

1

1

NASA Technical Memorandum 80166

AVRADCOM TECHNICAL REPORT 80-B-2

NASA-TM-80166 19800010756

A FLIGHT INVESTIGATION OF BLADE-SECTION AERODYNAMICS FOR A HELICOPTER MAIN ROTOR HAVING NLR-1T AIRFOIL SECTIONS

CHARLES E. K. MORRIS, JR., DARIENE D. STEVENS AND ROBERT L. TOMAINE

JANUARY 1980

Langley Research Center Hampton, Virginia 23665

timitani, minnin

L.

Ĩ.,

an evaluation of the supercritical wing in many configurations. The primary emphasis was placed on the transonic Mach number region, which is considered to be the principal air combat arena for fighter aircraft. An agility study was undertaken to assess the maneuverability of the E-111A ENTER: 35 1 1 RN/NASA-TM-80166 DISPLAY 35/2/1 J'Y'O 20N19033** ISSUE 10 PAGE 1230 CATEGORY 2 RPT#: NASA-TM-80166 AVRADCOM-TR-80-B-2 CNT*: DA PROJ. 1L2-62209-AH-76 80/01/00 194 PAGES 2 TINCLASSIFTFR-BACHNENT UTTL: A flight investigation of blade section aerodynamics for a helicopter main \mathcal{O} rotor having NLR-1T airfoil sections AUTH: A/MORRIS, C. E. K., UR.; B/STEVENS, D. D.; C/TOMAINE, R. L. National Aeronautics and Space Administration. Langley Research Center, CORP: Hampton, Va. AVALL NTIS SAP: HC A09/MF A01 UNITED STATES Sponsored in part by AVRADCOM, St. Louis, Mo. :100 MAJS: /*AERODYNAMIC CHARACTERISTICS/*AH-1G HELICOPTER/*AIRFOILS/*ROTARY WINGS MINS: / FLIGHT CHARACTERISTICS/ FLIGHT TESTS/ PRESSURE DISTRIBUTION/ ROTOR BLADES (TURBOMACHINERY) / TEFTERING ABA: R.E.S. ABS: A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good ENTER:

· .

A FLIGHT INVESTIGATION OF BLADE-SECTION AERODYNAMICS FOR A HELICOPTER MAIN ROTOR HAVING NLR-1T AIRFOIL SECTIONS

Charles E. K. Morris, Jr. Dariene D. Stevens, and Robert L. Tomaine

NASA Langley Research Center Hampton, Virginia 23665

SUMMARY

A flight investigation has been conducted using a teetering-rotor helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-IT blade section. The data system recorded blade-section aerodynamic pressures at 90-percent rotor radius, vehicle flight state, performance, and loads. The test envelope included hover, forward-flight speed sweeps from 35 to 85 m/sec (68 to 165 knots), and collective-fixed maneuvers at about 56 m/sec (109 knots).

Flight-test data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed level flight, wake interactions in hover, and other phenomena. In many cases, good agreement was achieved between chordwise pressure distributions measured in flight and those predicted by airfoil theory. Most comparisons were made for a high-speed, level-flight condition with no apparent indications of blade-vortex interactions.

INTRODUCTION

The continued development of airfoil technology offers the potential for improvements in the performance and loads characteristics of helicopter rotors (refs. 1 and 2). As indicated in references 3 to 11, methods of rotorcraftairfoil design are still being improved. These methods are constrained by the assumption of two-dimensional, steady flow. In many parts of the typical helicopter operating envelope, blade sections are subjected to highly threedimensional, unsteady flow (refs. 12 and 13). The degree of success with which rotorcraft-airfoil design technology can be applied depends on how well the airfoil design variables can be related to the complex flow environment of the rotor. Experimental studies on this topic are reported in references 8, 14, 15, and 16.

A flight investigation of rotor-airfoil characteristics has been conducted with a high-speed, teetering-rotor, AH-1G attack helicopter that used main-rotor blades with the NLR-1T airfoil. This airfoil was designed specifically to meet the rotorcraft-airfoil design criteria described in reference 4. The instrumented vehicle was flown in level flight up to 85 m/sec (165 knots) and in collective-fixed maneuvers at about .56 m/sec (109 knots). Data were obtained on performance, flight-state and control parameters, rotor loads and motions, and airfoil pressure distributions at 90-percent radius on one blade. Initial results of this investigation are presented in references 16 and 17. Detailed

N80-19033 #

data on performance, loads, and blade motions for the NLR-1T blades are presented in reference 18. Baseline data for the same test vehicle with a standard, uninstrumented set of main-rotor blades are given in reference 19.

The NLR-1T flight-test program is complemented by other rotorcraft airfoil research. Wind-tunnel test data and analyses of the NLR-1 airfoil are given in references 6, 20, and 21. Flight-test data from other relevant rotorcraft research are presented in references 15 and 22 to 26. References 15 and 22 report on flight tests with new airfoil shapes gloved on blade tips; references 23, 24, and 25 contain results from AH-1G helicopter tests with instrumented standard blades. Relevant wind-tunnel tests of instrumented rotors are reported in references 27 and 28.

The purpose of this report is to present blade-section aerodynamic data for, and limited analysis of, significant flight-test conditions with the NLR-1T airfoil. That significance is determined in large part by the review of performance and loads data (ref. 18) obtained concurrently with the blade pressure data. The records of blade-section data in this report provide the basis for future analyses with other complementary data from references 18 and 24 or with results from computer programs for helicopter simulation. The data presented herein are intended to guide efforts to utilize the complete results.

SYMBOLS

Positive senses of some axes, angles and accelerations are presented in figure 1.

- AOf main-rotor collective pitch angle at 0.75R, commanded at swashplate, deg
- A_{Os} main-rotor collective pitch angle at 0.75R, measured at blade grips, deg

AO_{tr} tail-rotor collective pitch angle, deg

Alf main-rotor lateral pitch angle, commanded at swashplate, deg

- Als first harmonic of main-rotor lateral pitch angle, measured at blade grip, deg
- a speed of sound, m/sec
- ^als first harmonic of main-rotor longitudinal flapping with respect to the mast, deg
- ^BIf main-rotor longitudinal pitch angle, commanded at swashplate, deg
- B_{ls} first harmonic of main-rotor longitudinal pitch angle, measured at blade grip, deg

b first harmonic of main-rotor lateral flapping with respect to the mast, deg

CL' vehicle load coefficient,
$$\frac{W n_z}{\rho \pi R^2 (\Omega R)^2}$$

- C_p airfoil pressure coefficient, $\frac{p p_{\infty}}{q}$
- C_{p}^{\star} airfoil pressure coefficient corresponding to a local Mach number of 1.0

 C_Q main-rotor mast torque coefficient, $\frac{Q}{\rho \pi R^3 (\Omega R)^2}$

c airfoil chord, m

cc airfoil chord-force coefficient, pressure only, $\frac{1}{c} \int_{\text{thickness}} \left(C_{p,f} - C_{p,r} \right) dz$

$$c_{\ell}$$
 airfoil lift coefficient, section lift/(qc)

$$c_n$$
 airfoil normal-force coefficient $\frac{1}{c} \int_{chord} (C_{p,\ell} - C_{p,u}) dx$

F_c corrected function (See eq. (C-2).)

