 633 3 2547 4 618 5 526 6 1120 7 90 8 205 9 81 10 68 11 102 12 136 12 136	12825 4 1192 - 34.9 308 - 49.2 728 - 49.2 728 - 73.6 150 73.6 150 73.6 150 73.6 150 73.6 150 73.6 150 73.6 160 73.6 170 73.6 170 73.6 170 7	23 / -6.1 2 / -52.8 / 51.1 / 20.6 / -74.3 / -43.9 1 -17.9 / -45.1 / -68.0 / -26.7 / -9.6 / 16.3 . 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09. 43./ -26.5 98./ -30.8 91./ 22.1 74./ -81.0 30./ -70.5 36./ 6.2 61./ -81.0 64. 71./ -51.5 33./ 59.2 61./ -53.5 10./ 71.7 78.	$\begin{array}{c} -271.\\ 280./ -53.2\\ 159./ -22.7\\ 76./ 45.9\\ 50./ 51.5\\ 30./ 54.8\\ 34./ 22.8\\ 12./ 46.8\\ 6./ 43.3\\ 5./ -11.7\\ 15./ -87.7\\ 4./ -85.9\\ 4./ 63.3\\ 841. \end{array}$	
BEAM (N-1	.174 BEAM 1/DEG) (N→	•350 BE. 1/DEG) (AM .449 BE/ N+M/DEG) (1	AM •606 N-H/DEG)	BEAM .803 (N-M/DEG)	
158 IC-1 548 2 256 3 105 4 269 5 156 6 111 7 71 8 53 9 47 10 106 11 7 12 14 2 14	134. 1-30.0 369. 1-47.9 212. 25.1 81. 1-59.1 85. 1-84.2 25. 1-87.4 12. 1-60.2 11. 1-57.1 32. 1-70 39. 1-70 39. 1-31 13. 1-66.2 4.		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	96. 20./ -67.6 96./ -67.0 70./ -84.5 51./ 66.5 26./ 84.2 17./ 36.8 19./ -19.4 18./ -6.3 41./ -28.1 41./ 34.4 6./ -47.1 5.7 -60.8 5.7 -60.8	110. 241./ -85.7 75./ -83.1 89./ -81.5 98./ 46.3 84./ -82.1 35./ -43.1 62./ -29.7 35./ 7.6 39./ -20.3 30./ 33.6 2./ 47.3 3./ -74.4	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D. 66 MU=232 V= 103.0 KT 3 NZ= 1.257 G 15.25 CLP=.00514 THETA 3/4 (DEG) A0= TEETER ANG (DEG) A0= IP/PHASE) DRAG BRACE CHORI (N/DEG) 42898. 128255 IC-1 4783.7 4 42898. 128255 IC-1 4783.7 4 1192.7 2 633.7 -34.9 308. 3 256.7 4 1192.7 2 633.7 4 1192.7 2 63.7 7 6 112.7 7 9 6.1 172.2 9 6.1 172.2 9 6.1 172.2 9 172.1 16 12 136.7 <td colspa="</td"><td>D. 66 MU=.232 TOTAL C0=.0 V= 103.0 KT MAST C0=.0 3 NZ= 1.257 G OMEGA-34. 15.25 CLP=.00514 RPM/324= 1.0 THETA 3/4 (DEG) A0= 8.9 A1= TEETER ANG (DEG) A0= 6 A1= IP/PHASE) DRAG BRACE CHORD .449 CH (N/DEG) (N-M/DEG) (1 42898. 12825. 23 IC-1 4783./4 1192./ -6.1 2 233./ -34.9 308./ -52.8 3 3 2547./ 49.2 728./ 51.1 4 618./ 34.9 323./ 20.6 5 5 256./ -73.6 150./ -74.3 1 6 1120./ -37.5 757./ -43.9 1 1 7 90./ -56.2 222./ -17.9 8 205./ -66.1 172./ -45.1 5 1 9 81./ -83.4 187./ -68.0 7 10 68./ -53.5 166./ -26.7 7 1 10 68./ -53.5 166./ -26.7 11 10 10 11 EAK 15411. 5320. 11 11 BEAM .174 BEAM .350 BE/ 12 136./ 15.2 129./ 16.3 12 2 56./ -47.9 212./ -69.1 2 3 105./ 25.1 81./ 29.5 1 4 269./ 59.1 85./ 45.9 5 5 156./ 84.2 25./ -88.2 5 6 111./ 87.4 12./ 22.2 7 7 71./ -60.2 11./</td><td>0. 66 MU • .232 TOTAL C0 • .000195 3 MAST C0 • .000204 3 NZ • 1.257 G OMEGA- 34.097 RAD/SEC 15.25 CLP • .00514 RPM/324 • 1.005 THETA 3/4 (DEG) A0 • 8.9 A1 •6 B1 • TEETER ANG (DEG) A0 • 8.9 A1 •6 B1 • TEETER ANG (DEG) A0 • 6.1 25.25 CLP • .00514 RPM/324 • 1.005 IP/PHASE) DRAG BRACE CHORD .449 CHORO .803 PT (N/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) 12 633./ -34.9 308./ -52.8 22./ -18.9 13 3 2547./ 49.2 728.4 51.1 54./ 28.0 3 4 618./ 34.9 323./ 20.6 65./ -1.8 3 5 526./ -73.6 150./ -74.3 69./ -82.3 1 6 1120./ -37.5 757./ -43.9 145./ -46.13 1 7 90./ -56.2 222./ -17.9 22./ -29.3 8 205./ -46.1 172./ -45.1 49./ -78.4 9 81./ -83.4 187./ -68.0 46.4 / 74.4 10 68./ -53.5 166./ -26.7 91./ -42.4<!--</td--><td>D: 66 MU∎232 TOTAL C0₽000195 AMB TEMP3 3 M21.03.0 KT MAST C0₽000204 TEMP U60=15 3 N21.1257 G OMEGA-34.097 RAD/SEC 5.25 CLP00514 RPM/324=1.005 CAN TEMP=4 5.25 CLP00514 RPM/324=1.005 State All =6 B1= 4.3 PEAK- TEETR ANG (DEG) A0 =6 A1 =6 B1= 4.3 PEAK- IP/PHASE DRAG BRACE CHORD .449 CHORO .803 PITCH LINK T (N/DEG) (N-M/DEG) (N-M/DEG) (N/MEG) (N/MEG) 12617 49.33./ 20.6 65./ -1809. 120.1 4 616./ 34.9 323./ 20.6 65./ -18.0 374./ -61.0 5 526./ -73.6 150./ -74.3 69./ -82.3 130./ -70.5 6 1120./ -91.7 92./ -29.3 61./ -91.7 91./ -29.4 131.6./ 6.2 7 90./ -56.2 22./</td></td></td>	<td>D. 66 MU=.232 TOTAL C0=.0 V= 103.0 KT MAST C0=.0 3 NZ= 1.257 G OMEGA-34. 15.25 CLP=.00514 RPM/324= 1.0 THETA 3/4 (DEG) A0= 8.9 A1= TEETER ANG (DEG) A0= 6 A1= IP/PHASE) DRAG BRACE CHORD .449 CH (N/DEG) (N-M/DEG) (1 42898. 12825. 23 IC-1 4783./4 1192./ -6.1 2 233./ -34.9 308./ -52.8 3 3 2547./ 49.2 728./ 51.1 4 618./ 34.9 323./ 20.6 5 5 256./ -73.6 150./ -74.3 1 6 1120./ -37.5 757./ -43.9 1 1 7 90./ -56.2 222./ -17.9 8 205./ -66.1 172./ -45.1 5 1 9 81./ -83.4 187./ -68.0 7 10 68./ -53.5 166./ -26.7 7 1 10 68./ -53.5 166./ -26.7 11 10 10 11 EAK 15411. 5320. 11 11 BEAM .174 BEAM .350 BE/ 12 136./ 15.2 129./ 16.3 12 2 56./ -47.9 212./ -69.1 2 3 105./ 25.1 81./ 29.5 1 4 269./ 59.1 85./ 45.9 5 5 156./ 84.2 25./ -88.2 5 6 111./ 87.4 12./ 22.2 7 7 71./ -60.2 11./</td> <td>0. 66 MU • .232 TOTAL C0 • .000195 3 MAST C0 • .000204 3 NZ • 1.257 G OMEGA- 34.097 RAD/SEC 15.25 CLP • .00514 RPM/324 • 1.005 THETA 3/4 (DEG) A0 • 8.9 A1 •6 B1 • TEETER ANG (DEG) A0 • 8.9 A1 •6 B1 • TEETER ANG (DEG) A0 • 6.1 25.25 CLP • .00514 RPM/324 • 1.005 IP/PHASE) DRAG BRACE CHORD .449 CHORO .803 PT (N/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) 12 633./ -34.9 308./ -52.8 22./ -18.9 13 3 2547./ 49.2 728.4 51.1 54./ 28.0 3 4 618./ 34.9 323./ 20.6 65./ -1.8 3 5 526./ -73.6 150./ -74.3 69./ -82.3 1 6 1120./ -37.5 757./ -43.9 145./ -46.13 1 7 90./ -56.2 222./ -17.9 22./ -29.3 8 205./ -46.1 172./ -45.1 49./ -78.4 9 81./ -83.4 187./ -68.0 46.4 / 74.4 10 68./ -53.5 166./ -26.7 91./ -42.4<!--</td--><td>D: 66 MU∎232 TOTAL C0₽000195 AMB TEMP3 3 M21.03.0 KT MAST C0₽000204 TEMP U60=15 3 N21.1257 G OMEGA-34.097 RAD/SEC 5.25 CLP00514 RPM/324=1.005 CAN TEMP=4 5.25 CLP00514 RPM/324=1.005 State All =6 B1= 4.3 PEAK- TEETR ANG (DEG) A0 =6 A1 =6 B1= 4.3 PEAK- IP/PHASE DRAG BRACE CHORD .449 CHORO .803 PITCH LINK T (N/DEG) (N-M/DEG) (N-M/DEG) (N/MEG) (N/MEG) 12617 49.33./ 20.6 65./ -1809. 120.1 4 616./ 34.9 323./ 20.6 65./ -18.0 374./ -61.0 5 526./ -73.6 150./ -74.3 69./ -82.3 130./ -70.5 6 1120./ -91.7 92./ -29.3 61./ -91.7 91./ -29.4 131.6./ 6.2 7 90./ -56.2 22./</td></td>	D. 66 MU=.232 TOTAL C0=.0 V= 103.0 KT MAST C0=.0 3 NZ= 1.257 G OMEGA-34. 15.25 CLP=.00514 RPM/324= 1.0 THETA 3/4 (DEG) A0= 8.9 A1= TEETER ANG (DEG) A0= 6 A1= IP/PHASE) DRAG BRACE CHORD .449 CH (N/DEG) (N-M/DEG) (1 42898. 12825. 23 IC-1 4783./4 1192./ -6.1 2 233./ -34.9 308./ -52.8 3 3 2547./ 49.2 728./ 51.1 4 618./ 34.9 323./ 20.6 5 5 256./ -73.6 150./ -74.3 1 6 1120./ -37.5 757./ -43.9 1 1 7 90./ -56.2 222./ -17.9 8 205./ -66.1 172./ -45.1 5 1 9 81./ -83.4 187./ -68.0 7 10 68./ -53.5 166./ -26.7 7 1 10 68./ -53.5 166./ -26.7 11 10 10 11 EAK 15411. 5320. 11 11 BEAM .174 BEAM .350 BE/ 12 136./ 15.2 129./ 16.3 12 2 56./ -47.9 212./ -69.1 2 3 105./ 25.1 81./ 29.5 1 4 269./ 59.1 85./ 45.9 5 5 156./ 84.2 25./ -88.2 5 6 111./ 87.4 12./ 22.2 7 7 71./ -60.2 11./	0. 66 MU • .232 TOTAL C0 • .000195 3 MAST C0 • .000204 3 NZ • 1.257 G OMEGA- 34.097 RAD/SEC 15.25 CLP • .00514 RPM/324 • 1.005 THETA 3/4 (DEG) A0 • 8.9 A1 •6 B1 • TEETER ANG (DEG) A0 • 8.9 A1 •6 B1 • TEETER ANG (DEG) A0 • 6.1 25.25 CLP • .00514 RPM/324 • 1.005 IP/PHASE) DRAG BRACE CHORD .449 CHORO .803 PT (N/DEG) (N-M/DEG) (N-M/DEG) (N-M/DEG) 12 633./ -34.9 308./ -52.8 22./ -18.9 13 3 2547./ 49.2 728.4 51.1 54./ 28.0 3 4 618./ 34.9 323./ 20.6 65./ -1.8 3 5 526./ -73.6 150./ -74.3 69./ -82.3 1 6 1120./ -37.5 757./ -43.9 145./ -46.13 1 7 90./ -56.2 222./ -17.9 22./ -29.3 8 205./ -46.1 172./ -45.1 49./ -78.4 9 81./ -83.4 187./ -68.0 46.4 / 74.4 10 68./ -53.5 166./ -26.7 91./ -42.4 </td <td>D: 66 MU∎232 TOTAL C0₽000195 AMB TEMP3 3 M21.03.0 KT MAST C0₽000204 TEMP U60=15 3 N21.1257 G OMEGA-34.097 RAD/SEC 5.25 CLP00514 RPM/324=1.005 CAN TEMP=4 5.25 CLP00514 RPM/324=1.005 State All =6 B1= 4.3 PEAK- TEETR ANG (DEG) A0 =6 A1 =6 B1= 4.3 PEAK- IP/PHASE DRAG BRACE CHORD .449 CHORO .803 PITCH LINK T (N/DEG) (N-M/DEG) (N-M/DEG) (N/MEG) (N/MEG) 12617 49.33./ 20.6 65./ -1809. 120.1 4 616./ 34.9 323./ 20.6 65./ -18.0 374./ -61.0 5 526./ -73.6 150./ -74.3 69./ -82.3 130./ -70.5 6 1120./ -91.7 92./ -29.3 61./ -91.7 91./ -29.4 131.6./ 6.2 7 90./ -56.2 22./</td>	D: 66 MU∎232 TOTAL C0₽000195 AMB TEMP3 3 M21.03.0 KT MAST C0₽000204 TEMP U60=15 3 N21.1257 G OMEGA-34.097 RAD/SEC 5.25 CLP00514 RPM/324=1.005 CAN TEMP=4 5.25 CLP00514 RPM/324=1.005 State All =6 B1= 4.3 PEAK- TEETR ANG (DEG) A0 =6 A1 =6 B1= 4.3 PEAK- IP/PHASE DRAG BRACE CHORD .449 CHORO .803 PITCH LINK T (N/DEG) (N-M/DEG) (N-M/DEG) (N/MEG) (N/MEG) 12617 49.33./ 20.6 65./ -1809. 120.1 4 616./ 34.9 323./ 20.6 65./ -18.0 374./ -61.0 5 526./ -73.6 150./ -74.3 69./ -82.3 130./ -70.5 6 1120./ -91.7 92./ -29.3 61./ -91.7 91./ -29.4 131.6./ 6.2 7 90./ -56.2 22./