f frequency, Hz

f_{3db} frequency for 3 db amplitude attenuation, Hz

g acceleration due to gravity, 9.81 m/sec2

h climb rate, m/sec

К	ratio of effective to actual cutoff frequency
К _п	constants for z-transform equation, n = 1, 2, 3 (See eq. (C-2).)
k _m	incremental angle for incremental airfoil pressure, deg/Pa (See eq. (B-2).)
М	local Mach number perpendicular to blade leading edge
^M h	reference blade-tip Mach number, $\frac{\Omega R}{a}$
^m 1	data channel sensitivity, measured units/mV
^m 2	slope representing PCM electronic response, mV/digital increment
n _x , ny, n	z orthogonal set of load factors for aircraft center of gravity, g units
р	local static pressure at a point on airfoil, P _a
p _f , q _f , r	f orthogonal set of fuselage angular rate, rad/sec
p _∞	free-stream static pressure, P _a
Q	main-rotor mast torque, N-m
٩	free-stream dynamic pressure of blade section, P _a
R	blade radius, m (ft)
r	radial distance to blade element
s	Laplace operator
Т	period between samples of same channel of multiplexed data system, sec
т _b	blade temperature on upper surface at $x/c = 0.6$ and $r/R = 0.9$, C
t	time, sec; also, airfoil thickness, m
td	delay time due to electronic-induced lag, sec
V	aircraft true airspeed or velocity, m/sec (knots)
W	aircraft gross weight, N
Χ,Υ,Ζ	orthogonal set of aircraft body axes (See fig. 1.)
x	airfoil abscissa, positive rearward from leading edge, m
4	

- y airfoil ordinate, positive upward, m
- z transformation variable (See eq. (C-2).)
- $\alpha_{\rm C}$ rotor control-axis angle of attack, deg
- α_e effective airfoil angle of attack (See eq. (B-2).), deg
- α_f fuselage angle of attack, deg
- β_f fuselage angle of side-slip, deg
- β_{s} main-rotor, shaft-axis teeter angle, (where $\beta_{s} a_{0} a_{1s} \cos \psi b_{1s} \sin \psi$...) positive updard, deg
- D digital increment above value for zero pressure, counts
- ∆h hub height above ground
- Δm_1 change in m_1 per change in pressure-sensor temperature, $P_a/counts C$
- ΔP_{0} change in indicated pressure per change in pressure-sensor temperature, P_{a}/C
- ΔP_t change in p due to temperature effect, P_a
- $\Delta \psi_{d}$ azimuthal lag due to electronic lag
- θ_{f} fuselage pitch attitude, deg
- θ_s main-rotor, shaft-axis blade pitch at 0.75R, (where $\theta_s = A_0 A_{1_s} \cos \psi$ $B_{1_s} \sin \psi - \cdots$), measured at blade grip, deg
- μ tip-speed ratio, V/(ΩR)
- ρ mass density of air, kg/m³
- ⁰f fuselage roll attitude, deg
- ψ main-rotor blade azimuth angle measured from downwind position in direction of rotor rotation. deg
- Ω main-rotor rotational speed, rad/sec
- ^ωc cutoff frequency (See eq. (C-1).), Hz

Subscripts

a above reference tempe	erature
-------------------------	---------

b below reference temperature

c mean line

f forward surface

lower surface

- te trailing edge
- u upper surface
- 5h fifth harmonic value

EQUIPMENT AND PROCEDURES

Test Vehicle

The test vehicle was the instrumented AH-1G attack helicopter shown in figures 2 and 3. Physical characteristics of the vehicle are given in Table I. The teetering-hub main rotor was similar to the standard production configuration except for blade construction, airfoil section, and some structuraldynamic blade properties. Compared to standard blades, the NLR-1T blades did have identical planform, twist, and root-end fittings. However, the new blades were built with the NLR-1T airfoil contour from about 31-percent blade radius to the tip. One of these blades was instrumented to measure bending loads, internal temperatures, and aerodynamic pressures at one spanwise station. Details of blade design and other vehicle features may be found in reference 18.

Airfoil

The NLR-1 airfoil was developed to satisfy multiple design points derived for a helicopter rotor in hover, maneuvers, and high-speed flight. This work is described in references 4 and 6. Using hodograph-plane variables, a computer program produced a shock-free profile for the transonic design point (ref. 29). A program for analyzing airfoil aerodynamics in subcritical flow was then used to assess the effects of modifications to the initial contours. These modifications were aimed at satisfying the lower-speed design criteria of reference 4. The final shape was designated as the NLF7223-62 or, more simply, the NLR-1. The NLR-1T was obtained by truncating the NLR-1 at 99-percent chord to produce a finite-thickness trailing edge. NLR-1T coordinates are listed in Table II and presented graphically in figure 4. Noteworthy features are the far-forward location of the positive camber and the reflex camber at the trailing edge. Figure 5 presents a comparison of the nominal contour and the profile achieved at the spanwise location where pressure measurements were made. Wind-tunnel data indicated that most of the aerodynamic objectives of the design were not met (refs. 6, 20, and 21). Maximum lift at a Mach number of 0.4 was limited to about $c_1 = 1.1$ by trailing-edge separation. The drag-divergence Mach number at zero lift was determined to be approximately 0.84, about 0.01 below the design criterion. In contrast, the low-lift, low Mach number values of pitching-moment coefficient ranged from -0.01 to -0.02 which are within the design constraints.

Data System

Data from fuselage-mounted sensors were acquired with the Piloted Aircraft Data System (PADS) described in reference 19. These sensors measured flightstate parameters, control positions, and some rotor and engine parameters. Detail of the PADS sensor system are given in Table III. PADS electronics used a 10-bit data word, a sampling rate of 80 samples per second per channel, and pulse-code modulation (PCM) for digitization. PADS-PCM data channels were multiplexed and recorded on a single tape track.

Data from rotor-mounted sensors were processed by the digital Special Rotor Blade Instrumentation (SRBI) system of reference 30. This provided 30 channels with 8-bit data words (without parity) and a sampling rate of 1000 samples per second per channel. Data signals for rotor loads, teeter angle, blade pitch angle, blade azimuth angle, and canister temperature were processed in the mastmounted canister shown in figure 6. This set of channels is described further in reference 18. Airfoil pressures were sensed by 13 pressure transducers located at 90 percent of rotor radius. Electronics mounted in the blade tip digitized and multiplexed signals for both the blade-section pressures and blade temperature. This data and the canister-processed data were merged and recorded on a single tape track. Photographs and a schematic of elements of the SRBI system are presented in figures 6 to 10. Some of the equipment used to perform a preflight blade-pressure calibration are shown in figure 11. Appendix A and Tables IV and V provide a more detailed description of the pressure data system.

Data Reduction

The pressure-transducer records were processed to produce local pressure and blade-section coefficients for every two degrees of azimuth within each selected rotor revolution. Corrected, dimensional values of local blade-section pressures were nondimensionalized with other data from the PADS and SRBI systems. These results were integrated (using the methods of ref. 31) to yield normal-force, chordwise-force, and pitching-moment coefficients. (Details of the data reduction are given in Appendices B and C). The standard data-reduction process also yielded loads data for the same rotor revolution (ref. 18).

Flight-Test Procedures

Flight tests were conducted to obtain data in straight and level flight and in maneuvers. Steady, level-flight speed sweeps were accomplished, usually in 5 m/s (10 knot) increments, from about 35 to 85 m/s (68 to 165 knots). This range

of speeds corresponds to tip-speed ratios from about 0.15 to 0.37. Maneuvers were flown with a nominal tip-speed ratio of 0.25 and with the collective pitch set for trim at that speed. The corresponding airspeed is 56 m/sec (109 knots). The symmetrical pull-ups and constant-airspeed descending turns were flown with normal-load factors up to 2.3. The tests also include representative periods of hover and of linear climb and descent.

Emphasis was placed on achieving well-controlled, standardized test-point conditions to allow direct comparison between data sets for the different experimental rotors. Operating rotor speed and longitudinal center of gravity were maintained very close to nominal values and the external configuration of the aircraft was kept the same for the tests of all three experimental blade sets (ref. 16). Data were acquired only when air turbulence levels were acceptably low.

э

DISCUSSION OF RESULTS

Aerodynamic blade-section data are presented in figures 12 through 49 and in Appendices D and E. Table VI provides a guide to test-point conditions for the data in the appendices. Analysis of the data presented is limited to providing a suitable background for detailed analyses and comparative studies. The topics for the following discussion include: data interpretation; results for level flight, hover, and maneuvers; and a comparison of flight data with calculated results from airfoil theory.

The interpretation of the blade-section data should be guided by several considerations. First, test conditions were limited; the disk loading was low, and the maneuvers were flown at one target airspeed. Second, pressure coefficients are the most accurate form of blade-section data for any test point. Normal-force and pitching-moment coefficients required additional data reduction and are most useful on a comparative basis to guide detailed analysis of the pressure distributions. Third, the accuracy of each type of blade-section coefficient data is a complex function of azimuth position, tip-speed ratio and other test-condition parameters (Appendices B and C).

Another important consideration is the steadiness of a test-point condition and its effect on the data. Steadiness is significant because each set of data is unique for a single rotor revolution. There was no averaging of results for a series of revolutions. Figure 12 shows that pressure histories appear to be highly repetitive for level flight. Figure 13 confirms this with a comparison of airfoil coefficient data for several rotor revolutions. The data of figures 14 and 15 show that descending turns produce repetitive, periodic records, whereas the wave forms change as a function of time for symmetrical pull-ups.

The loads and performance data acquired concurrently in the same flight investigation (ref. 18) can be used to guide the study of the test results on blade-section aerodynamics. At each selected test point, all types of rotor data (rotor loads and aerodynamics included) were fully reduced, and listings were generated. Many of the data points of reference 18 have complementary sets of blade-section data listed in Appendices D and E.

Level Flight

<u>Typical conditions.</u> - Level flight data are reviewed first by concentrating on results for three values of tip-speed ratio achieved in one speed-sweep flight. Figure 16 presents a comparison of the behavior of both normal force and pitching moment through the full range of rotor azimuth. (The product of an airfoil coefficient and Mach number squared is directly proportional to the dimensional load acting on the blade section.) The significantly different patterns of loads at the three flight conditions are produced by different phenomena. The abrupt changes in $C_{\rm n}M^2$ at $\psi = 70^{\circ}$ and 270° for $\mu = 0.15$ indicate blade-vortex interactions similar to those of references 24 and 32. The major changes in both $C_{\rm n}M^2$ and $C_{\rm m}M^2$ near $\psi = 90^{\circ}$ or $\mu = 0.37$ indicate the significant effect of compressibility on the advancing blade.

More details of blade-section behavior are evident in the pressurecoefficient data of figure 17. Results for $\mu = 0.15$ show the strong influence of apparent blade-vortex interactions by the fluctuations of pressure coefficients near the leading edge (refs. 25, 33, and 34). The magnitude of these fluctuations in the first quadrant appear relatively small because the local pressure is nondimensionalized by a larger value of local dynamic pressure. Data for the intermediate-speed case also show that most of the variation in pressure coefficient occurs in the front of the blade section (fig. 17(b)). The high-speed data of figure 17(c) give clear examples of compressibility effects in the records for both upper and lower surfaces. The most prominent compressibility feature is the upper-surface pressure peak for 2-percent chord at an azimuth angle of about 230°.

The relationship between the compressibility features and supercritical flow is illustrated in figure 18. This figure presents some details of data for the high-speed case of figure 17(c). Chordwise pressure distributions for two azimuth positions are given in figures 18(a) and (b); pressure-coefficient records for two transducers are given in figure 18(c). The points labeled A and B in figure 18(c) are cited as being effected by supercritical flow. The corresponding points in the pressure distributions substantiate this. (The local pressure coefficients are more negative than that for sonic flow.)

The relative significance of the local supercritical flow is suggested in the calculated supersonic-flow boundaries of figure 19. Figure 19(a) corresponds to the flow conditions of figure 18(a) and shows substantial regions of supercritical flow. Figure 19(b) corresponds to the flow conditions of figure 18(b); it indicates that the small supercritical-flow region for the high-lift coefficient case is probably insignificant, even though it produces a prominent peak in figure 18(c).

<u>Speed-sweep results.</u> - The change in character of blade-section aerodynamic characteristics during a speed sweep is illustrated by the data of figure 20. (As noted before, the nondimensionalizing factors for the coefficient data are themselves functions of azimuth, and variation of blade-section Mach number with blade azimuth also changes with tip-speed ratio.). The data show the following trends:

- 1. Typical results of apparent blade-vortex interaction are clearly observable at the lowest tip-speed ratios. These are apparent in the data for both normal-force and pressure coefficients.
- 2. Negative normal-force and, consequently, negative lift are generated in the second quadrant at 90-percent rotor radius for tip-speed ratios above approximately 0.3. This means that two significant vortices should trail from the outer part of the blade: the one from the downloaded tip could be ingested into the top of the first quadrant of the rotor disk.
- 3. Supercritical pressure peaks appear at high tip-speed ratios at the leading edge: in the third quadrant on the upper surface (fig. 20(c)) and the second quadrant on the lower surface (fig. 20(d)).

Variations of blade-section airfoil coefficients with local Mach number are presented for several tip-speed ratios in figures 21 and 22. The local Mach number due solely to blade rotation at 90-percent rotor radius is about 0.63 for this data. Apparent blade-vortex interactions are evident at about M = 0.5 for the lowest tip-speed ratios. At moderate-to-high values of tip-speed ratio, the traces of normal-force coefficient and Mach number form a characteristic, double-looped shape. The pitching-moment coefficients also produce a characteristic shape: retreating-blade flow produces a small loop or series of loops at about $c_m = 0.0$ at the lowest Mach numbers and a second large loop shows a wide range of moment-coefficient values at the highest Mach numbers. Figure 22 indicates the envelope of the measured operating conditions for the instrumented blade section during one speed sweep.

<u>Rotor disk loading.</u> - Representative data in figure 23 show the expected effect of variations in rotor disk loading. Decreased levels of vehicle load coefficient result in decreased levels of normal-force coefficient at 90-percent rotor radius. The largest decreases appear at the low-speed, retreating-blade side of the disk. The high-speed data show some significant changes in pitching-moment coefficient for the advancing-blade side of the disk.

Hover, Descents, Turns, and Pull-ups

Flight data for test conditions other than level flight are reviewed briefly. The data are intended to illustrate trends and identify regions of interest.

<u>Hover</u>. - Representative hover data are presented in figures 24 through 27. Figure 25 shows the typical fourth-quadrant disturbances that can be attributed to tail-rotor effects. Test-point steadiness can be considered with the data of figure 26; some effects of rotor thrust and trim are shown in figure 27. All of the figures demonstrate that very slight winds, typical trim variations, and tail-rotor effects can produce significant variations from the perfectly steady conditions assumed in most hovering-rotor analyses.

<u>Descent.</u> - Some data for descent conditions are shown in figure 28. These data indicate that the change from level flight to descent affects not only the

level of blade-section normal-force required, but also the severity of bladevortex interactions.

<u>Maneuvers.</u> - Most of the data on blade-section aerodynamics for maneuvering flight were obtained near μ = 0.25 and are presented with reference data for level flight. Figures 29 and 30 have typical level-flight data in the figure formats which will be used for subsequent data presentation. Those level flight conditions are chosen as reference conditions because the maneuver data were obtained at approximately the same tip-speed ratios and have the same variation of Mach number with blade azimuth position.

Data for descending turns are given in figures 14 and 31 to 34. Figure 32 shows that more normal force (at 90-percent radius and most azimuth angles) is required in the turn than level flight. The numerous inflection points in the first-quadrant left-turn data indicate apparent blade-vortex interactions. Another point of interest in figures 32 and 34 is the reduction in the second-quadrant amplitude of pitching moments at conditions for higher values of vehicle load coefficient. This agrees with observations (ref. 18) that vibration levels could actually decrease with increased load factor during some maneuvers.

Data on symmetrical pull-ups are presented in figures 15 and 35 through 39. The data of figure 39 show that achievement of the test point requires a significant increase in blade-section normal forces over those for level flight; the data also show that blade-section operating conditions have changed noticeably from the pull-up test point to a point occurring later in the maneuver.

Figure 40 presents maneuver data for test points that did not meet the standard criteria for test-point condition. These data illustrate the extent to which the coefficients for left and right turns can differ at lower tip-speed ratios. Substantial amounts of supercritical flow are indicated.