63

İ

 FLIGHT NO. 066 RUN NO. 4 TIME 54092.70 (SEC)
 AIRCRAFT TOTAL WT • 36018. N 8098. LB
 LOADED 0G X • 5.04 H • 198.6 IN Y • -.00 E

 AERODYNAMIC FLIGHT STATE
 DYNAMIC PRES I.86 KPA STATIC PRES 91.7 KPA
 • 38.8 PSF • 1916. PSF • 1916. PSF • 1916. PSF • 1916. DEG R

 ALC MACH ND • .170
 STATIC TEMP 270.5 DEG K • 486.0 DEG R

 BODY ALPHA-BODY BETA • 4.2 DEG
 DENSITY • 1.19 KG/M3 • .00231 SLUG/FT3 DENSITY ALT • 315. M • 1033. FT SONIC SPEED 329.3 M/SEC • 1080. FPS RATE OF CLIMB • -660. M/MIN • -2164. FPM

INERTIAL FLIGHT STATE

AXIS	CG LI (m/s)	N VEL (FPS)	CG LIN ACC (G)	HUB LIN V (M/S) (F	(EL HUB LIN ACC (FS) (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
× Y Z	55.27 4.06 6.40	181.3 13•3 21•0	073 058 -1.604	54.90 18 4.06 1 6.41 2	0.1075 3.3062 1.0 -1.597	ROLL . PITCH YAW	-46.1 H -9.9 149.1	.002 .180 140	045 .013 025
CONTRO	L ANGLE	S	M.R. COLL A1 B1	8.4 DEG 2 DEG 3.3 DEG	HORIZ FIN T.R. COLL= Pedal POS=	7.1 [1.3 [2.4 (DEG DEG DEG		
ROTOR	PARAMET	ERS	HOVER TIP M	ACH= .71	SHAFT ALPHA* CONTROL ALPHA*	6.7 3.4	DEG DEG		
			TIP MAX-M	ACH= .88	DELTA PSI=	-4.2	DEG		•

TIP MIN-MACH= .	54							
•9R MAX-MACH=	.80 E	INGINE	POWER-	214.	K₩	2	287.	ΗP
•9R MIN-MACH= .	.47 TH	IRUST	FAC TOR =	.906E+07	Ν		.204E+07	LB

•

Į.

1

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 66	MU= .239	TOTAL CO	.000101	AMB TEMP-	-4.2 C = 24.37 F
	RUN NO 4	V ≖ 108.4 r		.000102	CAN TEMP=	36 C = 3846 F
	TIME 54092.56	NZ= 1.597 (CLP= .00631	G OMEGA RPM/324	* 34.808 RAD/SE(= 1.026		
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	A0 = 7.6 A0 = −.6	A1 =3 B1 A1 =6 B1	L= 3.2 PEA .= .9 PEA	К–ТО–РЕАК- 6.8 К–ТО–РЕАК- 2.4
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEG)	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	ME AN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	48642. 5332./ 6.1 1260./ -64.2 2751./ 14.4 774./ 10.0 535./ -49.9 1252./ -70.3 172./ 78.5 133./ 32.5 82./ -89.9 64./ -47.3 77./ -56.7 83./ -5.3 16655.	12462. 1338./ 9.7 644./ -64.4 759./ 15.7 448./ -13.3 115./ -49.9 837./ -74.0 26./ -56.5 81./ 82.8 95./ -60.3 215./ 60.4 76./ -37.7 41./ -15.3 6233.	2460. 221./ -39.9 46./ 76.9 47./ -12.2 96./ -25.2 42./ -74.2 124./ -75.0 55./ -82.0 23./ 62.9 7./ 52.6 99./ 56.2 21./ 14.2 16./ 1.1 1061.	-1201. 1550./ -27.3 700./ -29.3 354./ 24.6 447./ 73.4 279./ -54.3 181./ -15.0 112./ -31.9 29./ -72.9 97./ -68.2 75./ 11.6 36./ 63.9 38./ 68.6 4848.	-218. 278./ -66.2 86./ -4.2 61./ 31.3 58./ 30.0 31./ -5.0 44./ .5 17./ 9.4 13./ 16.5 9./ -43.8 1./ -53.8 8./ -66.1 5./ 34.2 652.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	$\begin{array}{c} 282.\\ 513./ -14.8\\ 124./ -46.5\\ 243./ -34.5\\ 372./ 14.0\\ 163./ -76.5\\ 88./ -86.7\\ 86./ -11.1\\ 13./ -65.7\\ 53./ 85.5\\ 92./ -37.4\\ 20./ -3.5\\ 36./ 50.9\\ 2446.\end{array}$	128. 402./ -66.0 182./ -81.0 105./ -19.6 109./ 3.9 21./ -75.7 11./ 60.1 14./6 8./ -89.3 41./ -82.9 32./ -22.3 10./ 75.8 7./ 85.7 1207.	-63. 439./ -69.3 231./ -77.4 84./ 3.3 59./ 7.6 21./ 29.9 9./ 45.9 37./ 16.6 7./ 29.5 14./ -73.0 28./ -26.3 11./ -9.6 13./ 29.7 1278.	-374. 433./ -75.4 247./ -78.2 83./ 46.5 74./ 18.5 31./ -59.4 8./ 4.3 9./ 73.1 11./ -89.1 49./ -67.0 39./ -13.7 9./ 49.1 11./ 60.7 1272.	217. 274./ 84.9 139./ 83.4 103./ 59.3 156./ 9.9 70./ 67.6 55./ -89.0 57./ 64.4 28./ -78.4 47./ -61.4 29./ -14.5 2./ -87.8 5./ -83.5 1150.

FLIGHT NO. 066 AIRCRAFT RUN NO. 7 TIME 54391.20 (SEC)	TOTAL WT • 35799. N LOADED CG X = 5.05 M 8048. LB Y =00 Z = 1.83	= 198.7 IN =0 = 71.9
AERODYNAMIC FLIGHT STATE T. Airspeed' 102.7 kt A/C Mach NO= .161	DYNAMIC PRES- 1.68 KPA = 35.2 PSF Static Pres- 92.7 KPA = 1936. PSF Total Temp- 270.2 deg K = 486.3 deg Static Temp- 268.8 deg K = 483.8 deg	R R
BODY ALPHA 10.6 DEG BODY BETA* 9.1 DEG	DENSITY- 1.20 KG/M3 = .00233 SLUG/ DENSITY ALT= 203. M = 666. FT Sonic Speed- 329.2 M/Sec = 1080. FPS Rate of Climb634. M/MIN = -2081. FPM	FT 3

,

AXIS	CG LIN (M/S)	VEL (FPS)	OG LIN ACC (G)	HUB LI (M/S)	N VEL (FPS)	HUBLIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
× Y Z	51.29 8.22 9.61	168.3 27.0 31.5	097 113 -2.263	50.65 8 • 07 9.62	166.2 26.5 31.6	098 096 -2.242	ROLL PITCH YAW	-52.6 -12.7 335.4	077 .312 166	.031 007 005
CONTROL	ANGLES	-	M.R. COLL= A1= B1=	9.8 •1 .1•9	DEG DEG DEG	HORIZ FIN- T.R. Coll= Pedal Pos=	6.7 DEG 1.9 DEG 2.9 DEG			

ROTOR PARAMETERS	HOVER TIP MACH-	.71 SHAFT ALPHA* CONTROL ALPHA=	10.8 DEG 8.8 DEG	
	TIP MAX-MACH'	.87 DELTA PSI =	-9.0 DEG	
	•9R MAX-MACH= •9R MIN-MACH*	.80 ENGINE POWER' .48 THRUST FACTOR*	175. KW = .935E+07 N =	234. HP .210E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT	NO.	66	MU = V =	•224 102.7	кт	TOTAL MAST	CQ =	.00007	9		AMB TEMP	TEMP-	-4.4 C	:	24.14 59.05	F
	RUN NO		7	-				•				CAN	TEMP=	2.8 Č	=	37.06	F
	TIME 5	4391.	05	NZ= ClP=	2.242 •0085	7 7	ON RPM/	//EGA- 1324 ■	35.194 1.037	RAD/S	SEC.						
ROTOR	ANGLES			THETA 314 TEETER AN	(DEG G (DEG	= 0A { = 0A {	8.2 6	<u>}</u>	Al= - Al=	• 3 • 5	81= 81=	1.9 1.1	PEA PEA	AK-TO-PE AK-TO-PE	AK- AK=	4.0 2 • 4	4
RUTOR	LOADS	(AMP	/PHA	SE) DRAG	BRACE DEG)	CHORI (N-I	D .449 M/DEG))	CHORD (N-M/	.803 DEG)	PIT	CH LI (n/di	INK Eg)	TORSIC (N-M	N /De	449 G)	
	MEAN			51566.		12592	•		2495.		-127	6.		-164.			
	HARM	ONIC	-1	10095./	. +1+5	3098	•/ 6	•6	432./	-21.6	247	6.1	9.8	204.	1 -	43.0	
			2	2546./	44.3	1145	•/ 69	•5	156./	68.6	115	5./ .	-41.1	185.	1 -	26.6	
			3	4538./	-6.7	1275	•/ -8	• 6	151./	-7.1	58	5./	57.4	97.	/ -	67.0	
			4	763./	-23.2	312	•/ -03	•2	126 /	-/9+2	42		52.4	45.	! -	70.8 54 5	
			6	1422./	69.0	1020	•/ -00	. 4	238./	50.1	, 30 28	8./	-41.7	87.	;]	10.5	·
			7	398./	52.2	285	./ 75	. 1	109./	68.0	20	8./	-58.7	28.	, -	-1.5	
			8	73./	-57.0	31	./ -89	.8	21./	73.7	· 1	0./	41.1	15.	1	-8.7	
			9	31./	-19.3	69	./ -18	.3	44.1	-12.1	. 15	2.1	59.7	17.	1 -	67.7	
			10	38./	73.2	110.	./ -49	• 4	36./	-65.4	16	3./ .	-41.3	24.	/ -	44.6	
			11	28./	63.7	39	•/ 78	• 4	42./	-75.4	8	9./	5.1	13.	/	23.7	
	BEAK T		12	78./	-88.2	59	•/ -6	• 8	38./	55.0	2	7./	21.9	6.	1	74.7	
	PEAK-I	O-PE	AK	28123.		10204	•		1612.		797	1.		1014.			
				BEAM .	174	BEAM	.350		BEAM .	449	BEA	M .60	06	BEAM	. 80	3	
				(N-M/	DEG)	(N-1	1/DEG)		(N-M/	DEGI	(N	-M/DE	EG)	(N-M	/DE	G)	
	MEAN			905.		196	•		-24.		-40	4.		392.			
	HARN	IONIC	-1	922•1	4.0	365	•/ -72	•1	436./	-79.1	. 49	7./ -	-81.0	352.	1	75.5	
			2	166./	77.6	140	./ -79	•2	204./	-75.1	24	5./ -	-71.6	162.	/ -	82.7	
			3	393./	-31.2	172	•/ -23	•2	139./	-17.0	10	1./	2.5	90.	1	29.9	
			4	210./	-29.9	51.	./ -20	- 5	28./	-1.5	1	3./	21.2	63.	! -	21.4	
			2	213./	11.2	29	1 23	•0 E	22./	-79.8	5	2.1	22.8	75.	/	59.Z	
			7	123.1	-70.6	22	•/ -20 / -40	• 5	40 /	-2/ .9	, 7	5 / -	-23.7	71.	, -	10.5	1
			8	55./	30.7		./ 71	.0	40./	-37.7	1	5./ - 6 / -	-20.2	30.	, _	L/+/	
			ğ	88./	40.4	52	. 64	.1	21.1	41.1	, 5	3./	71.4	30.	, -	75.3	
			10	102./	-87.8	40	./ -64	.7	23./	-83.0	i i	9./ -	-50.7	21.	;	30.3	
			11	45./	-42.4	16	./ -35	.7	13./	-32.7	1	7./	3.7	14.	1	46.1	
			12	28./	-66.6	7.	./ -58	.0	12./	-61.3	1	0./ .	-37.5	4.	1	44.0	
	PEAK-T	O-PE	AK	3373.		993	•		1280.		140	6.		12 03.			

65 '

FLIGHT NO. 066 RUN NO. 8 TIME 54498.70 (SE	AIRCRAFT	TOTAL WT = :	35727. N 8032. LB	LOADED OG	X= 5.05 Y=00 Z= 1.83	M ■ 198.6 IN ■ -•0 ■ 71.9	
AERODYNAMIC FLIGH T AIRSPEED' 10 A/C MACH NO=	IT STATE 6.2 KT • 166	DYNAMIO STATIO TOTAI STATIO	C PRES 1.80 C PRES 92.5 L TEMP 270.4 C TEMP 269.0	KPA * KPA * DEG K DEG K	37.6 F 1932. F 486.8 C 484.2 C	SF SF EG R EG R	
BODY ALPHA* 1 Body BetA* 1	4.0 DEG 4.2 OEG	DI DENSIT SONIC RATE OF	ENSITY' 1.20 TY ALT= 230 SPEED* 329.3 CLIMB* -994) KG/M3 = . M = 3 M/SEC = . M/MIN =	.00233 SL 755. FT 1080. FP -3262. FP	UG/FT3 S M	
INERTIAL FLIGHT S	STATE						

AXIS	CG LIN (M/S)	VEL (FPS)	CG LIN (G)	N ACC	HUB L (m/s)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
Y Z	51.51 13.02 12.82	169.0 42.7 42.1	10 20 -2.35	00 08 1	50 •84 12.74 12.83	166.8 41.8 42.1	108 196 -2.325	ROLL PITCH YAW	-51.6 -21.2 99.1	142 .326 221	016 .006 043
CONTRO	_ ANGLES	3	M.R.	COLL= A1= B1=	8.3 • 1 1.6	OEG OEG DEG	HORIZ FIN= T.R. COLL= PEDAL POS=	6.5 OE 2.0 OE 3.5 OE	G G G		

ROTOR PARAMETERS	HOVER TIP MACH= .73	SHAFT ALPHA= 14.2 DEG CONTROL ALPHA = 12.6 DEG
	TIP MAX-MACH= .89 TIP MIN-MACH* .56	DELTA PSI - 14.1 OEG
	•9R MAX-MACH- •82 •9R MIN-MACH* .49	ENGINE POWER' 44. KW ± 59. HP THRUST FACTOR966E+07 N = .217E+07 LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 66	MU= .227 V = 106.2	TOTAL CO	.000019	AM8 TEMP-	-4.2 C ■ 24.50 F
	RUN NO. 8	100.2		- • • • • • • • • • • • • • • • • • • •	CAN TEMP=	2.4 C = 36.37 F
	TIME 54498.55	NZ= 2.325 CLP= .00856	G OMEGA' RPH/324	35.906 RAD/SEC = 1.058		
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	A0 ■ 7.0 AO= 5	A1=4 B1 A1= .9 B1	= 1.3 PEA = •9 PEA	K-TO-PEAK= 2.6 K-TO-PEAK= 2.3
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG).	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMDNIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	56934. 8398./ -11.7 2677./ 35.9 3868./ -45.6 742./ -65.5 535./ 2.7 1078./ 7.6 330./ -63.0 208./ 71.7 160./ 55.5 103./ -6.6 133./ 78.0 84./ -25.6 24071.	12291. 2613./ -1.6 1271./ 52.7 1091./ -46.3 561./ -76.2 289./ 51.6 795./ -5.8 173./ 21.4 76./ 70.3 70./ -32.2 100./ 55.0 64./ 26.4 94./ 88.1 9276.	2740. 334./ -31.7 145./ 51.3 132./ -64.9 108./ -79.2 83./ 28.8 152./ -10.1 88./ .5 36./ -81.5 29./ 69.4 53./ 66.3 39./ -20.0 10./ -49.4 1607.	-639. 2680./ 8.0 831./ -39.2 542./ 25.4 675./ -7.7 283./ 14.9 174./ 62.3 210./ 38.1 12./ 33.2 138./ 17.7 29./ 20.7 26./ 82.7 10./ 52.9 8475.	-117. 206./ -50.6 160./ -32.6 128./ -76.0 46./ -44.9 25./ -49.1 56./ -80.6 10./ -75.8 6./ -69.2 6./ -69.5 7./ 90.0 5./ -17.7 851.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11	$\begin{array}{c} 798. \\ 838. /9 \\ 93. / 84. 4 \\ 424. / -63. 2 \\ 428. / -59. 9 \\ 189. / -2. 0 \\ 139. / -53. 2 \\ 171. / 50. 0 \\ 73. / 16. 8 \\ 76. / -12. 7 \\ 56. / -17. 0 \\ 25. / 62. 2 \\ 28. / 62. 0 \end{array}$	152. 387./ -84.7 133./ 68.7 160./ -58.6 99./ -68.5 21./ 5.6 4./ -33.7 24./ 64.6 7./ 54.4 49./ 7.6 19./ .1 13./ 54.4 2./ 56.6	-67. 466./ 89.7 190./ 79.5 133./ -53.9 35./ -72.7 13./ 58.8 24./ -83.1 53./ 72.9 19./ 40.8 18./ 10.4 19./ -4.7 12./ 48.4 12./ 44.5	-442. 526./ 86.5 218./ 89.1 113./ -29.5 52./ -55.2 35./ 21.8 25./ -80.4 11./ -89.5 8./ -8.2 49./ 17.7 19./ 25.2 17./ 78.7 11./ 56.7	423. 375./ 60.9 125./ 82.9 114./ -14.4 111./ -75.6 60./ 44.2 74./ 64.5 52./ -62.0 5./ 24.2 45./ 29.8 14./ 36.1 13./ -78.7 9./ 71.3
	PEAK-TO-PEAK	3229.	1087.	1281.	1359.	1344.

ų

FLIGHT NO. 066 AIRCRAFT RUN NO. 10 TIME 54664.40 (SEC)	TOTAL WT • 35619. N 8008. LB	LOADED CG	X= 5.05 M Y= −₀00 Z= 1.83	■ 198.6 IN ■ −.0 ■ 71.9
AERODYNAMIC FLIGHT STATE T. AIRSPEED- 100.5 KT A/C MACH NO157	DYNAMIC PRES- 1 Static pres- 93 Total Temp- 269 Static TEMP= 269	63 KPA = 3.5 KPA = 0.9 DEG K = 3.6 DEG K =	34.0PSF1953.PSF485.9DEG483.5DEG	R R
BODY ALPHA8 DEG Body BETA= 1.9 Deg	DENSITY- 1. DENSITY ALT- 10 SON∎C SPEED= 320 RATE OF CL∎MB75	21 KG/M3 = 4 00. M 7.1 M/SEC = 54. M/MIN = -	00236 SLUG 328. FT 1080. FPS -2472. FPM	/FT3

AXIS	CG LIN (M/S)	VEL (FPS)	CG LIN ACC (G)	HUB LI (M/S)	N VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC {rad/sec2}
X Y Z	51.67 1.76 .74	169.5 5.8 2.4	096 013 -1.523	51.26 1.87 .75	168.2 6.1 2.5	112 015 -1.514	ROLL PITCH YAW	59.4 - 12.0 253.5	•056 •202 •161	.024 .068 .013
CONTROL	. ANGLES	8	M.R. COLL= A1= B1=	9.3 2 2.2	DEG DEG DEG	HORIZ FIN= T.R. Coll= Pedal Pos=	6.7 OEG -1.1 OEG -1.6 DEG			

ROTOR PARAMETERS	HOVER TIP MACH .	.70	SHAFT ALPHA= CONTROL ALPHA-	•8 DEG -1.3 DEG	
	TIP MAX-MACH- • TIP MIN-MACH= •	.86 54	DELTA PSI*	-2.1 DEG	
	•9R MAX-MACH7 •9R MIN-MACH4	79 47	ENGINE POWER= THRUST FACTOR-	297. KW = •906E+07 N =	398. HP .204E+07 LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	ROTOR PERFOR	MANCE AND LOAI	DS
	FL∎GHT NO. 66	MU= .224 V= 100.5	TOTAL CO KT MAST CO	= .000141 = .000151	AMB TEMP- Temp U60 =	-4.6 C = 23.79 F 14.5 C = 58.03 F
	RUN NO. 10	NZ= 1.514	G OMEGA	* 34.410 RAD/SEC	CAN TEMP-	2.4 C = 36.37 F
	TIME 54664.28	CLP- ,00594	RPM/324	1 .014		
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (DEG)	AO= 8.3 AO=7	A1=3 B1 A1=3 B1	■ 2.2 PE/	AK-TO-PEAK- 5.0 AK-TO-PEAK- 2.0
ROTOR	LOADS (AMP/PH/	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	forsion .449 (n-m/deg)
	MEAN	45374.	13159.	2343.	-1509.	-264 •
	HARMONIC-1	5511./ 9.5	1350./ 10.0	244./ -45.9	1249./ -39.8	255./ -69.7
	2 3	2689./ 40.5	762./ 43.1	76./ 18.0	383./ 65.8	69./ 71.4
	4	287./ 53.7	206./ 34.4	40./ -1.9	274./ -42.6	29./ 81.8
	5	629./ -63.9	225./ -75.4	99./ -83.0	265./ 88.4	19./ 28.2
	6	1951./ -19.9	1408./ -26.1	333./ -29.4	418./ 13.6	76./ 35.8
	/	44207 -2704	95./ 80.0	5/.7 - 39.1	51./ -63.5	
	9	144./ 26.8	269./ -9.0	118./ -26.5	212 / -40 0	10./ 16.2
	10	49./ 55.4	204.7 - 11.7	121.7 - 23.2	166./ 68.4	18./ 78.9
	11	84./ 15.8	74./ 72.7	53./ -78.2	71./ -38.9	8./ -19.2
	12	161./ -23.6	101./ -1.1	50./ -7.1	38./ 39.7	12./ -51.7
	PEAK-TO-PE AK	18283.	6958.	1653.	4117.	767.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 {N-M/DEG}	BEAM .803 (N-M/DEG)
	MEAN	338.	136.	-59.	-371.	205.
	HARMONIC-1	361./ -3.9	332./ -62.7	384./ -64.5	414./ -65.9	279./ -78.2
	2	91./ 3.5	160./ -57.6	211./ -56.5	238./ -63.3	171./ -87.8
	3	264./. 19.3	121./ 26.4	86./ 36.8	67./ 84.5	101./ -71.5
	4	230./ 76.2	81./ 67.0	51./ 58.9	56./ 84.2	121./ 61.2
	5	176./ 80.5	21./ -80.6	15./ -28.9	25./ -88.9	88./ -65.7
	6	233.7 -56.2	29./ 39.9	38./ -29.7	31./ 76.4	8./ 55.7
	/	124.7 -52.0	21.1 -55.6	57./ -47.9	23./ -14.3	91./ -23.2
	8	91•/ 50•9 127 / 57 0	18./ -/5.5	31./ 41.9	20./ -14.4	39./ 18.1
	9	143./ 10.7	10.7 -34.8	5/0/ -7204	10.1 -26.3	05./ -22.3
	10	21./ -79.4	17./ -27.2	12./ 68.4	10 / 12 0	31•/ 4U•8 5./ -72 7
	12	35./ -18.7	9./ -27.9	14./ -44.9	7./ 7.5	5./ =31.0
	PEAK-TO-PEAK	2198.	967.	1179.	1278.	1048.

FLÍGHT NO. 066 AIRCRAFT RUN NO. 18 TIME 5S591.00 (SEC)	TOTAL WT = 35074. N 7885. LB	LOADED OG X= 5.04 M = 198. Y=00 = Z= 1.83 = 72.7	6 IN 0 1
AERODYNAMIC FLIGHT STATE T. AIRSPEED' 111_7 KT	DYNAMIC PRES 2.01 Static Pres 93.4 Total Temp- 270.7	KPA • 41.9 PSF 4 KPA • 1951 • PSF OEG K • 487.3 OEG R	
A/C MACH NO" .175 BODY ALPHA- 4.3 OEG BODY BETA- 2.5 OEG	STATIC TEMP= 269.1 DENSITY= 1.2: DENSITY ALT- 135. SONIC SPEED= 329.4 RATE OF CLIMB438.	DEG K * 484.4 OEG R 1 KG/M3 * .00235 SLUG/FT3 M * 443. FT M/SEC * 1081. FPS . M/MIN * -1436. FPM	

AXIS	CG LI (M/S)	N VEL (FPS)	CG LIN ACC (G)	HUB L1 (M/S)	(FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (rad/sec)	ANG ACC (RAD/SEC2)
X Y Z	57.26 2.55 4.30	187.9 8.4 14.1	074 026 -1.448	57.02 2.56 4.31	187.1 8.4 14.1	071 038 -1.445	ROLL PITCH YAW	1.1 -2.9 36.3	.005 .116 004	061 014 038
CONTRO	L ANGLE	S	M.R. COLL: Al: B1	8.6 1 3.8	OEG OEG OEG	HORIZ FIN= T.R. COLL= PEDAL POS=	7.4 OEG •5 DEG •7 OEG	5		
ROTOR	PARAMET	ERS	HOVER TIP M	ACH* .7	b C	SHAFT ALPHA= ONTROL ALPHA-	4.3 OE •5 DE	G G		

٩

. . .

ij.

.

-

÷

		00111102 /121111	
	-2.6 OEG	DELTA PSI=	TIP MAX-MACH= •87
			TIP MIN-MACH- •52
【₩ = 399. HP	297. K	ENGINE POWER-	•9R MAX-MACH= •80
I ≖ .204E+07 LB	.906E+07 N	THRUST FACTOR*	•9R MIN-MACH= •46

NA SA LANGLEY FLIGHT GATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

FLIGHT NO. 66	MU= .248 V= 111.7	TOTAL CO KT MAST CO	= .000140 = .000138	AM8 TEMP- TEMP U60 ■	-4.1 C ■ 24.70 F 14.2 C ■ 57.52 F
RUN ND. 18		•••		CAN TEMP-	2.0 C = 35.67 F
TIME 55590.86	NZ= 1.445 CLP= .00552	G OMEGA RPM/324	* 34.591 RAD/SE(= 1.019	:	
ROTOR ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO≠ 7.6 AO≠ 8	Al= .1 BI Al= -1.0 BI	L= 4.0 PEA L= .9 PEA	К–ТО–РЕАК' 8.0 К–ТО–РЕАК- 2.7
ROTOR LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORO .449 (N-M/DEGI	CHORO .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (n-m/deg)
ME AN HARMONIC - 1 2 3 4 5 6 7 8 9 10 10 11 12 2 PE AK - 1 0-PE AK	46950. 4605./ 5.8 608./ -69.1 2398./ 9.0 656./ 43.1 551./ -14.4 1107./ -53.3 274./ -68.8 99./ 36.9 55./ -12.6 60./ 38.3 108./ 78.0 82./ -55.1 13786.	13431. 1210./ 3.3 338./ -81.3 671./ 18.5 342./ 26.8 158./ -2.0 766./ -60.0 65./ 75.8 86./ 7.1 47./ -82.9 276./ 78.2 64./ 38.5 25./ -75.0	2323. 258./ -45.6 30./ -14.1 42./ -27.4 49./ -34.8 15./ -43.1 147./ -56.9 75./ 87.4 40./ 61.5 40./ -79.6 123./ 78.9 23./ .9 8./ -36.0	-1526. 1962./ -41.0 1257./ -41.8 235./ 8.8 364./ 75.7 78./ -7.6 163./ 37.0 115./ 10.6 24./ 79.0 110./ -68.6 98./ 15.2 33./ 40.1 20./ -56.7 6203	-274. 331./ -63.3 137./ -15.8 53./ 21.1 63./ 35.2 41./ -43.5 35./ 38.0 10./ 41.5 10./ 32.1 11./ -17.4 10./ -8.4 8./ -9.2 2./ 81.5
	BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
MEAN HARMON1 C-1 2 3 4 5 6 7 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98. 445./ -66.4 249./ -82.6 78./ -32.8 116./ 14.9 17./ -47.0 12./ -86.2 15./ 20.7 9./ -70.2 46./ -75.0 25./ -18.5 1./ -9.0 7./ 36.4	-91. 471./ -69.1 291./ -80.4 65./ 3.4 58./ 13.9 32./ 25.6 20./ 40.0 46./ 39.6 8./ 34.0 15./ -82.4 13./ -19.9 13./ 36.4	-387. 444./ -74.3 302./ -79.6 91./ 57.4 95./ 27.5 33./ -30.1 4./ -41.3 19./ 71.3 20./ -69.7 58./ -62.1 36./ -6.5 7./ 7.4 8./ 35.5	174. 251./ -89.5 160./ 88.9 112./ 63.1 182./ 19.0 58./ 63.6 60./ 88.3 81./ 74.5 42./ -77.6 58./ -56.2 27./ -5 5./ -47.2 2./ 28.0
PEAK-TO-PEAK	2570.	1415.	1425.	1411.	1151.

I.