Comparison of Flight Data With Theory and Wind-Tunnel Data

The effect of the rotor environment on blade-section aerodynamics can be studied by comparing flight data with both wind-tunnel data and theory for airfoils in two-dimensional, steady flow. The wind-tunnel data used herein was obtained from reference 20. Additional unpublished data are also used. The Reynolds numbers for both wind-tunnel tests were close to those for flight. The theoretical results were obtained with the transonic airfoil-analysis program described in reference 35. Appendix F provides details of this application of the computer program. The comparisons are developed using both airfoil coefficients and pressure distributions.

Comparisons of airfoil pitching moment based on three level-flight conditions are presented in figures 41 and 42. Values of pitching-moment coefficient for flight, wind-tunnel test, or theory are based on common conditions of Mach number and normal-force coefficient. The scale of the moment data has sufficiently fine increments to show clearly the small, but potentially significant differences in the curves. These differences can be attributed to several causes: rotor-flow effects in the flight data; accuracy of the twodimensional, steady-flow tunnel data; limitations of the airfoil theory; and the combined effects of accuracy and precision in the comparisons. These figures demonstrate that both force and moment characteristics for blade sections in a real rotor environment cannot be predicted to a high degree of accuracy using airfoil data obtained under simplified flow conditions.

Data for the high-speed case of figure 42 were selected for further consideration. Details of the data for that flight data are given in the listings for run 11 of flight 63 in Appendices D and E. This flight point was selected as having both a wide range of flow conditions and minimal indications of bladevortex interactions.

Comparisons of chordwise pressure distributions for flight, wind-tunnel, and theory are given in figure 43. The wind-tunnel data for this figure consist of unpublished, absolute-pressure measurements (which allow a more meaningful comparison). The agreement between the flight and the wind-tunnel results appears good for the three cases considered. The agreement between flight data and theory is generally good except for figure 43(b); in that comparison, the strenath the most prominent difference is the and location of upper-surface shock. In addition, figure 43 shows that small differences in the pressure distributions, primarily in the leading-edge and trailing-edge region, may contribute much to the differences in pitching-moment coefficient between flight data and theory.

The comparison of flight measured pressure distributions with theory may be extended over a wider range than with wind-tunnel data since theoretical methods allow a better matching of the flight Mach number and lift. Figure 44 presents comparisons between flight data and airfoil theory (ref. 35) at numerous blade azimuth angles for run 11 of flight 63. In most cases, the agreement is very good. Poorer agreement occurs between $\psi = 50^{\circ}$ and 80° and between $\psi = 130^{\circ}$ and 140° . At the lower azimuth angles, theory overpredicts the strength of lower surface suction peak and predicts a strong upper-surface shock evident in the flight data. At $\psi = 140^{\circ}$, the lower-surface agreement of theory with flight data is comparatively poor at 20-and 50-percent chord.

Figures 45 through 49 present the results of several brief studies of factors that could influence agreement between flight data and the theoretical predictions. Figure 45 indicates that prediction of the upper-surface shock location is not a problem at $\psi = 70^{\circ}$ until the aircraft reaches $\mu = 0.33$. Studies of the $\mu = 0.37$ case examined the effects of airfoil contour definition on the theoretical pressure distributions. Typical results (fig. 46) indicate only that the program is very sensitive to the smoothness of input airfoil coordinates. Even with evaluations at other test conditions, no further conclusions could be drawn about the effect of contour tolerences. Next, the computer program was modified to account for yawed flow by the appropriate thinning of the airfoil section and an increase of the free-stream Mach number. As indicated in figure 47, this simplified method produced a negligible change at $\psi = 70^{\circ}$. Results of similar computer-program studies for $\psi = 140^{\circ}$ are presented in figures 48 and 49. Other, unillustrated results showed no significant improve-

ment in pressure-distribution agreement at $\psi = 70^{\circ}$ and 140° when the computerprogram inputs were altered to account for accuracy limitations in the Mach numbers, normal-force coefficients, and other relevant parameters of the flight data.

Pressure distributions may also be affected by phenomena that are beyond the scope of this report. Blade boundary-layer complexities, such as separation and rotor-wake effects could be important. Another relevant phenomenon is the unsteady Mach number effect cited in reference 36. The more complex treatment of three-dimensional transonic flow in reference 37 suggests another potentially significant effect.

In general, the present study indicates that viscous two-dimensional transonic airfoil theory for steady flow yields a good approximation of blade-section pressure distributions provided that the operating conditions (Mach number and either lift, normal force, or angle of attack) are well defined, and that local blade-vortex interactions are minimal.

CONCLUDING REMARKS

A flight investigation has been conducted with a teetering-rotor helicopter to obtain data on the aerodynamic behavior of main-rotor blades having the section contour of the NLR-1T airfoil. Chordwise pressure distributions at 90percent rotor radius and the flight state of the rotor were measured.

Results show a wide variety of aerodynamic operating conditions for the instrumented blade section. Data are presented on apparent blade-vortex interactions, blade-section negative lift at high Mach numbers, and a variety of compressibility effects. Good agreement was achieved between most pressure distributions from flight and those from theory that assumes steady, two-dimensional, viscous, transonic flow. The primary comparisons were limited to a flight condition with no obvious effects of blade-vortex interaction or unsteady effects. Apparent blade-vortex interactions affected the measured chordwise pressure distributions by introducing disturbances that were significant over the forward portion of the blade section.

APPENDIX A. - SRBI PRESSURE DATA SYSTEM

Sensors and Installation

Each of the 13 pressure transducers was mounted to give accurate readings of aerodynamic pressure at a point on the surface of the instrumented blade. The sensing element of each absolute-pressure transducer consisted of a very short, strain-gauged, sealed can with a 0.64-cm diameter; the can was bonded to a plate. As indicated in figure 7, two posts that projected from the inner surface of the cover plate located and secured both the transducer plate and rubber mounting pad. Mounting pads and spacers for the posts were adjusted to hold the transducer assembly without transmitting structural loads. (This was verified in the blade loads calibration). The cover plates were secured and the cavities sealed so that the transducer responded only to external pressure applied through a 0.8-mm orifice in each cover plate. The surface at 90-percent rotor radius was then faired and smoothed before the contour was measured. Tests on sample blade segments indicated that local pressures, in the range measured in flight, produced no measurable local deformation. Typical transducer installations are shown in figures 8 and 9.

The frequency response of the typical installed transducer was flat within 0.6 percent of the excitation pressure level up to 200-Hz frequency. The uninstalled transducer had a resonant frequency of about 23,000 Hz. Each transducer was tested as installed because the shape and volume of the cavities were not identical. Results showed that the value of resonant frequency for the installed units ranged between 800 and 900 Hz.

Temperature and acceleration effects were also evaluated. Transducer installation, which oriented diaphragm approximately parallel to the rotor disk, reduced centrifugal and Coriolis effects to negligible levels. Laboratory tests showed that steady-state acceleration perpendicular to the diaphragm produced less than 10 Pa response per g unit. Flight tests with transducers in competely sealed cavities indicated that all acceleration and vibration components produced negligible effects on the pressure data. Laboratory calibrations determined values for temperature sensitivity and zero shifts for each transducer. Blade temperature was measured in the pressure-transducer cavity at 60-percent chord on the upper surface. An exploratory flight was made with a second thermistor temporarily located on the upper surface at 10-percent chord; the resulting data indicated that the standard, rearward sensor gave reasonable values. The temperature sensed at 60-percent chord was utilized subsequently in applying corrections for all blade sensors. Although sources of viscous heating, convective cooling, and structural heating could not be uniformly distributed, blade temperature gradients appeared to be mild; possibly this was due to the conductivity of the aluminum substructure and the insulating properties of the covering honeycomb and fiberglass.

Pressure-Data Electronics

SRBI signal conditioning for the pressure and blade temperature sensors was located on an electronics board mounted in a cavity on the lower surface at

the blade tip (fig. 11.) Short leads carried the analog pressure-data signals from each sensor to the pressure-data electronics. The electronics produced multiplexed PCM signals that were sent to a terminal at the blade root and from there to the mast-mounted canister. The proper airfoil coordinates were main-tained by fairing in the electronics-board cover plate and routing all leads beneath the honeycomb.