RUN NO. 19 TIME 55612.20 (SEC)	7858. LB	LOADED UG X Y	5.04 M 198.6 IN -00 -0 1.83 72.1
AERODYNAMIC FLIGHT STATE T. Airspeed' 111.7 kt A/C MACH NO* .175	DYNAMIC PRES= 2.0 STATIC PRES= 93. TOTAL TEMP* 270.8 STATIC TEMP- 269.1	L KPA = 4 7 KPA = 19 DEG K = 48 DEG K = 48	22.1 PSF 357. PSF 37.4 DEG R 34.4 DEG R
BODY ALPHA* 5.4 DEG BODY BETA* 6.1 DEG	DENSITY- 1.21 DENSITY ALT= 105. SONIC SPEED- 329.4 RATE OF CLIMB468.	KG/M3 = .00 M = 3 M/SEC = 10 M/MIN = -15	0235 SLUG/FT3 345• FT 381. FPS 335• FPM

AXIS	0G LI (M/S)	N VEL (FPS)	CG LII (G	N ACC	HUBLI (m/s)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
Y Z	56.91 6.04 5.35	186.7 19•8 17.5	12 02 -1.83	27 83 35	56.40 6.04 5.36	185.0 19.8 17.6	175 083 -1.821	ROLL PITCH YAW	•7 -2•4 113.9	0 0 1 •250 -•007	004 .231 .001
CONTRO	DL ANGLE	S	M•R•	COLL = A1 = B1 =	8.5 •0 1.3	OEG DEG DEG	HORIZ FIN= T.R. Coll= Pedal Pos=	6.5 DE •8 DE 1.2 OE	G G		
ROTOR	PARAMET	ERS			CU_ 71		SHAFT ALPHA=	5.4 E	DEG		

п	OVER	IIP	nac n =	.10		CONTROL ALPHA-	4.2	DEG			
	TIP TIP	MAX- MIN-	-MACH- -MACH-	.88 • 53		DELTA PSI=	-6.1	OEG			
	•9R •9R	MAX	-MACH= -MACH=	.81 .46	٠	ENGINE POWER= Thrust factor-	.917	277. KW 'E+07 N	2	372. •206E+07	HP LB

NASA	LANGLEY FLIGHT D	ATA AH-1G ==	RUTUR PERFO	RMANCE AND LOAD	S	
FLIGHT NO. 66	MU= •246 V= 111.7 H	TOTAL CO AT MAST CO	• .000128 • .000117	AMB TEMP= TEMP U60=	-4.0 C = 24.76 14.5 C = 58.11	F
RUN NO. 19	N7= 1 921 (- 24 014 PAD/SE	CAN TEMP-	2.0 C = 35.67	F
TIME 55612.06	CLP= .00684	RPM/324	• 1.029	C .		
RUTOR ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO= 7.2 AO=8	A1=2 B A1= .8 B	1= 1.3 PEA 1= 1.0 PEA	K–TO–PEAK. 2.6 K–TO–PEAK- 2.2	
ROTOR LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 9 1 1 12 PEAK-TO-PEAK	49259. 5929./ 4.1 1058./ -61.2 3225./ -9.9 611./ 12.6 425./ -56.0 1614./ -70.0 101./ 54.6 104./ -23.9 91./ -60.5 34./ 45.1 61./ 48.6 77./ 7.2 16968.	13330. 1568./ 5.8 672./ -69.4 886./ -5.3 312./ -8.3 192./ -47.0 1058./ -74.5 39./ -28.1 63./ -53.4 160./ 82.7 137./ 44.8 63./ -7.8 44./ 12.5 7138.	2336. 266./ -53.2 75./ -74.7 76./ -29.4 45./ -55.9 45./ 74.3 230./ -75.3 48./ -79.0 16./ -76.2 31./ 79.3 71./ 53.6 21./ 20.0 18./ 39.9 1252.	-1055. 1324./ -32.8 194./ 50.7 358./ 24.7 358./ 43.0 193./ -54.2 190./ -28.8 158./ -11.3 55./ 66.3 78./ -87.1 134./ 1.6 85./ 36.9 52./ 76.3 3631.	$\begin{array}{c} -231.\\ 265./ -72.4\\ 40./ 53.3\\ 47./ 53.6\\ 51./ 18.5\\ 24./ 5.7\\ 42./ -3.5\\ 12./ 18.2\\ 10./ 14.9\\ 7./ -39.5\\ 10./ -6.2\\ 8./ 80.0\\ 5./ 64.9\\ 676.\end{array}$	
	BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)	
MEAN HARNONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	548. $449./ -7.4$ $49./ -64.5$ $366./ -31.7$ $380./ -8.6$ $91./ 86.4$ $118./ 66.2$ $115./ -4.9$ $22./ -15.0$ $57./ 67.4$ $112./ -62.5$ $45./ .5$ $50./ 56.1$ $2145.$	125. 421./ -69.0 163./ -86.6 146./ -28.4 111./ -17.4 16./ -82.7 4./ 37.6 20./ 14.6 5./ 67.3 44./ 78.0 37./ -38.0 19./ 35.8 12./ 57.9 1226.	-99. 473./ -72.2 229./ -81.1 109./ -7.2 64./ -4.3 22./ 13.3 6./ -82.4 51./ 16.5 15./ 9.0 19./ 89.5 35./ -55.4 14./ -20.1 14./ 34.2 1345.	-433. 490./ -76.1 261./ -80.9 91./ 39.4 70./ -13.6 24./ -51.8 6./ 76.9 12./ 36.3 13./ 72.0 49./ -88.2 46./ -34.5 15./ 19.4 13./ 55.3 1336.	294. 314./ 84.1 182./ 85.0 116./ 57.6 172./ -9.8 75./ 40.4 33./ 72.8 70./ 51.3 30./ 77.2 46./ -81.4 34./ -29.6 7./ 45.6 9./ 88.4 1265.	

FLIGHT NO. 066 AIKCRAFT RUN NO. 19 TIME 55613.10 (SEC)	TOTAL WT = 34995. N 7868. LB	LOADED CG	X = 5.04 M = 198.6 IN Y =00 =0 Z = 1.83 * 72.1
AERODYNAMIC FLIGHT STATE	CYNAMIC PRES= 1.84	KPA ¥	38.5 PSF
	STATIC PRES- 93.7	KPA ■	1958. PSF
	TOTAL TEMP* 270.3	DEG K ≖	486.6 DEG R
A/C MACH NO - 167	STATIC TEMP= 268.8	OEG K ■	483.9 DEG R
BODY ALPHA- 11.4 DEG	Density= 1.22	KG/M3 ■	•00236 SLUG/FT3
BODY BETA= 6.9 DEG	Density Alt= 86.	M ■	283. FT
INERTIAL FLIGHT STATE	SONIC SPEED- 329.2	M/SEC =	1080 FPS
	RATE OF CLIMB- 52.	M/MIN =	170. FPM

a îxiis	CG LII (M/S)	VEL (FPS)	CG LI (G	N ACC	HUB LI (M/S)	N VEL (FPS)	HUB LIN ACC (g)	AXIS	ANG PUS (DEG)	ANG RATES (rad/sec)	ANG ACC (RAD/SEC2)
X Y	53.45 6.53 10.82	175.4 21.4 35.5	1 1 -2.26	10 00 9	52.84 6.53 10.84	173.4 21.4 35.6	110 111 -2.250	ROLL PITCH YAW	.7 12.4 113.7	001 .298 024	057 .001 024
CUNTROL	ANGLES	3	M.R.	COLL = A1 = B1 =	8.5 .3 1.8	OEG DEG OEG	HORIZ FIN* T.R. Coll= Pedal POS=	6.6 DE .8 DE 1.1 DE	EG EG E G		
ROTOR P	ARAMET	ERS	HOVER	TIP MAG	CH72	CC	SHAFT ALPHA- ONTROL ALPHA-	11.6 (9.8 (DEG DEG		
			TIP TIP	MAX-MA M1N-MA	CH= .88 CH= .59	1 5	DELTA PSI=	-7.0 E	DEG		

-

j,

• 9R	MAX-MACH*	•81		FACTOR*	124.	K₩	=	166. 2155+07	HP
•9R	MIN-MACH-	•48	THRUST	FACTOR*	•955E+07	Ν	1	•215E+07	LB

	NASA	LANGLEY FLIGHT D	ATA AH-1G	- ROTOR PERFOR	RMANCE AND LOAD	S
	FLIGHT NO. 66	MU= •230 V= 106.8 H	TOTAL CO KT Mast Co	= .000053 = .000044	AM8 TEMP- TEMP U60=	-4.3 C • 24.25 F 14.6 C • 58.26 F
	TIME 55612.96	NZ= 2.250 (CLP* •00810	G OMEGA RPM/324	= 35.638 RAD/SE • 1.053	C CAN TEMP	2.0 C • 33.07 F
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (DEG)	AO= 7.2 AO=6	Al=2 B Al= .5 B	l≠ 1.7 PEA l≠ .9 PEA	К–ТО–РЕАК= 3.3 К–ТО–РЕАК- 1.9
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PE AK	54426. 7800./ 3.0 1749./ 57.6 3980./ -2.0 451./ 8.3 541./ -79.3 838./ -84.7 113./ 64.9 74./ -23.5 17./ -77.8 60./ 81.5 44./ -50.9 67./ 78.1 21210. BEAM .174 (N-M/DEG)	12662. 2447./ 11.9 1050./ 85.6 1139./ -2.0 343./ -22.3 355./ -53.1 579./ 83.4 175./ -53.6 70./ 1.1 42./ 78.4 95./ 18.6 66./ -28.3 57./ 49.2 8331. BEAM .350 (N-M/DEG)	2479. 322./ -26.6 121./ 87.7 139./ -9.5 43./ -54.1 100./ -62.6 98./ 74.6 83./ -73.5 22./ 77.9 12./ -47.6 50./ 26.8 36./ -30.1 26./ 56.1 1310. BEAM .449 (N-M/DEG)	-1118. 2728./ 5.1 1205./ -30.1 305./ 32.5 288./ -67.7 234./ 7.6 172./ 7.6 49./ 70.1 87./ -1.8 124./ 7.4 74./ 48.7 39./ -75.1 7384. BEAM .606 (N-H/DEG)	-160. 238./ -42.2 165./ -24.2 68./ -35.5 42./ -38.6 48./ -41.1 62./ 5.0 25./ -9.5 15./ -16.1 10./ 8.1 10./ 8.1 10./ 37.5 7./ 71.9 8./ 59.0 974. BEAM .803 (N-M/DEG)
·	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	754. 704./ 4.6 100./ -65.7 418./ -27.4 420./ -13.4 190./ 71.8 132./ 53.8 96./ -4.5 34./ -70.7 56./ -72.6 79./ -46.3 30./5 18./ 1.4	155. 390./ -70.7 146./ -80.1 158./ -16.4 99./ -9.4 30./ 62.4 7./ 27.9 15./ 18.5 6./ 85.2 31./ -46.9 30./ -24.5 13./ 30.6 6./ 50.9 1108.	$\begin{array}{c} -64. \\ 462./ & -74.1 \\ 213./ & -71.3 \\ 126./ & -4.6 \\ 47./ & -1.3 \\ 19./ & 68.3 \\ 4./ & -75.2 \\ 38./ & 31.8 \\ 6./ & 40.6 \\ 9./ & -50.1 \\ 22./ & -27.9 \\ 11./ & 31.1 \\ 14./ & 20.3 \\ 1304. \end{array}$	-431. 519./ -76.1 264./ -66.5 99./ 30.9 54./ -5.9 37./ 86.9 17./ 31.2 13./ 81.7 8./ 54.2 29./ -26.5 31./ -7.4 17./ 45.7 8./ 33.9 1315.	399. 334./ 81.5 190./ -73.8 106./ 66.9 151./ -16.3 62./ 86.2 58./ -67.8 67./ 81.3 24./ 88.3 29./ -24.6 21./ -2.9 10./ 80.6 5./ 43.6 1202.

FLIGHT NO. 06 RUN NU. 19 TIME 55613.60	(SEC)	AIRCRAFT TOT	TAL WÎ = 34994 7867	N LOADED	OGX = 5.04 M Y =00 Z = 1.83	= 198.6 IN =0 = 72.1	
AERODYNAMIC F I. Airspeed A/C Mach NC	LIGHT \$1 - 101.6 = •159	ГАТЕ КТ	DYNAMIC PRE Static pre Total tem Static tem	S= 1.67 KPA S= 93.7 KPA IP= 270.3 DEG K IP- 268.9 DEG K	= 34.8 PSF = 1957. PSF (= 486.5 OEG (= 484.1 DEG	R R	
BODY ALPHA BOJY BETA	A' 14.0 A- 7.0	DEG DEG	DENSIT DENSITY AL SONIC SPEE RATE OF CLIM	Y- 1.21 KG/M3 T= 92. M D= 329.3 M/SEC B= 316. M/MIN	• .00236 SLUG/ • 303. FT • 1080. FPS • 1035. FPM	FT3	
INERTIAL FLIG	HT STATE	1					
AXIS CG LI (m/s)	N VEL (FPS)	CG LIN ACC (G)	HUB LIN VEL (M/S) (FPS)	HUB LIN ACC (G)	AXIS ANG POS (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC2)
X 50.36 Y 6.36 Z 12.57	165.2 20.9 41.2	.034 061 -2.003	49.95 163.9 6.46 21.2 12.58 41.3	.152 .012 -1.996	ROLL .7 PITCH 19.9 YAW 113.9	•046 •195 -•054	.337 562 111
CJNTROL ANGLE	S	M.R. COLL= A1= B1=	8.9 DEG 1.6 OEG 6.3 OEG	HORIZ FIN* T.R. COLL= PEDAL POS=	8.6 DEG •5 DEG 1.1 OEG		
ROTOR PARAMET	'ERS H	HOVER TIP MAC	CH= •72 CC	SHAFT ALPHA = NTROL ALPHA*	14.1 OEG 7.9 DEG		

TIP MAX-MACH= .88	DELTA PSI-	-7.4 DEG	
TIP MIN-MACH' •56			
•9R MAX-MACH- •81	ENGINE POWER=	95. KW =	128. HP
•9R MIN-MACH- •49	THRUST FACTOR*	•971E+07 N =	.218E+07 LB

	NASA	LANGLEY FLIGHT L	ATA AH-1G	- ROTOR PERFOR	MANCE AND LOAD	S
	FLIGHT ND. 66	MU= .219 V= 101.6	TOTAL CQ: KT MAST CQ:	• 000041 • 000034	AMB TEMP= TEMP U60=	-4.2 C = 24.3 8 F 14.4 C = 57.90 F
	RUN NO. 19		-		CAN TEMP-	2.0 C ■ 35.67 F
	TIME 55613.49	NZ# 1.996 CLP= .00716	G UMEGAN RPM/324	35.618 RAD/SEC 1.050		
ROTOR	ANGLES	THETA 3/4 (DEG) TEETER ANG (DEG)	AO = 7.7 AO = −.6	Al= 1.9 Bl Al= -2.4 Bl	= 5.6 PEA = 1.6 PEA	K-TO-PEAK= 11.9 K-TO-PEAK= 5.8
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHURD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	55004.	12525.	2607.	-1630.	-239.
	HAPMONIC-1	5825./ -17.1	1784./3	262./ -41.0	2900./ -22.1	324./ -57.3
	2	3308./ 69.8	1521./ 80.5	102./ 78.3	1418./ 3.7	167./ 14.6
	3	3341./ -13.9	881./ -19.2	94./ -12.9	98./ -34.7	48./ -71.4
	4	1157./ -61.7	542./ -70.9	160./ 84.7	682./ 37.7	99./ -66.5
	5	398./ 58.8	163./ 80.1	54./ 67.3	246./ -64.1	76./ -10.9
	6	710./ -29.8	466./ -27.0	101./ -48.1	282./ -60.8	41./ -29.1
	/	345./ 89.0	43./ 48.1	31.7 77.6	149.7 -85.8	13./ 32.3
	8	12/0/ 35.4	88.7 85.7		60./ 68.6	1/./ 64.4
	9		200.7 -48.7	102.7 - 30.0	82.7 -89.8	
	10	37.7 -29.1	07.7 44.9	29.1 .6 9	38./ -01./	
	10		51.7 -70.0	20+7 70+0	26 / -25 5	
	PEAK-TO-PEAK	19619.	6956.	1164.	8473.	1094.
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN	351.	130.	-58.	-385.	273.
	HARMONIC-1	553./ -28.8	355./ -74.7	427./ -76.0	469.1 -75.7	248./ -77.3
	2	205./ -27.2	219./ 75.9	273./ -88.7	313./ -77.8	207./ -77.2
	3	223./ -48.8	123./ -34.7	92./ -32.8	45./ -33.9	27./ -36.3
	4	423./ -6.9	100./ -17.6	35./ -25.5	95./ 25.3	153./ 24.1
	5	73./ -28.4	10./ -21.1	9 ./ - 75.7	22./ 17.8	49./ 58.4
	6	70./ -85.4	25./ -65.5	12./ 6.3	21./ -79.7	44./ 54.0
	7	75./ 75.9	36./ 77.1	41./ 78.3	5./ 61.8	41./ 88.4
	8	60./ 31.3	26./ 72.4	18./ 70.2	8./ -15.3	9./ 32.5
	0	16./ -38.3	37./ 77.6	10./ 82.5	26./ -88.3	19./ 89.0
	10	10./ 11.0	24./ 71.6	10./ -79.1	12./ -75.8	3./ 21.1
	11	19./ 68.4	13./ 87.5	6./ -82.7	5./3	8./ 61.8
	12	7./ 73.8	13./ 75.8	5./ 51.4	5./ -37.4	3./ 11.0
	PEAK-TO-PE AK	2694 .	1113.	1320.	1429.	949.
FLIGHT ND. 066 AIF RUN NO. 20 TIME 55729.10 (SEC)	RCRAFT TOTAL WT = 34953. N 7858. LB	LOADED CG X = 5. Y = Z = 1.	04 M ■ 198.5 IN ,00 ■0 83 . ■ 72.1			
---	--	---	--			
AERODYNAMIC FLIGHT STATI	E DYNAMIC PRES=	1.89 KPA ■ 39.5	PSF			
	Static pres=	93.4 KPA ■ 1950	PSF			
T • AIRSPEED' 108.5 KT	TOTAL TEMP- 2	70.9 DEG K = 487.7	DEG R			
A/C MACH N D ■ •1 70	STATIC TEMP= 2	69.4 DEG K = 484.9	DEG R			
BODY ALPHA= 4.8 DE Body Beta' 3.1 DE	G DENSITY- G DENSITY ALT= Sonic Speed- 3 Rate of CLIMB= -	1.21 KG/N3 = .00234 150. M 492. 29.6 M/SEC = 1081. 447. M/MIN = −1465.	SLUG/FT3 FT FPS FPM			
INERTIAL FLIGHT STATE						
AXIS CGLINVEL CG	(G) (M/S) (FPS)	LIN ACC AXIS AND	3 POS ANG RATES ANG ACC			
(M/S) (FPS)		(g) (1	Deg) (RAD/SEC) (RAD/SEC2)			
X 55.56 182.3	075 55.33 181.4 -	.073 ROLL	4003 .054			
Y 3.01 9.9	037 3.00 9.9 -	.025 PITCH	-2.9 .128005			
Z 4.63 15.2 -	1.551 4.63 15.2 -1	.548 YAW 20	09.6021025			

Ŷ	3.01 4.63	9.9 15.2	037 -1.551	3.00	9.9 15.2	025 -1.548	PITCH YAW	-2.9 209.6	.128
CUNTROL	. ANGLE	S	M.R. COLL= A1= B1=	6.6 1 3.6	DEG DEG DEG	HORIZ FIN= T.R. Cull= PEDAL POS=	7.3 DEC •8 DEC 1.5 DEC	3	

ROTOR	PARAMETERS	HOVER	TIP MACH-	.70	SHAFT ALPHA= CONTROL ALPHA-	4.8 DEG 1.2 OEG	
		TIP	MAX-MACH- MIN-MACH:	.87	DELTA PSI=	-3.1 DEG	
		9 R •9R	MAX-MACH- MIN-MACH=	•80 •46	ENGINE POWER Thrust factor-	294. KW = 395. HP .909E+07 N = .204E+07 LB	

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 66	6 MU= ₀240 V= 108.5 H	TOTAL CO-	.000138	AMB TEMP- TEMP (160=	-3.8 C ■ 25.24	F
	RUN NO. 20				CAN TEMP	2.4 C 36.37	F
	TIME 55728.98	NZ= 1.548 CLP= .00588	G OMEGA* RPM/324=	34.682 RAD/SEC 1.022			
ROTOR	ANGLES	THETA 3/4 (DEG) Teeter ang (DEG)	AO= 7.7 AO=8	Al=1 Bl= Al=8 Bl=	3.8 PEA ● ● ● PEA	K–TO–PEAK* 7.8 K–TO–PEAK= 2.5	
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	47533. 5076./ 3.6 1068./ -89.1 2604./ 18.0 760./ 12.8 635./ -41.4 1287./ -58.2 285./ -86.4 170./ 30.1 70./ 6.9 35./ -45.0 80./ -76.5 49./ -43.7 15221.	13530. 1363./ 1.7 533./ -80.0 764./ 26.4 492./ 3.4 194./ -31.0 905./ -62.1 93./ -87.3 124./ 19.7 84./ 46.8 340./ 77.6 45./ 4.2 40./ -39.6 6032.	2319 276./ -42.7 43./ 25.5 44./ 2.0 97./ -38.1 52./ -68.5 186./ -64.7 73./ 88.6 33./ 51.2 41./ 60.5 151./ 82.9 17./ -54.6 14./ -11.3 1164.	1483. 1910./ -33.9 1097./ -37.5 299./ 16.6 465./ 77.3 139./ -39.1 187./ 4.6 125./ -6.4 17./ 67.1 133./ -62.6 100./ 21.3 50./ 83.1 14./ -26.0 5812.	-269. 311./ -61.4 123./ -11.1 56./ 29.8 66./ 37.5 27./ -72.6 41./ 14.0 15./ 24.8 11./ 22.1 13./ -44.5 8./ -24.9 7./ -26.7 2./ 43.2 779.	
		BEAM .174 (N~M/DEG)	BEAM .350 (n-m/deg)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 2004 TH DE T	237. 585./ -28.9 231./ -47.3 182./ -44.5 443./ 26.2 149./ -52.5 71./ -82.2 102./ -8.6 24./ -73.1 64./ -79.7 84./ -21.2 14./ 29.6 37./ 43.8	112. 431./ -66.0 221./ -79.1 91./ -21.1 125./ 16.5 20./ -51.6 8./ 55.6 17./ -10.7 15./ -67.7 46./ -72.7 29./ -8.0 6./ -77.1 7./ 46.0	-86. 456./ -69.4 268./ -75.9 70./ 6.7 57./ 16.9 22./ 32.5 11./ 49.3 41./ 23.4 5./ 5.0 12./ -76.0 21./ -7.6 6./ 52.3 18./ 33.4	-384. 442./ -73.9 274./ -76.1 77./ 52.1 97./ 33.9 32./ -41.3 9./ -17.5 15./ 75.6 19./ -66.2 51./ -58.7 37./ 5.1 10./ 79.6 12./ 52.7	194. 252./ 88.2 142./ -69.2 97./ 60.4 179./ 23.9 64./ 81.7 57./ -80.6 62./ 67.7 32./ -71.2 47./ -52.1 28./ 5.2 4./ 40.1 5./ 80.4	
	PEAK-TU-PE AK	2655.	1339.	1376.	1355.	1151.	

h

FLIGHT NN. 256 AIRCRAFT RUN NO. 22 TIME 55799.85 (SEC)	TOTAL WT = 34912. N LOADED CG X= 5.04 M = 19P.5 IN 7849. LB Y=00 =0 Z= 1.83 · 72.1	
AERNNYNAMIC FLIGHT STATE T. AIRSPEED= 112.5 KT A/C MACH NO= .176	DYNAMIC PRES 2.04 KPA 42.6 PSF Static PRES 93.9 KPA 1960. PSF Total TEMP 271.5 DEG K 488.7 DFG P Static TEMP 269.8 DEG K 485.7 DFG P	
BODY ALPHA= 8.6 DEG RODY BETA= 4.3 DEG	DENSITY* 1.21 KG/M3 * .00235 SLUG/FT3 DENSITY ALT= 113. M * 371. FT SONIC SPEED* 329.9 M/SEC * 1082. FPS RATE OF CLIMB= -663. M/MIN * -7,177. FPM	

INEQTIAL FLIGHT STATE

-

AXIS	CG LI (M/S)	N VEL (FPS)	CG LIN ACC (G)	HUBL (M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG PAS (DFG)	ANG RATES (RAD/SEC)	ANG ACC (PAD/SEC2)
X Y 7	57.05 4.33 8.55	187.2 14.2 28.4	093 058 -2.070	56.48 4.37 8.66	185.3 14.3 28•4	073 077 -2.053	ROLL PITCH YAW	5 -2.5 271.5	.014 .282 .002	092 095 036
CONTRO	L ANGLE	S	M.R. COLL: A1: B1:	8.7 2.5	OEG DEG DEG	HORIZ FIN= T.R. Coll= Pedal POS=	6.9 OE .8 OE 1.6 DE	G G G		
RUTOR	PARAMET	ERS	HOVER TIP MA	ACH= .71	C	SHAFT ALPHA- Ontrol ALPHA=	8.7 D 6.2 D	E G F G		

TIP	MAX-MACH=	.88	DELTA PSI=	-4.4	DEG				
TIP	MIN-MACH=	• 5 3							
.98	MAX-MACH=	.81	ENGINE POWER=		242. I	٨W	T	375.	HP
•9R	MIN-MACH=	• 46	THRUST FACTOR=	•930)E+07	N	3	.209F+07	LB

NASA LANGLEY FLIGHT DATA AH-1G ---- ROTOR PERFORMANCE AND LOADS

	FLIGHT NO. 66	MU≢ ,245 V≡ 112.5	TOTAL CQ KT Mast CQ	• •000108 • •000087	AMB TEMP≡ TEMP U60≠ CAN TEMP=	-3.3 C = 26.05 F 14.5 C = 58.16 F 28 C = 37.06 F	·
	TIME 55799.77	NZ= 2.053 CLP= ,00754	G DMEGA RPM/324	35.279 RAD/S 1.040	EC	2.6 C - 37.00 F	L
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	∆0= 7.1 ∆0=7	Al=2 Al=2	Bl= 2.1 PEA Bl= 1.0 PEA	K-TD-PEAK■ 4.2 K-TD-PEAK■ 2.3	
ROTOR	LOADS (AMP/PH)	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)	
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	51742. 7358./ 15.7 1812./ -78.1 3854./ 5.0 459./ 30.3 512./ -54.6 1357./ -59.9 235./ -70.6 174./ 69.8 39./ -31.1 78./ -70.7 130./ -34.3 67./ -73.3 21766.	13135. 2146./ 26.5 1028./ -72.2 1124./ 3.9 238./ -6.9 227./ -38.7 949./ -61.3 99./ -65.3 134./ 50.5 211./ -31.0 79./ 69.1 23./ -2.3 62./ -86.1 8021.	2372. 236./ -18.5 89./ -56.6 128./ -17.9 21./ -81.3 69./ -63.5 197./ -61.8 76./ -69.0 41./ 68.4 40./ -23.0 61./ 75.8 11./ 81.3 13./ 61.0 1145.	-1261. 1890./ .2 749./ -19.5 228./ -4.3 344./ 28.0 312./ -58.4 269./ 53.R 166./ 10.8 84./ -72.7 40./ -7.8 97./ 4.8 86./ 65.3 49./ -77.4	-221. 239./ -64.9 81./ -10.8 14./ 46.0 63./6 31./ -16.6 55./ 47.3 9./ 14.9 12./ 87.6 5./ 65.8 5./ -16.4 7./ -60.6 8./ -66.8 753.	
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	REAM .803 (N-M/DEG)	
	MEAN HAPMONIC-1 2 3 4 5 6 7 8 9 10 11 12 PEAK-TO-PEAK	$\begin{array}{c} 647.\\ 608./ & 14.6\\ 99./ & -8.9\\ 381./ & -32.0\\ 413./ & -12.1\\ 130./ & 81.5\\ 75./ & 64.7\\ 95./ & 35.5\\ 22./ & 82.5\\ 20./ & -69.4\\ 92./ & -40.0\\ 32./ & 32.8\\ 53./ & 82.3\\ 2235.\end{array}$	135. 414./ -62.2 167./ 88.1 142./ -21.0 111./ -14.3 20./ 83.7 13./ 76.1 16./ 46.4 5./ 31.0 27./ -56.4 33./ -39.4 9./ 56.2 9./ -50.6 1195.	-86. 485./ -67.4 240./ -79.4 108./ 3.5 53./ 6.4 15./ 70.2 18./ -68.9 48./ 58.2 15./ 72.6 5./ -67.8 26./ -38.5 12./ 33.8 16./ 55.4 1345.	-429. 537./ -69.8 268./ -77.4 91./ 50.7 82./ -12.4 25./ -67.1 14./ 73.9 4./ -75.5 34./ -35.5 34./ -39.0 40./ -27.3 12./ 47.6 11./ 82.9 1337.	348. 355./ 89.7 194./ -88.5 116./ 73.5 199./ -4.2 79./ 49.1 61./ -77.5 65./ -85.7 28./ -51.0 38./ -35.4 34./ -25.9 6./ 4.9 2./ 74.5 1353.	