Preflight Calibration

Both pressure and temperature sensors were laboratory calibrated, and the entire pressure system was calibrated before each flight. The fixture shown in figure 11 was clamped over the 90-percent blade radius prior to each flight. Three levels of pressure were applied: ambient, 96.53 kPa (14.00 psi) and 62.05 kPa (9.00 psi). Pressure was measured by a gauge located in series with the vacuum pump; suction was applied simultaneously to all cavities through manifolds in each block of the fixture. Flexible sealing material on each block assured an adequately tight fit. Static check-calibrations gave highly linear, repeatable results. Each preflight calibration determined the sensitivites and zeros for the pressure system for that flight.

APPENDIX B. - PRESSURE DATA REDUCTION

The data-reduction process operated on all of the data obtained for each designated test-point time. A computer program processed all the flight data. First it reduced flight-state and other data from the PADS records for one point in time; it then reduced data for blade-section aerodynamics and blade loads for the rotor revolution containing that time. Many of the data sets of reference 18 provide results for test points listed in this report.

Values of corrected, dimensional pressure were computed for each pressure transducer for every two degrees of rotor azimuth. Temperature effects were corrected by the method of reference 30 and using the constants given in Table V. The time for each channel was incremented to account for multiplexing. Time was also adjusted for the lag introduced by the response dynamics of the pressure system (Appendix C and Table V). Simultaneous sets of pressure data for all 13 transducers were computed by using linear interpolation between the measured, corrected data points.

These data were converted to nondimensional pressure coefficients. Rotor azimuth and rotational speed were required from SRBI data; true airspeed, air density, and static pressure were obtained from PADS data. The nondimensionalizing values of blade-section dynamic pressure were calculated for the flow component normal to the blade leading edge; yawed flow was not considered. The accuracy of the resulting pressure coefficients varies with rotor azimuth and tip-speed ratio, both of which affect local dynamic pressure.

Airfoil force and moment coefficents were obtained using the integration methods of reference 31. The set of required inputs for those methods consists of the pressure-coefficient values, locations of the pressure orifices, Mach number, trailing-edge pressure coefficient, and leading-edge stagnation point. Empirical relationships for the latter two items were developed with wind-tunnel data, such as from reference 20, and with results from airfoil-analysis computer programs of references 35 and 38. The required value of trailing-edge pressure coefficient was computed from the following empirical equation:

$$C_{p,te} = 0.1 + 0.25M$$
 (B-1)

As in reference 31, stagnation point was determined as a function of effective angle of attack. That angle was calculated as a function of Mach number and differential-pressure coefficient for 10-percent chord as follows:

$$\alpha_{e} = -1.84^{\circ} + 1.26 \text{ M} + k_{m} (C_{p,l} - C_{p,u}) \bigg| \frac{x}{c} = 0.10$$
 (B-2)

where k_m , a function of Mach number, is simply related to lift-curve slope. (This empirical expression reflects the utilization of available data.).

Tables were used to compute values of x/c and y/c associated with the effective angle of attack. Figure 50 presents plots of these tabulated values.

Some effects of the curve-fit and integration method of reference 31 can be observed in figure 51. The automated curve-fit method operated with values of $C_p \sqrt{x/c}$ given as function of $\sqrt{x/c}$. Figure 51 presents sample cases of flight data with the computer-generated curve fits for both the new and a conventional coordinate system. The area between the upper- and lower-surface curves for either plot is equivalent to normal-force coefficient. The method of reference 31 has the advantage of achieving a good fit for steep suction peaks at the airfoil leading-edge (fig. 51(d)). In some cases, such as shown in figure 51(a), the low number of pressure transducers may have degraded the potential for accurate pressure-field representation with the curve-fit routine.

APPENDIX C. - CORRECTIONS FOR THE DYNAMIC-RESPONSE CHARACTERISTICS

OF THE PRESSURE-DATA SYSTEM

Dynamic-response characteristics of the SRBI pressure-data system produced some distortions in the data records. As in most systems, the primary criterion for judging these characteristics is the 3db or cutoff frequency (the frequency of a sinusoidal input signal which produces 3db attenuation). Although reference 30 indicated that the cutoff frequency was 200 Hz for pressure data, the actual values were determined to be less (Table V). Various correction techniques were evaluated, and the frequency content of the data records was reviewed. As a result, a simple time-lag correction was determined to be appropriate.

Initially, the z-transform method was evaluated because it was the most promising means of correcting both phase and amplitude effects on the digital records (ref. 39). A first-order interpolator, representing the digital sampling of a continuous system, was combined with a compensating network to yield the following Laplace equation:

$$\frac{\text{Output}}{\text{input}} = \frac{e^{ST}}{T} \left(\frac{1 - e^{ST}}{s}\right)^2 \quad \left(\frac{s + \omega_c}{\omega_c}\right) \left(\frac{K\omega_c}{s + K\omega_c}\right) \quad (C-1)$$

where T is the sampling increment in seconds, ω_c is the cutoff frequency, and K is the ratio of effective to actual cutoff frequency. When the substitution of $z = e^{sT}$ is made, the time-domain result is given as:

$$F_{c}(t) = \frac{K_{1}}{TK\omega_{c}} F(t) + \frac{K_{2}}{TK\omega_{c}} F(t-1) + K_{3} F_{c}(t-1)$$
(C-2)

where t is time, F and F_C are uncorrected and corrected responses, respectively, and the other constants are:

$$K_1 = K (1 - K_3 + T_{\omega_c}) - 1 + K_3$$

 $K_2 = K (K_3 - 1 - T_{\omega_c} K_3) + 1 - K_3$
 $-K_{\omega_c}T$
 $K_3 = e$

This approach was evaluated with an input function of a unit-amplitude cosine wave with frequencies between 10 and 200 Hz. The output functions were harmonically analyzed, and the resulting coefficients are shown in figure 52. The solid line is the adjustment required if the system was purely analog. The zero-order hold method over-compensated, but the first-order hold version of the Markel method (ref. 39) appeared to give good results.

Processing of data for selected time segments led to the selection of a simple lag correction. Figure 53 presents fairly active data records with and without processing by a z-transform compensating network; that figure also permits a comparison between the compensated data and a 12-harmonic reconstitution of that curve. The results of this and other studies show that the frequency content of the data is not sufficiently high to warrant more than a lag correction. Such a correction is consistent with the constant-delay analog filters used in the SRBI pressure system.

The delay time for each channel was calculated with the following equation:

$$t_{d} = -(2\pi f)^{-1} \tan^{-1}(f/f)$$
 (C-3)

where f is the input frequency, f_{3db} is the cutoff frequency and the arc tangent is expressed in radians. The resulting values are given Table V. The phase angle shift may also be expressed as a function of harmonic frequency for the test-vehicle rotor. Figure 54 presents a comparison between results for the constant-delay approximation used in data reduction and the delay of equation (C-2).

APPENDIX D. - AIRFOIL PRESSURE COEFFICIENT DATA

Computer-generated listings of airfoil pressure coefficient data are identified in terms of flight number, run number, and time. Also given are tip-speed ratio (MU), vehicle load coefficient (CLP), and blade temperature (TEMP(U6O)). One column of pressure coefficient data is given for each pressure orifice location, as designated by a value of x/c (X/C). No value is given for the 35-percent-chord, upper-surface location due to instrumentation lead problems.

The data of Table VI serves as a guide for the contents of this appendix.