•

•

FL∎GHT NO. 066 AIRCRAFT RUN NO. 72 TIME 55790.52 (SEC)	TOTAL WT = 34902. Ν 7847. Lβ	LDADED CG X- Y: Z:	- 5.04 M = 198.5 IN =00 - =0 = 1.83 = 72.1
AERODYNAMIC FLIGHT STATE	DYNAMIC PRES= 1.92 Static Pres= 93.9	KPA = 4 KPA = 19	40.2 PSF 962. PSF
T. AIRSPEED- 109.2 KT A/C MACH NO170	TOTAL TEMP- 271.3 STATIC TEMP- 269.7	OEG K = 41 DEG K = 48	88.3 DEG P 35.5 DEG P
BODY ALPHA. 11.6 OEG ROOY BETA. 4.3 OEG	DENSITY- 1.2: DENSITY ALT= 101. Sonic Speed= 329.8 Rate of CLIMB= -238.	KG/M3 = .00 M = 3 M/SEC = 10 M/MIN = -	5236 SLUG/FT3 331. FT 382. FPS 780. FPM
INERTIAL FLIGHT STATE			

AXIS	CG LIN (M/S)	VEL (FPS)	CG LI (G	N ACC	HUB LI (M/S)	IN VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG PO? (DEG)	ANG RATES (RAD/SEC)	ANG ACC (RAD/SEC?)
x Y Z	54.88 4.19 11.27	180.1 13.8 37.0	1 0 -2.2	21 62 96	54.33 4.13 11.28	178.2 13.5 37.0	117 094 -2.280	ROLL PITCH YAW	7 7.5 270.9	032 .271 023	160 020 054
CONTROL	ANGLES	i	M.R.	COLL. A1= B1=	8.6 • 5 2.1	OEG DEG DEG	HORIZ FIN* T.R. Coll= Pedal Pos=	6.8 OE .8 OE 1.7 DE	G G G		

ROTOR PARAMETERS	HOVER TIP MACH	l= .72	SHAFT ALPHA= Control Alpha=	11.7 DEG 9.6 OEG	
	TIP MAX-MACH TIP MIN-MACH	* •89	DELTA PSI=	-4.3 DEG	
	•9R MAX-MACH •9R MIN-MACH	82 48	ENGINE POWER- THRUST FACTOR-	126• KW = •959E+07 N =	169. HP .216F+07 LB

	NASA	LANGLEY FLIGHT DA	ATA AH-1G	- ROTOR PERFO	RMANCE AND LOAD	20
	FLIGHT NO. 66	MU- ∙235 V= 109.2 k	TOTAL CO Mast Co	• 000054 • 000043	AMB TEMP- TEMP U60=	-3.4 C = 25.81 F 14.5 C = 58.13 F
	RUN NO. 22				CAN TEMP=	2.8 C = 37.06 F
	TIME 55790.37	NZ= 2.280 C CLP= .00816	G DMEGA RPM/324	35.687 RAD/SE 1.052	С	
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	AO ■ 7.0 AO ■6	Al=3 B Al= .7 B	1= 1.8 PFA 1= 1.0 PEA	K–TO–PEAK– 3.7 K–TO–PEAK– 2.3
ROTOR	LOADS (AMP/PH	ASE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN	54277.	12916.	2468.	-1166	-175.
	HARMONIC-1	8850./9	2730./ 9.4	377./ -24.4	3184./ 10.3	282./ -28.3
	2	2338./ 44.9	1131./ 75.3	122./ 60.3	945./ 11.2	163./ 17.1
	3	3690./ 6.8	1138./ 4.0	128./ -8.1	250./ 17.8	40.1 -29.2
	4	208./ 17.8	$326 \cdot 7 - 14 \cdot 8$	39.7 - 11.8	378./ 53.3	74.7 -19.0
	6	721./ -38.8	430./ -49.8	$67 \cdot 7 = 31 \cdot 3$ $46 \cdot 7 = 26 \cdot 7$	160./ 28.6	45./ 39.1
	7	36./ 42.1	32./ 4.8	51./ -44.8	178./ 20.6	20./ 51.5
	8	107./ -29.8	100./ -15.6	22.1 54.4	39./ 88.5	19./ 71.3
	9	104./ -34.7	74./ 81.2	30./ 10.0	115./ 19.7	18./ 82.1
	10	116./ -69.4	60./ 72.2	49./ -84.1	108./ 71.4	18./ -43.7
	11	03./ 20.2	92.7 15.9	27./ 37.0	51./ -73.4	14./ 32.6
	PEAK-TO-PEAK	21225.	8241.	1218.	7752.	1021.
		REAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	REAM .803 (N-M/DEG)
	MEAN	723.	142.	-79.	-426.	381.
	HARMONIC-1	834./ 1.6	435./ -62.4	503./ -68.6	553./ -71.0	335./ 85.9
	7	24.1 79.8	174./ -75.5	248./ -64.4	284./ -58.5	184./ -56.6
	3	383./ -27.7	134./ -12.9	117./ 9.6	127./ 43.4	115./ 63.9
	4	331./ -13.9	81./ -12.1	37./ 7.6	46.1 -34.7	133./ -18.7
	5 6	104.1 80.1	31.7 82.7	25./ -78.2	30./ -68.2	67./ -89.9
	0 7	93./ -14.8	13./ 04.0	29.7 -00.9	9.7 4.3	85./ ~52.7
	8	68./ -58.6	8./ -30.2	11./ -6.9	9./ =/9.0 1./ =81 5	41.1 -75.7
	9	60./ -40.6	32./ -15.8	14./ -18.0	33./ 1.5	35./ 10.0
	10	73./ -6.8	23./ 21.5	22./ 2.8	26./ 34.6	20./ 35.2
	11	44./ 15.4	14./ 53.7	21./ 26.2	16./ 52.5	10./ 54.9
	12	11./ 49.5	9./ -63.5	14./ 24.5	7./ 88.3	3./ 81.9
	PEAK-TO-PEAK	2559.	1219.	1426.	1469.	1134.

FLIGHT NO. 066 AIRCRAFT RUN NO. 24 TIME 56008.60 (SEC)	TOTAL WT 34792. N LOADED CG X 5.04 M 198.5 IN 7822. LB Y00 = -00 Z 1.83 - 72.2
AERODYNAMIC FLIGHT STATE T. AIRSPEED= 115.8 KT A/C MACH NO' .181	DYNAMIC PRES= 2.14 KPA = 44.6 PSF Static pres= 92.2 KPA = 1927. PSF Total Temp= 270.5 deg k = 486.9 deg r Static Temp= 268.7 deg k = 483.7 deg r
BODY ALPHA* 8.3 DEG Body Beta' 1.4 Deg	DENSITY* 1.20 KG/M3 = .00232 SLUG/FT3 DENSITY ALT= 249. M = 818. FT SONIC SPEED= 329.2 M/SEC = 1080. FPS RATE OF CLIMB702. M/MIN = -2302. FPM

INERTIAL FLIGHT STATE

ļ

AXIS	CG LI (m/s)	N VEL (FPS)	CG LI	N ACC	HUB LI (M/S)	N VEL (FPS)	HUB LIN ACC (G)	AXIS	ANG POS (deg)	ANG RATES (rad/sec)	ANG ACC (RAD/SEC2)
X Y Z	58.94 1.44 8.58	193.4 4.7 28.2	1 (-2.1	1 32 0 16 44	58.44 1.43 8.59	191.7 4.7 28.2	134 022 -2.132	ROLL PITCH YAW	-2.0 -3.1 188.4	008 .241 006	028 .009 .024
CONTRO	L ANGLE	S	MR.	COLL= A1= B1=	9.2 • 3 2.3	OEG DEG DEG	HORIZ FIN= T.R. Coll= Pedal Pos=	6.8 D •3 D 1.2 D	EG EG		
ROTOR	PARAMET	ERS	HOVER	TIP MA	CH= .7]	L C	SHAFT ALPHA= ONTROL ALPHA*	8.4 6•1	DEG DEG		
			TIP TIP	MAX-MA MIN-MA	CH= .89	4	DELTA PSI®	-1.4	DEG		

I IP	MIN-MACH-	+22				
.9R	MAX-MACH*	.82	ENGINE POWER=	249. KW	334.	ΗP
•9R	MIN-MACH*	• 46	THRUST FACTOR*	.921E+07 N	.207E+07	LB

	NASA	LANGLEY FLIGHT DA	ATA AH-1G	 ROTOR PERFOR 	MANCE AND LOAD	S
	FLIGHT ND. 66 RUN NO. 24	MU= ,252 V= 115.8 ⊨	TOTAL CO MAST CO	:8889193	AM8 TEMP- TEMP U60= Can TEMP=	-4.4 C • 24.04 F 14.3 C = 57.71 F 2.4 C • 36.37 F
	TIME 56008.49	NZ= 2.132 (CLP= .00791	G OMEGA RPM/324	- 35.219 RAD/SEC = 1.038		
ROTOR	ANGLES	THETA 314 (DEG) TEETER ANG (DEG)	A0= 7.7 A0=7	A1=3 B1 A1= .6 B1	■ 2.0 PEA ■ 1.1 PEA	K-TO-PEAK= 4.0 K-TO-PEAK* 2.3
ROTOR	LOADS (AMP/PHA	SE) DRAG BRACE (N/DEG)	CHORD .449 (N-M/DEG)	CHORD .803 (N-M/DEG)	PITCH LINK (N/DEG)	TORSION .449 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 12 PEAK-TO-PEAK	51694. 7758./ 5.2 1722./ 69.2 3368./ 17.2 649./ 8.8 799./ -17.1 966./ -7.8 158./ -8.3 53./ 69.4 49./ -23.7 63./ 28.0 82./ -7.5 97./ 23.6 19626.	$\begin{array}{c} 13048.\\ 2287./ & 16.0\\ 891./ & -87.8\\ 1024./ & 17.8\\ 377./ & -14.5\\ 355./ & -10.2\\ 629./ & -12.5\\ 55./ & 55.7\\ 43./ & 34.2\\ 94./ & -67.9\\ 27./ & 21.1\\ 43./ & -45.8\\ 65./ & 43.6\\ 7672. \end{array}$	$\begin{array}{c} 2360.\\ 363./ -28.5\\ 80./ -88.5\\ 92./ 11.7\\ 58./ 89.7\\ 82./ -12.3\\ 118./ -1.3\\ 71./ -22.5\\ 37./ -26.8\\ 31./ 5.5\\ 46./ 19.2\\ 27./ -6.7\\ 3./ -33.7\\ 1253. \end{array}$	-1460. 2543./ 5.9 820./ 32.5 228./ 11.1 226./ 30.8 316./2 307./ -87.0 161./ 44.5 64./ -45.3 41./ 4.7 109./ 74.3 95./ -77.4 28./ 2.9 6514.	$\begin{array}{c} -238. \\ 266./ & -35.9 \\ 140./ & 32.7 \\ 18./ & -85.1 \\ 71./ & -12.8 \\ 51./ & 34.5 \\ 49./ & -72.2 \\ 14./ & -46.3 \\ 15./ & -67.1 \\ 4./ & -67.5 \\ 6./ & 62.9 \\ 10./ & -79.1 \\ 10./ & -58.4 \\ 912. \end{array}$
		BEAM .174 (N-M/DEG)	BEAM .350 (N-M/DEG)	BEAM .449 (N-M/DEG)	BEAM .606 (N-M/DEG)	BEAM .803 (N-M/DEG)
	MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 11 12 2PEAK_TO_PEAK	704. 761./ 4.7 119./ 76.0 313./ -27.5 360./ -18.6 106./ -74.9 21./ -79.4 81./ 41.4 4./ 81.7 31./ -55.3 82./ 15.4 61./ 49.4 43./ -43.2 2417.	143. 459./ -53.8 211./ -87.5 130./ -21.1 98./ -25.4 23./ -65.9 15./ -57.7 8./ -85.5 8./ 66.9 34./ -42.5 26./ 19.9 13./ 84.1 7./ -21.9 1325.	-82. 523./ -60.8 277./ -74.0 102./ 10.0 49./ 3.2 11./ -80.9 31./ -44.0 35./ 88.9 11./ -57.2 8./ -79.2 17./ 11.5 18./ 54.3 14./ -70.5 1477.	-408. 582./ -65.2 288./ -66.5 99./ 55.8 70./ -28.2 28./ -47.6 8./ 88.2 7./ -44.2 11./ -26.5 34./ 23.7 18./ 64.8 8./ -62.9 1436.	341. 371./ -69.0 174./ -65.1 96./ 75.1 182./ -5.9 78./ 69.2 85./ -49.0 64./ -53.4 38./ -25.7 48./ -18.0 29./ 22.6 12./ 39.7 1./ -5.8 1298.
	PEAK-TO-PEAK	2417.	13630	1477.	1430.	1270.

FLIGHT ND. 066 RUN ND. 24 TIME 56009.50 (SEC)	AIRCRAFT TC	DTAL WT = 34 7	4771. N 7817. LB	LOADED OG	X= 5 Y= - Z= 1.8	04 tl ■ 00 ■ 83 ■	198.5 IN -0 72.2
AERODYNAMIC FLIGHT S T. AIRSPEED- 110.9 A/C MACH NO174	TATE KT	DYNAMIC STATIC TOTAL STATIC	PRES= 1.96 PRES= 92.3 TEMP* 270.2 TEMP= 268.5	KPA = KPA = OEG K = OEG K =	41.0 1929. 486•3 483.4	PSF PSF OEG R OEG R	
BODY ALPHA= 10.9 Body Beta= 1.3	OEG DEG	DEI DENSITY SONIC S RATE OF C	NSITY- 1.20 Y Alt= 231. Speed= 329.1 Climb131.	KG/M3 = M = M/SEC = M/MIN =	•00233 759. 1080. •428•	SLUG/FT FT FPS FPM	3

INERTIAL FLIGHT STATE

-

AXIS	CG LIN VE (M/S) (FE	EL CGLI S) ((N ACC	HUB L] (m/s)	(N VEL (FPS)	HUB LIN ACC (g)	AXIS	ANG POS (Deg)	ANG RATE (RAD/SE	ANG ACC (RAD/SEC2	:)
X Y I	56.03 183 1.31 10.76 35	3.8 1 4.3(5.3 -2.2)	13 016 06	55.60 1.35 10.77	182.4 4.4 35.3	118 018 -2.197	ROLL PITCH YAW	-1.8 8.6 188.0	.019 .208 010	012 .028 003	
CUKTRO	L ANGLES	M.R.	COLL= A1= B1=	9.2 •6 3•2	DEG DEG OEG	HORIZ FIN* T.R. Coll= Pedal Pos=	7.1 OE 1 OE 1.0 OE	66			
ROTOR	PARAMETERS	HOVER	TIP MA	CH= •72	2 C	SHAFT ALPHA' Ontrol Alpha=	11.0 O 7.8 O	EG EG			
		TIP TIP •9R •98	MAX-MA MIN-MA MAX-MA MIN-MA	CH89 CH* .55 CH82 CH47	2 7 TI	DELTA PSI* Engine Power= Hrust factor*	-1.4 O 15(.945E+	EG D. K₩ ■ 07 N ■	201. •213E+07	HP LB	

R MIN-MACH47 THRUST FACTOR* .945	E+07 N = .2	13E+07 LE

NASA LANGLEY	FLIGHT DATA	AH-1G ••••	ROTOR	PERFORMANCE	AND	LOADS
--------------	-------------	------------	-------	-------------	-----	-------

NASA	LANGLEY FLIGHT L	ATA AH−1G ••	ROTOR PERFOR	RMANCE AND LOAL	15
FLIGHT NO. 66 RUN NO. 24	MU= .240 V 110.9	TOTAL CO KT MAST CO	• .000066 • .000054	AM8 TEMP= Temp U60= Can Temp=	-4.6 C = 23.72 F 14.2 C = 57.64 F 2.4 C = 36.37 F
TIME 56009.38	NZ= 2.197 CLP= .00801	G OMEGA RPM/324	= 35.477 RAD/SE = 1.046	c	
ROTOR ANGLES	THETA 3/4 (DEG)	AO= 7.9	A1=2 B	l= 3.5 PEA	AK-TO-PEAK- 7.0
	Teeter ang (Deg)	AO=7	A1= .0 B	l= 1.0 PEA	AK-TO-PEAK- 2.0
ROTOR LOAOS (AMP/PH	ASE) DRAG BRACE	CHORD .449	CHORD .803	PITCH LINK	TORSION .449
	(N/DEG)	(N-M/DEG)	(N-M/DEG)	(N/DEG)	(N-M/DEG)
MEAN	53212.	12885.	2453.	-1519.	-222.
HARMONIC-1	9701./3	3047./ 10.6	498./ -19.0	3895./ 4.0	362./ -18.2
2	3289./ 42.3	1268./ 71.0	152./ 56.5	1290./ 28.0	212./ 33.5
3	4163./ 22.1	1326./ 15.4	155./ 14.8	269./ -30.5	29./ -22.3
4	670./ .5	405./ -17.4	60./ -56.0	173./ -76.9	84./ -14.6
5	599./ -57.0	207./ -12.7	65./ -5.2	578./ 8.5	101./ 25.2
6	852./ 13.5	540./ -3.6	81./ 23.6	377./ 83.7	65./ -84.2
7	217./ -21.1	290./ 12.6	137./ -8.2	249./ 67.7	31./ -61.7
8	163./ 88.4	63./ -45.3	85./ -20.5	85./ -64.1	12./ -62.2
9	93./ 76.6	38./ -2.8	57.7 1.7	81./ 81.0	17./ -4.8
10	178./ 51.5	212./ 48.1	33./ 68.3	110./ 80.4	18./ 1.9
11	96./ -46.6	111./ 57.5	23./ 58.5	32./ -53.5	14./ -59.6
12	75./ 84.5	84./ 54.9	40./ 39.9	40./ 27.0	5./ -10.3
PEAK-TO-PEAK	23870.	9666.	1689.	9686.	1311.
	BEAM .174	BEAM .350	BEAM .449	BEAM .606	BEAM .803
	(N-M/DEG)	(N-M/DEG)	(N-M/DEG)	(N-M/DEG)	(N-M/DEG)
MEAN HARMONIC-1 2 3 4 5 6 7 8 9 10 10 11 2 PEAK-TO-PEAK	$\begin{array}{c} 653.\\ 1034./ & -7.5\\ 89./ & -52.2\\ 256./ & -16.6\\ 240./ & -6.4\\ 200./ & -49.9\\ 43./ & -7.3\\ 99./ & 46.6\\ 29./ & -16.7\\ 37./ & -16.4\\ 90./ & 25.8\\ 18./ & 73.5\\ 41./ &7\\ 2785.\end{array}$	153. 466./ -52.4 190./ -71.1 111./ -3 64./ .6 38./ -66.1 24./ -83.2 9./ -60.8 4./ -72.3 26./ 33.9 36./ 39.7 10./ -48.8 12./ 10.5 1313.	$\begin{array}{c} -60.\\ 514./ & -59.7\\ 261./ & -58.8\\ 110./ & 31.2\\ 42./ & 27.9\\ 23./ & -59.5\\ 51./ & -71.9\\ 40./ & 84.0\\ 11./ & -89.0\\ 10./ & 56.5\\ 32./ & 49.9\\ 16./ & 82.1\\ 17./ & -55.2\\ 1474. \end{array}$	$\begin{array}{c} -380.\\ 563./ -64.3\\ 299./ -48.6\\ 133./ 64.9\\ 35./ -36.6\\ 43./ -37.3\\ 4./ -84.9\\ 13./ -75.8\\ 2./ -32.0\\ 30./ 47.5\\ 41./ 47.9\\ 10./ -73.2\\ 14./ -13.2\\ 1556.\end{array}$	331. 312./ -89.4 206./ -38.2 110./ 86.3 139./ -6 57./ -81.3 113./ -48.5 68./ -54.5 20./ -2 39./ 46.9 37./ 43.8 5./ 32.2 3./ 23.7 1031.

;

) | | |

;

REFERENCES

- Paglino, Vincent M.; and Clark, David R.: A Study of the Potential Benefits of Advanced Airfoils for Helicopter Applications. Paper presented at Am. Helicopter Symposium on Helicopter Aero. Efficiency, Hartfort, CN, March 1975.
- Morris, Charles E. K., Jr.: Rotor-Airfoil Flight Investigation: Preliminary Results. Preprint 78-5, 34th Annual Nat. Forum of the Am. Helicopter Soc., May 1978.
- Morris, Charles E. K., Jr.: A Flight Investigation of Rotor Airfoils. Paper No. 10, Advanced Technology Airfoil Research, Vol. II, NASA CP 2046, March 1978, pp 141-154.
- Kemp, Larry D.: An Analytical Study for the Design of Advanced Rotor Airfoils. NASA CR-112297, 1973.
- Sloof, J. W.; Wortmann, F. X.; and Duhon, J. M.: The Development of Transonic Airfoils for Helicopters. Preprint 901, 31st Annual Nat. Forum of the Am. Helicopter Soc., May 1975.
- Morris, Charles E. K., Jr.: A Flight Investigation of Basic Performance Characteristics of a Teetering-Rotor Attack Helicopter. NASA TM 80112, 1979.
- 7. Knight, Vernie H.; Haywood, William S., Jr.; and Williams, Milton L.: A Rotor-Mounted Digital Instrumentation System for Helicopter Blade Flight Research Measurements. NASA TP 1146, 1978.
- Shockey, G. A.; Williamson, J. W.; and Cox, C. R.: Helicopter Aerodynamics and Structural Loads Survey. Preprint 1060, 32nd Annual Nat. Forum of the Am. Helicopter Soc., May 1976.
- Shockey, Gerald A.; Williamson, Joe W.; and Cox, Charles R.: AH-1G Helicopter Aerodynamic and Structural Loads Survey. USAAMRDL TR-76-39, 1977.
- 10. Cox, C. R.: Helicopter Rotor Aerodynamic and Aeroacoustic Environments. Preprint 77-1338. 4th Aeroacoustic Conference of the AIAA. Oct. 1977.
- Van Gaasbeek, James R.; and Austin, Edward E.: Digital Simulation of the Operational Loads Survey Flight Tests. Preprint 78-58, 34th Annual Nat. Forum of the Am. Helicopter Soc., May 1978.
- 12. Noonan, Kevin W.; and Bingham, Gene J.: Two-Dimensional Aerodynamic Characteristics of Several Rotorcraft Airfoils at Mach Numbers from 0.35 to 0.90. NASA TM X-73990, 1977.
- 13. Dadone, Leo: Two-Dimensional Wind-Tunnel Test of an Oscillating Rotor Airfoil. Vols. I and II. NASA CR-2914 and CR-2915, 1977.

- 14. Pruyn, Richard R.: In-Flight Measurement of Rotor Blade Airloads, Bending Moments, and Motions, Together with Rotor Shaft Loads and Fuselage Vibration, on a Tandem Rotor Helicopter. Vol. IV, Summary and Evaluation of Results. USAAVLABS TR 67-9D, May 1967.
- Livingston, C. L.; and Murphy, M. R.: Flying Qualities Considerations in the Design and Development of the Huey Cobra. J. Am. Helicopter Soc., vol. 14, no. 1, Jan. 1969, pp. 49-66.

TABLE I.- BASIC AIRCRAFT CHARACTERISTICS

Empty weight, N (1b.)	· · · ·	28,130 (6323) 7,250 (1630) . Lycoming T53-L-13B 820 (1100)
Wing: Airfoil <u>R</u> oot	• •	••••• NACA 0030
Semi-span (panel only), m (ft)	• • •	••••••••••••••••••••••••••••••••••••••
Root, m (ft)	•••	· · · · 0.88 (2.89) · · · · 0.62 (2.04) · · · · · · 14.0
Leading-edge sweep, deg	•••	· · · · · · · · · · · 15.2 · · · · · · · · · 0.0
Airfoil	•••	••• inverted Clark Y •••• •• 0.78 (2.54) •••• •• 0.95 (10.2)
Root, m (ft)	•••	0.75 (2.45) 0.54 (1.78)
Vertical tail: Airfoil	••	0.0
Root \dots Tip \dots Span (above tail boom), m (ft) \dots	•••	. cambered, 14% thick . cambered, 15% thick 1.64 (5.38)
Area, m^{2} (TC ²)	•••	
Leading-edge sweep, deg	•••	

TABLE I.- Concluded

Main rotor:		•		
Number of blades <	· · · · · · <	2
Width, m (ft)	· · · · · · · ·	• • • • • •	• • • • • • • •	. 0.191 (0.75) . 0.042 (0.138) 0.761 R
Numbon of blados				2
Airfoil .25 tail-rotor radius tip Radius Chord, m (ft) Taper Solidity Twist, deg Equivalent root cut-out Nominal tip speed, m/sec (ft/sec) Blade pitch range, deg ³ Hub precone angle, deg				NACA 0018 mbered, 8% thick 1.295 (4.25) 0.292 (0.96) 1:1 0.144 0.0 35 227.5 (746.4) 14.7, +15.3
Pitch-flap coupling (δ_2) , deg				300

Segment No.	r/R	ЕІ _b ×10 ⁻⁴ N-m ²	EI _c x10 ⁻⁶ N-m ²	<u>Weight</u> Meter N/m	GJx10 ⁻⁴ N-m ²	×cg cm	y _{cg} cm	x _{na} cm	У _{па} ст
1* 2* 3* 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	.025 .075 .125 .175 .225 .275 .325 .375 .425 .475 .525 .575 .625 .625 .675 .725 .725 .775 .825 .875	$\begin{array}{c} 4.28\\ 3.64\\ 102.2\\ 73.5\\ 20.8\\ 12.2\\ 9.11\\ 8.94\\ 8.66\\ 8.38\\ 8.04\\ 7.71\\ 7.37\\ 7.32\\ 6.68\\ 6.30\\ 6.00\\ 6.00\\ 6.00\\ \end{array}$	8.90 5.48 5.02 16.65 13.99 12.74 12.80 12.02 11.15 10.46 9.70 8.94 8.18 7.43 7.03 7.06 7.37	N711 819 1269 996 805 208 170 163 162 168 183 184 180 177 173 169 170 213 213	$ \begin{array}{r} 10.3 \\ 10.3 \\ 10.3 \\ 19.8 \\ 21.2 \\ 11.7 \\ 8.99 \\ 7.94 \\ 7.13 \\ 6.30 \\ 5.54 \\ 5.40 \\ $	19.4 24.2 26.3 21.1 18.1 18.5 20.0 19.9 18.4 16.3 16.0 15.6 15.3 15.0 14.8 14.6 12.3 12.3	.635 .635 .635 .144 .575 .558 .555 .556 .546 .522 .518 .513 .509 .504 .498 .489 .489 .462 .462	17.1 17.1 17.1 19.7 16.7 16.9 17.2 16.7 15.8 14.8 14.2 13.7 13.2 12.6 12.3 12.1 10.7 10.7	.635 .635 .635 .584 .586 .569 .557 .554 .550 .540 .534 .528 .521 .515 .507 .493 .468 .468
19 20	•925 •975	6.00 5.95	7.3/ 7.22	213 190	5.40 5.40	12.3 13.4	•462 •472	10.7 11.4	•468 •475

.

TABLE II.- SPANWISE DISTRIBUTION OF BLADE DESIGN PROPERTIES

k

١

* hub segments

۱

,

٠

x/c	y _u /c	y _l /c
0.00 .00259 .00974 .02185 .03796 .05675 .07753 .09845 .12341 .15412 .18767 .22313 .26054 .29979 .34064 .38269 .42528 .46849 .51162 .55383 .59596 .63728 .67732 .71079 .73905 .76946 .80263 .84055 .87846 .90845 .93589 .96199 1.00000	0.00 .00704 .01524 .02296 .02972 .03588 .04098 .04469 .04741 .04986 .05188 .05345 .05459 .05565 .05560 .05560 .05560 .05558 .05565 .05560 .05518 .05438 .05323 .05175 .04992 .04774 .04524 .04992 .04774 .04524 .04291 .04017 .03644 .03140 .02533 .01901 .01421 .01020 .00651 .00104	0.00 00512 00867 01180 01465 01713 01929 02112 02299 02494 02671 02821 02944 03040 03104 03142 03150 03132 03150 03132 02867 02734 02580 02734 02580 02432 02305 02164 01996 01794 01571 01364 01087 00711 00104
L	1	I

TABLE III.- COORDINATES OF NLR-1T AIRFOIL

Parameter	System Accuracy (a)	Digital Channel Precision	Filter (b) Frequency
Aerodynamic Flight State:			
dynamic pressure - regular - sensitive static pressure - regular - sensitive angle of attack angle of sideslip total temperature	70 Pa 14 Pa 500 Pa 70 Pa .1 ⁰ .1 ⁰ .06 ⁰ C	14 Pa 3 Pa 200 Pa 40 Pa .180 .180 .180 .180 .180 .180	1 Hz 10 Hz 10 Hz
Inertial Flight State:			
roll attitude pitch attitude heading angular rates longitudinal acceleration lateral acceleration normal acceleration	.5 ⁰ .5 ⁰ 3.0 ⁰ .01 rad/sec .001 g .001 g .005 g	.36 ⁰ .18 ⁰ .72 ⁰ .044 rad/sec .004 g .003 g .009 g	10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz
Control Positions:			
lateral servo longitudinal servo collective servo horizontal fin pedal position tail-rotor collective	.1 ⁰ .1 ⁰ .1 ⁰ .1 ⁰ .16 ⁰ .1 ⁰	.04 ⁰ .07 ⁰ .05 ⁰ .02 ⁰ .07 ⁰ .07 ⁰	10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz
Rotor/Engine Parameters:			
main-rotor speed - regular -sensitive main-rotor azimuth engine torque pressure fuel quantity	.5% 1% 10 3 kPa 60	.23% .05% 22.5 ⁰ 1.3 Pa 40	