AI	RFOIL P	RESSURE D	DATA .9	BLADE RA	DIUS		NASA-	LANGLEY A	H - 1G		78/10/1	2.		
FL	T 61	RUN 268	TIME 5	5556.200		MU= 0.	000 C	LP= .003	39 TEM	P(U60)=	12.7 C =	54.82 F		
		UPPER S	SURFACE C	P VALUES							LOWER	SURFACE	CP VALUES	
X/C=	•02	.10	• 20	• 35	•50	•70	•80	•90	•02	.10	.20	•50	.70	• 90
AZIMUTH														
0.	331	772	490		292	258	125	.060	.214	.018	056	079	038	036
2.	328	761	L488		292	258	125	.065	.211	.018	063	086	038	040
4.	313	761	489		291	259	131	.067	•194	•016	072	089	038	048
6.	301	761	L488		291	259	138	.062	.180	.002	077	096	045	048
8.	297	761	48 6		290	268	138	.062	.176	000	083	098	048	048
10.	282	761	488		290	273	138	.063	.163	013	085	098	049	049
12.	272	761	L490		300	273	138	.063	.163	013	085	098	049	049
14.	266	762	490		304	272	138	.068	•162	014	088	099	048	048
16.	257	761	L488		304	272	138	.070	.163	013	088	099	048	047
18.	257	769	490		302	273	138	.073	.156	013	085	108	048	048
20.	257	·776	490		292	272	138	.071	.145	014	088	099	048	048
22.	257	776	491		304	272	138	.070	.145	014	088	099	048	047
24.	257	776	o ≁ •502		304	272	138	.070	.145	014	088	108	048	047
26.	249	776	502		304	272	139	.070	.145	014	088	108	048	047
28.	242	776	501		304	285	138	.070	.145	014	088	108	048	047
30.	251	786	500		304	272	138	.070	.146	013	088	108	048	047
32.	257	790			303	273	138	.073	.145	013	085	108	048	048
34.	257	789	499		304	272	138	.071	.146	013	087	108	048	048
36.	257	789	500		302	275	138	.074	.157	013	085	108	049	048
38.	257	790)501		303	286	139	.074	.151	013	086	108	048	049
40.	257	789	500		303	286	138	.070	.146	013	087	108	048	047
42.	257	803	506		303	286	138	.074	.145	013	086	108	048	049
44.	257	804	513		308	286	138	.070	.159	014	088	108	048	047
46.	257	804	513		312	286	138	.070	.162	014	088	108	048	047
48.	257	804	512		308	286	138	.070	.162	014	088	108	048	047
50.	271	818	512		311	286	138	.071	.178	013	087	108	048	047
52.	272	819	520		308	286	138	.073	.180	.000	081	108	048	048
54.	-,287	832	2525		316	286	138	.070	.180	.002	077	108	048	047
56.	287	832	2525		316	286	138	.070	.180	.002	077	108	048	050
58.	288	834	525		316	286	138	.070	.197	.002	077	108	048	059

FLT 61 RUN26B

21

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

78/10/12.

ы н

FLT	61 f	RUN 25B	TIME 5	556.200		MU= 0	.000 CL	F= +00339	TEMP	P(U60)= 12	.7 C =	54.82 F		
		UPPER St	URFACE CF	VALUES							LOWER	SURFACE	CP VALUES	
×/C= Azimuth	•02	.10	•20	•35	.50	•70	.80	•90	•02	.10	•20	•50	•70	•90
60.	301	846	525		316	286	138	.070	.197	•002	077	108	048	059
62.	301	846	525		316	286	138	.070	.197	.002	077	108	048	059
64.	304	846	525		316	286	138	.070	.197	.002	077	108	048	059
66.	316	850	534		316	286	138	.070	•199	.004	077	108	048	059
68.	315	660	536		316	286	138	.070	.214	.018	077	108	048	059
70.	320	660	536		316	286	138	.070	.214	.018	077	108	048	059
72.	331	865	536		316	286	138	•070	.218	.018	077	108	048	059
74.	336	874	536		316	286	138	.070	.231	.018	077	108	048	059
76.	346	-,880	547		316	286	138	.070	.236	.022	077	108	048	059
78.	351	888	548		316	286	145	.070	.248	•033	077	108	048	059
80.	361	888	548		316	286	142	.070	•248	.033	077	108	048	059
82.	367	888	548		316	286	139	.070	.255	.033	067	108	048	059
84.	382	883	548		328	286	139	.970	.272	.039	067	108	048	059
86.	397	888	548		317	286	138	.070	.282	.049	056	099	048	059
88.	412	888	546		316	-,286	138	.070	.291	.056	056	099	048	059
90.	428	907	548		327	286	138	.073	.308	.065	053	098	049	068
92.	443	916	548		328	286	138	.071	.335	.073	056	099	048	071
94.	467	926	560		327	286	138	.073	.351	.080	052	098	049	071
96.	498	930	560		327	286	138	.071	.361	.080	045	099	048	071
98.	518	942	560		316	286	139	.070	.379	.089	043	099	048	070
100.	534	944	563		316	286	138	•070	.397	.105	035	099	048	060
102.	560	956	571		316	286	138	.070	.414	.111	032	096	048	069
104.	579	971	571		319	286	138	.070	.432	.122	024	089	046	060
106.	606	985	570		329	286	138	.070	.450	.126	024	089	038	070
108.	636	-1.000	570		328	286	138	.071	.468	.139	019	089	038	059
110.	654	-1.001	577		327	286	138	.073	.471	.142	011	089	038	072
112.	683	-1.001	583		329	286	138	.070	.485	.155	009	089	038	070
114.	699	-1.015	583		329	286	138	.070	.488	.157	002	089	038	070
116.	700	-1.016	583		329	286	13A	.070	.504	.157	002	089	038	070
118.	715	-1.029	583		329	286	139	.070	.505	.157	.003	089	038	070

NASA-LANGLEY AH-16

FLT 61 RUN26B

_

.

.

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

.

NASA-LANGLFY AH-1G

.

78/10/12.

.

.

	FLT 61	RUN 268	TIME 55	556.200		MU= 0.	000 CL	•• •0033	9 TEMP	(U60)= 12	•7 C =	54.82 F		
		UPPER	SURFACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/C	.02	.10	•20	• 35	.50	• 70	. 80	.90	.02	.10	.20	• 50	.70	.90
AZIMUT	'H					- • •	• • •	• • •					••••	••••
120.	73	0 -1.03	1583		329	286	139	.070	.505	•172	.008	084	038	070
122.	74	5 -1.04	3590		329	286	138	.070	.505	.173	•008	079	038	070
124.	74	6 -1.04	3595		329	286	138	.070	• 506	•173	.008	079	038	070
126.	76	1 -1.04	6595		329	286	138	.070	• 522	.173	•008	079	038	070
128.	~.77	4 -1.05	7595	·	329	286	138	.070	• 5 2 2	.173	.008	~.079	038	070
130.	~.77	4 -1.05	7595		329	286	138	.070	•522	.173	•008	079	038	070
132.	~.77	4 -1.05	7595		329	286	138	.070	• 522	•175	.016	079	038	070
134.	77	8 -1.06	2595		329	286	139	.070	• 522	.189	.019	072	038	070
136.	79	3 -1.07	1595		329	286	138	.070	• 526	.189	.019	070	038	070
138.	80	4 -1.07	1595		329	286	138	.070	.540	•189	.019	070	038	070
140.	-,80	4 -1.07	1595		329	286	138	.070	• 540	.189	.019	070	038	065
142.	-,80	9 -1.07	1595		329	286	138	.070	•534	.189	.019	070	038	059
144.	81	8 -1.07	1595		318	286	138	.070	•522	.189	.019	070	038	065
146.	81	8 -1.07	1595		316	274	138	.070	• 522	•189	•019	070	038	064
148.	81	8 -1.07	1595		316	272	138	.070	• 522	•189	.019	070	038	066
150.	81	s -1.07	1595		316	272	138	.070	• 522	.189	•019	070	038	063
152.	81	8 -1.06	2595		328	272	128	.070	• 522	.189	•019	070	038	059
154.	81	8 -1.05	7593		328	272	125	.070	• 522	•189	.019	070	038	059
156.	81	8 -1.05	7583		316	272	125	.070	• 5 2 2	.189	•019	070	038	059
158.	81	8 -1.05	7583		317	272	125	.070	.522	.189	.019	070	038	059
160.	81	8 -1.05	7583		329	272	125	.070	• 522	.189	.021	070	038	059
162.	81	8 -1.04	6583		327	272	125	•070	• 522	.189	.030	070	038	059
164.	81	8 -1.04	3583		316	272	125	.070	• 522	.189	.030	070	038	059
166.	82	9 -1.04	3583		316	272	125	.070	.522	.189	.030	070	038	059
168.	83	3 -1.04	3583		316	272	125	•070	• 522	•189	.030	070	038	059
170.	83	3 -1.04	3583		316	272	125	.370	• 522	.189	.030	070	038	059
172.	84	6 -1.04	3583		316	272	125	.070	•536	•189	.030	070	038	059
174.	84	8 -1.04	3583		316	272	125	.070	•540	•201	.030	070	038	059
176.	84	8 -1.04	3583		316	272	125	.070	• 540	•204	•030	066	034	059
178.	84	8 -1.04	3583		316	272	125	.070	• 540	.204	•030	060	027	059

FLT 61 RUN26B

	AIRFOIL P	RESSURE D	0ATA •9	BLADE RAD	SUIUS		1224	-LANG	SLFY AH-	16		78	/10/1	2.		
	FLT 61	RUN 26B	TIME 5	5556.200		MU= 0.0	000	CL P=	.00339	TEM	P (U60)=	12.7	'C =	54.82 F		
		UPPER S	URFACE C	P VALUES									LOWER	SURFACE	CP VALUES	
X/ AZIMU	C= •02 TH	.10	•20	• 35	•50	•70	• 80	I	•90	•02	•10)	•20	• 50	• 70	•90
180.	848	-1.043	583		316	272	12	5	.070	.540	.204	•	•035	060	027	059
182.	863	-1.043	588		-,316	266	12	5	.070	.540	.204	•	.040	060	027	059
184.	863	-1.043	594		315	265	12	5	.071	• 540	.205	5	.042	055	028	059
186.	863	-1.045	595		315	272	12	5	.073	.540	.204	•	.042	050	028	060
188.	864	-1.057	595		316	272	12	5	•070	• 540	•204	•	.040	050	027	059
190.	878	-1.057	593		316	272	12	5	.070	• 540	.219	,	.047	050	027	059
192.	877	-1.057	- 594		315	272	12	5	.072	.540	.206	5	.047	050	028	059
194.	878	-1.057	595		316	272	12	5	.072	.540	.220)	•049	050	028	060
196.	878	-1.057	595		316	272	12	5	.070	• 542	• 220)	.051	050	027	059
198.	881	-1.057	593		316	272	12	5	.070	• 557	•220) .	•051	050	027	059
200.	892	-1.062	592		324	272	12	5	.072	•557	• 220)	.054	035	021	059
202.	897	-1.071	592		327	273	12	5	.074	.557	.220)	.055	031	018	060
204.	907	-1.065	 594		317	273	12	5	.074	.557	.220)	.064	031	018	060
206.	907	-1.057	595		316	272	12	5	.072	• 557	.220)	•053	031	018	060
208.	913	-1.057	592		316	272	12	5	.070	.557	.225	5	.051	031	017	059
210.	922	-1.057	595		315	273	12	5	.073	.557	.236	5	•064	031	018	060
212.	929	-1.057	592		316	272	12	5	.071	.557	.236	5	.062	031	018	059
214.	937	-1.057	594		315	273	12	5	.073	.565	.236	5	.065	031	018	060
216.	937	-1.057	593		316	259	12	5	.071	.574	.236	ò	.062	031	017	059
218.	937	-1.057	594		303	259	12	5	.073	.574	.236	5	.065	031	018	060
220.	937	-1.047	590		316	258	12	5	.071	.574	.236	5	.062	031	017	059
222.	937	-1.043	581		302	259	12	5	.073	.565	• 228	3	.064	031	018	060
224.	937	-1.043	581		302	259	12	5	.065	.557	.220)	.055	031	018	060
226.	937	-1.043	581		302	259	12	5	.073	.557	.220	2	.055	031	019	060
228.	926	-1.031	581		302	259	12	5	.074	.557	.220)	.055	031	028	060
230.	922	-1.029	581		302	259	12	5	.064	.557	.220)	.055	031	028	060
232.	-,910	-1.029	577		302	259	12	5	.063	.557	.220)	.055	031	028	060
234	907	-1.616	569		302	259	12	5	.063	.557	.220	D	.055	031	028	060
236.	895	-1.015	569		302	259	12	5	.063	.544	.220	0	.055	031	028	060
238.	892	-1.001	569		302	259	12	5	.063	.540	208	3	.051	031	028	060

-

FLT 61 RUN26B

1

+

•

•

.

	AIRF	DIL P	PRESSURE D	ΑΤΑ	•9	BLADE RA	DIUS		NAS	4-LAN	GLEY AH-	16		78	/10/1	2.		
	FLT	61	RUN 268	TIME	55	556.200		MU= 0.	000	CL P=	.00339	TEM	P (U60)=	12.7	с =	54.82 F		
			UPPER S	URFACE	CP	VALUES									LOWER	SURFACE	CP VALUES	
X/ AZIMU	C= TH	• 02	.10	• 21	0	•35	•50	•70	• 8	0	.90	.02	•10	D	•20	.50	.70	•90
240.		879	9 -1.003	5	65		302	259	1	25	.063	•540	.205	5	• 044	031	028	060
242.		864	986	5	59		303	259	1	25	.063	.525	.204	4	.042	039	028	059
244.		834	971	5	52		303	259	1	25	.061	.508	.191	L	.037	050	028	047
246.		819	9957	5	48		303	259	1	25	.063	.505	•189	7	.032	050	024	048
248.		789	944	5	48		304	258	1	25	.060	.489	.189	9	.030	050	017	047
250.		774	4942	5	48		304	258	1	25	.060	.488	.189	7	.030	050	017	047
252.		773	3928	5	40		304	258	1	25	.060	.488	.17	3	.030	050	017	047
254.		750	5910	5	36		304	258	1	25	.060	.487	.17	3	.030	050	017	047
256.		728	888	5	26		296	258	1	25	.060	.470	.17	2	•023	050	017	047
258.		710	 888	5	22		291	259	1	25	.052	.452	.158	3	.021	050	018	048
260.		682	2883	5	24		290	259	1	25	.063	.437	.156	5	.015	050	025	049
262.		671	874	5	25		291	259	1	2.5	.057	.437	14	2	.009	050	028	048
264.		663	3874	5	25		292	258	1	25	.050	.433	.142	2	.008	050	027	047
266.		637	7868	5	25		292	258	1	25	.050	.420	.139	9	.008	050	027	047
268.		622	2860	5	14		292	258	1	25	.050	.415	.126	5	000	050	027	047
270.		612	2860	5	13		292	258	1	25	.056	.402	.126	5	002	059	027	047
272.		600	5853	5	13		292	258	1	25	.054	.397	.120	5	002	060	027	047
274.		593	846	5	13		292	258	1	25	.057	.385	.121	t	002	060	027	047
276.		575	5838	5	13		292	258	1	25	.060	.378	.11	1	002	060	027	047
278.		560	832	5	13		292	258	1	25	.060	.368	.111	ī	013	060	027	047
280.		545	5823	5	13		292	258	1	25	.060	.360	.11	1	013	060	027	047
282.		538	818	5	13		292	258	1	25	.052	.351	.111	i -	013	060	027	047
284.		538	8818	5	11		292	258	1	25	.050	.351	.11	1	012	060	027	047
286.		52	818	5	02		292	258	1	25	.050	.351	.10	3	004	060	027	047
288.		514	4818	5	03		292	258	1	25	.050	.341	09	5	013	060	027	047
290.		498	817	5	08		291	257	1	25	.050	.335	.09	5	012	062	028	047
292.		49	817	5	10		289	248	1	26	.066	.335	.09	7	006	069	029	049
294.		49	3818	5	12		289	260	1	26	.057	.334	.09	6	008	069	029	050
296.		49	817	5	10		291	259	1	25	.050	.322	.080	5	011	067	028	048
298.		49	818	5	13		289	259	1	26	.066	.317	.080	5	008	060	029	050

FLT 61 RUN26B

.