TABLE IV.- PADS-PCM DATA SYSTEM CHARACTERISTICS

Notes: a - accuracy of analog signal before digitization

b - frequency at 3 db roll-off for constant delay, 4 pole Bessel Filters

84	TABLE V CHARACTERISTICS OF ROTOR-DP.TA SENSORS AND CHANNELS							
			(a)	Data reduction parameters (b			s (b)	
	Parameter	Analog system	Digital channel	Maximum final-data	^m 1	∆m ₂ x10′	∆۷ _o	ΔPo
		accuracy	precision	error	(1/mV)	(mV/count-C)	(mV/C)	(N/C)
	β _s	•1 ⁰	_11A	.3 ⁰	.92 ⁰	745.	005	-
	θς	.1 ⁰	.23 ⁰	•8 ⁰	•45 ⁰	780.	0031	-
	ψ	-	1.41 ⁰	•3 ⁰	-	-	-	-
	F _{db}	70 N	546. N	•44 kN-m	284 N	509.	009	-
	F _{pl}	36 N	123.4 N	.47 kN	56.9 N	431.	005	-
	M _{b17}	-	73.4 N-m	.28 kN-m	1081 N-m	529.	006	25.8
	^M b35	-	25.1 N-m	.10 kN-m	598 N-m	698.	005	11.2
	^M b45	-	25.4 N-m	.10 kN-m	374 N-m	572.	0068	8.3
	M _{b61}		19.4 N-m	.07 kN-m	354 N-m	396.	0046	. 13.2
	^M b80	-	17.5 N-m	.07 kŅ-m	-208 N-m	666.	010	16.5
	^M c45		149. N- m	.55 kN-m	3460 N-m	333.	003	79.1
	^M c80	-	74.6 N-m	1.07 kN-m	-4200 N-m	149.	0017	220.
	M _{t45}	_	14.8 N-m	.06 kN-m	547 N-m	215.	0023	0.7
	Q	112 N-m	158. N-m	.60 kN-m	1440 N-m	941.	0135	-
	т _ь	-	.40 ⁰ C	1.0 ⁰ C	-	-	-	-
	T ce	-	.39 ⁰ C	1.0° C	-	-	-	-
	Notes: (a) conservative accuracy bound for absolute value of single digital-data value (b) constants used in the data-reduction equations of reference 6						ılue	

 $f = (m_1 (\Delta m_2 + \Delta V_0)) \Delta T_{ce} + A P_0 \Delta T_b$

, r

• <

Type of input load	Level of input load (kN-m)	Type of output load (b)	Indicated output Actual input
Beamwise	4.3	Mc45	0.14
	1.1	^M c80	-0.30
	4.3	. ^M t45	0.01
Chordwise	15.7	M _{b17}	0.20 (c)
	12.0	M _{b35}	0.14
	10.0	^M b45	0.07
	6.7	^M b61	0.03
Torsion	1.0	^M b17	0.09
		. ^M b35	0.08
		^M b45	0.04
		Mb61	0.04
		^M b80	0.01
	,	^M c45	0.44
		^M c80	0.09

TABLE VI.- LINEARIZED STATIC INTERACTIONS FOR BLADE STRAIN-GAUGE BRIDGES

١

Note: (a) equivalent load at same spanwise station as indicated output bridge (b) uncited output channels have negligible cross-talk (c) all beamwise values conservative at higher input loads

1

Flight condition	Test Point (Flight norun no.)	μ	V (knots)	с _Ĺ
Hover	61 - 26B 65 - 1 66 - 1	0 0 0	0 0 0	0.0034 0.0037 0.0039
Level flight	$ \begin{array}{r} 60 - 6 \\ 61 - 3 \\ 4 \\ 12 \\ 14 \\ 62 - 16 \\ 26 \\ 63 - 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \\ 24 \\ 65 - 2 \\ 15 \\ 21 \\ \end{array} $	0.241 160 181 305 338 246 237 151 175 197 212 236 257 282 303 330 356 370 315 341 246 240 243 241	$107 \\ 71 \\ 80 \\ 135 \\ 150 \\ 109 \\ 105 \\ 68 \\ 78 \\ 88 \\ 94 \\ 105 \\ 114 \\ 125 \\ 134 \\ 146 \\ 158 \\ 165 \\ 140 \\ 152 \\ 109 \\ 107 \\ 108 \\ 108 \\ 107 \\ 108 $	0.0038 0.0037 0.0038 0.0035 0.0040 0.0038 0.0042 0.0042 0.0043 0.0042 0.0042 0.0042 0.0043 0.0042 0.0043 0.0042 0.0042 0.0042 0.0042 0.0043 0.0042 0.0042 0.0043 0.0042 0.0042 0.0043 0.0042 0.0043 0.0042 0.0043 0.0042 0.0043 0.0042 0.0043 0.0042 0.0043 0.0042 0.0043 0.0042 0.0043 0.0043 0.0042 0.0043 0.0042 0.0043 0.0043 0.0042 0.0043 0.0042 0.0043 0.0043 0.0042 0.0043 0.0042 0.0043 0.0037 0.0037
Climb	62 - 31 63 - 12	• 248 • 298	110 134	0.0039 0.0042
Descent	62 - 30	.236	105	0.0039
Right turn	62 - 23 24 65 - 22 25	.244 .242 .241 .241	109 108 107 108	0.0054 0.0048 0.0042 0.0051

TABLE VII.- TEST POINT/TEST CONDITION CATALOG

*Multiple data sets

Flight condition	Test Point (Flight norun no.)	μ	V (knots)	cĹ
Left turn	$ \begin{array}{r} 65 - 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 66 - 3* \\ 4 \\ 7 \\ 8 \\ 10 \\ \end{array} $.242 .244 .241 .241 .243 .242 .239 .224 .227 .224	108 109 107 107 109 108 108 103 106 101	0.0047 0.0052 0.0062 0.0045 0.0055 0.0054 0.0063 0.0086 0.0086 0.0086
Pull-up	$ \begin{array}{r} 63 - 17 \\ 27 \\ 65 - 11 \\ 12 \\ 66 - 18 \\ 19^{*} \\ 20 \\ 22^{*} \\ 24^{*} \end{array} $.246 .250 .245 .241 .248 .246 .246 .240 .245 .252	110 112 110 110 112 112 109 113 116	0.0050 0.0050 0.0048 0.0064 0.0055 0.0068 0.0059 0.0075 0.0079

TABLE VII.- TEST POINT/TEST CONDITION CATALOG (Concluded)

* Multiple data sets

Figure 1. - Aircraft schematic and conventions used to define senses of axes, angles and accelerations.

. .

•

•

Figure 2. - Three-view scale drawing of aircraft. All dimensions are given in meters.

68

• · · •

(a) vehicle in flight

(b) tail rotor

Figure 3. - Flight-test vehicle.

ŧ

Figure 4. - Planform of main-rotor blade. Dimensions given in meters.

91

- •

Figure 5. - Cross-section drawings of NLR-1T rotor blades.

1

ı.

t

٠

(a) SRBI canister and system secured for flight.

Figure 6. - Rotor instrumentation.

(b) Rotor teeter sensors.

Figure 6. - Continued

.

(c) blade root: upper surface.

(d) blade root: lower surface.

Figure 6. - Concluded.

Figure 7. - Typical rotor-data histories for level-flight test point (Flight 65, run 15 of Appendix C). μ = 0.24; C'_L = 0.0038.

Figure 8. - Rotor-load histories for typical level-flight test condition (Flight 65, run 15 of Appendix C). μ = 0.24; C^L_L = 0.0038.

Figure 8. - Continued

t

.

۲

٩.

١

66

.

(a) Beamwise bending at 0.17R.

(b) beamwise bending at 0.45R.

Figure 9. - Continued

(c) chordwise bending at 0.45R.

(d) Torsional load at 0.45R.

Figure 9. - Concluded.

Harmonic component

~

٠

Figure 11. - Variation of power required with tip-speed ratio for a series of test conditions. Ω = 33.9 rad/sec. (324 rpm).

.

105

.

.

•

(a) vehicle load and mast torque coefficients.

Figure 12. - Flight data for two level-flight speed sweeps.

Figure 12. - Continued

(c) Aircraft control positions.

(d) Rotor-blade pitch and teeter angles.

(e) Beamwise peak-to-peak rotor loads.

Figure 12. - Continued

Figure 12. - Continued

Figure 12. - Concluded.

112

-

N, revolutions

(a) Blade pitch angle.

Figure 13. - Rotor-data histories for a series of tip-speed ratios in level flight (Flight 63 of Appendix C).

(b) Teeter angle.

Figure 13. - Continued

F_{p!,} kN

(c) Pitch-link load

Figure 13. - Concluded.

(a) M_{b17}

Figure 14. - Harmonic content of rotor loads for level flight. $\bar{\mu}$ = 0.0037.

Figure 14. - Continued.

(c) M_{b45}

Figure 14. - Continued.

.

•

~

(d) M_{b61}

Figure 14. - Continued.

(e) M_{b80}

Figure 14. - Continued.

(f) F_{db}

(g) M_{c45}

(h) M_{c80}

Figure 14. - Continued.

(i) F_{pl}

Figure 14. - Continued.

(j) M_{t45}

Figure 14. - Concluded.

Figure 16. - Comparison of rotor-data histories for several segments of a descending left turn (Flight 63, run 3 of Appendix C). $\mu = 0.24; C'_L = 0.0056.$

(a) μ = 0.24, C_L^{\prime} = 0.0064 (Flight 66, run 4 of Appendix C).

Figure 17. - Typical rotor-data histories for descending left turns.

(b) μ = 0.23, C_L^{\prime} = 0.0087 (Flight 66, run 7 of Appendix C).

Figure 17. - Concluded.

Figure 18. - Rotor-load histories for typical descending left turn (Flight 66, run 4 of Appendix C) μ = 0.24; C⁺ = 0.0064.

Figure 18. - Concluded.

.

t, sec

Figure 19. - Pitch-link load histories for a series of descending turns at $\vec{c}_L/\vec{n}_z = 0.0039$, $\vec{M}_h = 0.71$ (Flight 66, runs 3, 4, 7 and 8 of Appendix C).

133

F_{pl}, kN

(a) M_{b17}

Figure 20. - Continued

(c) M_{b45}

Figure 20, - Continued

.

(e) M_{b80}

Figure 20. - Continued

(f) F_{db}

Figure 20. - Continued

(g) M_{c45}

(h) M_{c80}

Figure 20. - Continued

•

(i) F_{p1}

Figure 20. - Continued

(j) M_{t45}

Figure 20. - Concluded.

(a) M_{b17}

(b) M_{b35}

Figure 21. - Continued

(c) M_{b45}

Figure 21. - Continued

- 18

.

(d) M_{b61}

Figure 21. - Continued

(e) M_{b80}

Figure 21. - Continued

(f) F_{db}

Figure 21. - Continued

۰.

(g) M_{c45}

Figure 21. - Continued

Figure 21. - Continued

(i) F_{p1}

Figure 21. - Continued

(j) M_{t45}

Figure 21. - Concluded.

Figure 22. - Effect of Vehicle load coefficient on primary harmonic-loads components for descending right turns. $\bar{\mu}$ = 0.25.

- (a) $\mu = 0.24$; $C_{L} = 0.0060$ (Flight 66, run 20 of Appendix c)
- Figure 23. Typical rotor-data histories for symmetrical pull-ups. Test-point time for data reduction was choosen on the basis of PADS data for vehicle pitch attitude.

(b) $\mu = 0.23; C_{L}^{i} = 0.0079$

Figure 23. - Concluded.

Figure 24. - Rotor-load histories for typical symmetrical pull-up (Flight 66, run 22 of Appendix C). μ = 0.25; C^L = 0.0078

(b) chordwise loads.

Figure 24. - Continued

(a) M_{b17}

Figure 25. - Harmonic content of rotor loads for symmetrical pull-ups. μ = 0.25.

~

(c) M_{b45}

(d) M_{b61}

Figure 25. - Continued.

(e) M_{b80}

Figure 25. - Continued.

(f) F_{db}

Figure 25. - Continued.

(g) M_{c45}

Figure 25. - Continued.

Figure 25. - Continued.

(i) F_{p1}

,

(j) M_{t45}

Figure 25. - Concluded.

M_{c45}, kN - m

170

Figure 26. - Effect of vehicle load coefficient on primary harmonic-loads components for symmetrical pull-ups. $\bar{\mu}$ = 0.25

 $\bar{\mu} = 0.25$

(a) beamwise loads.

Figure 27. - Effect of vehicle load coefficient on peak-to-peak loads for maneuvering flight. $\bar{\mu}$ = 0.25.

(b) chordwise loads.

Figure 27. - Continued

-

+

(c) torsional loads.

Nominal calibration moment

. . .

Figure 28. - Calibration data for beamwise bending of NLR-1T rotor blade clamped to 0.15R and loaded at 0.93R.

NASA TM 80165	2. Government Accession No.		3. Hecipi	3. Recipient's Catalog No.	
4. Title and Subtitle			5. Repor	Date	
A FLIGHT INVESTIGATION OF	LOADS FOR	RA Octob	ber 1979		
HELICOPTER WITH NLR-1T MAIN-ROTOR BLADE SECTION			6. Performing Organization Code		
7. Author(s) 8. Performing Organization Report No.					
Charles E. K. Morris, Jr.	ne, and				
Dariene D. Stevens	•	10 West	Upit No		
9. Performing Organization Name and Addre		10. WORK	onit No.		
NASA Langley Research Cer					
Structures Laboratory		11, Contra	act or Grant No.		
AVRADCOM Research and Technology Laboratories					
Hampton, VA 23665			13. Type of Report and Period Covered		
12. Sponsoring Agency Name and Address			Tech	Technical Memorandum	
National Aeronautics and	ion		Project No.		
Washington, DL 20546			14. Anny		
and			1L262	2209AH76	
U.S. Army Aviation Research and Development Command			d l		
St. Louis, MO 63166					
15. Supplementary Notes					
a. Charles E. K. Morris, Jr. and Dariene D. Stevens: Langley Research Center					
Robert L. Tomaine: Structures Laboratory, AVRADCOM Research and Technology					
Laboratories.					
b. Major contributors to this research at LaRC, NASA, were Messrs. M. A. Basnett,					
M. T. Baxter, P. L. Deal, J. A. Fernandez, P. R. Pfeffer, and L. B. McHenry of					
FMD and Messrs. J. F. Bryant, J. O. Riggins, F. S. Vassey, and W. A. Walls of					
FED.					
IO. ADStract					
A flight investigation has produced data on performance and rotor loads for a					
teetering-rotor, AH-1G helicopter flown with a main rotor that had the NLR-11 airfoil					
as the blade-section contour. The test envelope included nover, forward-flight					
speed sweeps from 35 to 85 m/sec (68 to 105 knots), and corrective-riked maneuvers					
flight state central positions noten loads power requirements and blade motions					
flight state, control positions, rotor loads, power requirements, and blade motions.					
Rotor loads are reviewed primarily in terms of peak-to-peak and harmonic					
content. Lower frequency components predominated for most loads and generally					
increased with increased airspeed, but not necessarily with increased maneuver load					
factor.					
This report covers detailed data for an advanced airfoil on an AH-1G					
and is applicable for evaluating performance and airfoil analyses.					
17. Key Words (Suggested by Author(s)) 18. Distribution Statement					
Helicopter					
Performance		Unclassified - Unlimited			
Rotor loads					
leetering rotor				Stan Catogony 02	
·			Star Lategury UZ		
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22. Price*	
Unclassified	Unclassified Unclassified		174	\$8.00	
				L	

y

.

~

*For sale by the National Technical Information Service, Springfield, Virginia 22161

,

•