.

¥ 4

.

. .

	AIRFOIL	PRESSURE	DIUS		NASA-L	ANGLE	Y AH-1	G		78/1	0/1	2.				
	FLT 61	RUN 26B	TIME	55556.200		MU= 0.	000 <u>CL</u>	P= .	00339	TEMP	(U60)=	12.7 C	•	54.82 F		
		UPPER	SURFACE	CP VALUES								LO	WER	SURFACE	CP VALUE	s
/ X ۵7 tmli	С= ₀02 ТН	.10	•20	• 35	•50	• 70	.80	•9	0	• 02	•10	•	20	• 50	.70	• 90
	• • •															
300.	49	381	851	3	292	258	125	• 0	50	.317	.080		013	060	027	047
302.	49	381	850	6	292	258	125	.0	51	.317	.080		013	063	027	036
304.	48	081	849	9	-,292	258	125	.0	60	.317	.080		017	070	027	036
306.	47	881	749	9	290	259	125	• 0	61	.318	.081		021	065	028	037
308.	47	981	850	2	290	259	128	• 0	65	.317	.080		020	060	029	050
310.	47	981	850	2	292	258	138	• 0	60	.317	.080		024	060	027	047
312.	47	981	850	8	292	258	134	• 0	60	.317	•080		024	060	027	047
314.	47	881	850	4	292	258	125	• 0	60	.300	•080		024	065	027	047
316.	40	261	350	1	291	259	125	• 0	61	.300	.081		022	069	028	048
318.	44	981:	550	2	291	259	125	• 0	62	.299	.064		029	069	028	048
320.	44	780	450	2	292	258	125	• 0	60	·282	.064		035	076	027	044
322.	43	480	450	2	292	258	125	• 0	60	.282	.064		035	073	027	036
324.	43	179	949	2	292	258	125	• • 0	60	.282	.064		035	070	027	036
326.	42	079	049	0	292	258	125	• 0	60	.282	• 064	·	035	070	027	036
328.	42	079	049	0	292	258	125	• 0	60	.279	.064	· · ·	035	070	027	036
330.	41	579	049	0	292	258	125	• 0	60	.265	.061		035	070	027	036
332•	40	579	049	0	292	258	125	.0	60	.265	.049		035	070	027	 036
334.	40	579	048	8	292	258	125	•0	60	.260	.049		044	070	035	036
336.	39	978	949	0	290	259	133	• 0	52	.248	.049		042	069	038	043
335.	39	079	049	0	291	258	138	• 0	61	.248	• 049		045	070	038	048
340.	39	079	049	0	292	258	138	• 0	60	.248	.049		045	079	038	055
342 •	39	079	049	0	292	258	128	• 0	60	.248	.049		045	079	038	051
344.	39	079	049	0	292	258	125	• 0	60	.248	.049		045	079	038	039
346.	38	279	049	0	292	258	125	• 0	60	.240	.041	· ·	045	079	038	036
348.	37	578	048	8	291	258	125	.0	69	.231	.033		046	080	038	036
350.	36	677	548	7	290	259	125	• 0	64	.232	.034		053	089	038	037
352.	35	0764	448	3	-,290	259	125	•0	73	.222	.034		052	089	039	037
354 •	33	576	147	3	287	260	138	•0	77	.215	.025		049	087	039	038
356.	33	076	147	3	276	260	127	• 0	67	.204	.019		051	079	039	038
358.	31	974	947	3	276	260	139	• 0	67	.186	.009	~.	063	081	039	038

FLT 61 RUN26B

.

.

-

.

.

A 1 1	REUIL PP	ESSURE DA	TA .9 B	LADE RAC	IUS		NASA	-LANG	SLEY AH-	·16		78/11/1	4.		
FL	Г 63 Р	IJN 1	TIME 537	18.300		MU =	.151	CLP=	.00423	TEM	P(U60)=	9.2 C #	48.63 F		
		UPPEP SU	RFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
X/C= Azimuth	• 02	.10	.20	. 35	.50	.70	•80)	•90	•02	.10	•20	.50	•70	.90
0.	284	809	505		390	323	17	'8	.073	• 197	067	069	096	055	055
2.	259	800	505		399	318	317	/5	.069	.173	080	074	094	056	052
4.	238	791	508		394	315	.17	/3	.080	.150	097	082	108	064	052
6.	203	782	502		389	311	17	/1	.079	.127	100	086	112	067	065
8.	181	773	496		390	~.313	16	9	.078	.104	113	097	122	075	064
10.	146	764	491		395	322	216	57	•077	.082	115	103	132	074	063
12.	126	755	485		391	319	16	»5	.076	.079	128	108	137	073	063
14.	108	749	477		386	315	.16	<i>i</i> 3	.076	.059	~.129	118	135	072	062
16.	089	753	472		387	320)16	12	.076	• 039	142	127	134	072	062
18.	072	731	469		389	327	7 -,16	1	.083	.018	142	130	133	077	063
20.	039	726	473		387	323	316	•3	•083	002	157	137	131	081	061
22.	023	731	472		384	328	17	'1	.076	040	172	149	142	080	059
24.	006	724	466		388	333	316	,4	.083	059	186	152	149	079	062
26.	.010	717	461		388	330)15	9	.083	077	185	156	148	079	071
28.	.025	710	45 P		384	-,327	716	57	•084	006	197	158	153	085	071
30.	•041	-,703	454		381	323	316	› 5	.087	113	198	165	162	088	070
32.	.056	697	450		387	330)16	,3	.085	131	209	168	163	086	064
34.	.071	690	443		388	333	316	>1	.084	148	210	174	162	086	061
36.	.085	684	44?		381	331	16	1	.091	165	~.220	180	161	087	069
38.	•099	679	449		380	328	315	;9	.090	182	222	192	167	092	063
40.	.109	673	446		388	336	16	5	.087	198	232	193	167	093	060
42.	.113	668	443		387	338	316	9	•086	215	~. 234	200	174	093	060
44.	.127	663	439		384	-,335	516	, 8	•086	225	~.243	200	174	092	060
46.	.140	658	436		381	333	316	7	.085	229	246	199	173	091	065
48.	.154	653	433		389	343	316	› 5	.084	245	259	207	172	091	064
50.	.180	641	430		377	343	316	,4	•084	274	272	216	179	090	064
52.	.222	623	427		374	341	 16	•3	.083	324	290	225	178	098	063
54.	.249	614	425		383	339		»2	•083	358	305	233	168	098	056
56.	.232	619	433		381	337	716	1	.082	341	290	231	176	089	052
58.	.189	637	443		377	350)17	/1	.084	280	253	198	174	080	052

.

FLT 63 RUN1

27

٠

ΑŢ	AJREDIL PRESSURE DATA .9 BLADE RADIUS						NAS A-	-LANGLE	EY AH-	-16		78/11/1	4.		
FL	T 63 PI	UN 1	TIME 53	18.300		MU=	.151	CLP= 4	00423	B TEMI	(U60)=	9.2 C =	48.63 F		
		UPPER SU	JRFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
¥/C= &7.1MUTH	•02	•10	•20	•35	.50	•70	•80	• "	90	.02	.10	•20	.50	.70	•90
60.	•154	661	461		387	348	17	2.0	092	220	224	-,179	158	079	061
62.	.134	584	459		387	346	16	1.0	091	196	216	180	165	078	070
£4 .	.128	698	454		396	344	15	8.0	998	196	222	180	164	087	072
66.	•136	708	446		394	343	~.15	7.0	090	205	228	188	163	086	072
68.	.140	698	450		392	342	15	7.0	089	220	235	186	163	085	062
70.	.149	682	454		388	342	15	7.0	094	236	231	182	162	078	063
72.	.152	678	463		390	339	15	6.0	079	230	216	174	159	076	061
74.	•132	676	469		389	-,335	16	7.0	079	201	202	161	150	076	060
76.	.094	697	468		388	326	16	7.0	079	145	178	144	143	076	060
78.	.054	721	467		390	-, 336	160	5 .(979	079	150	134	143	074	060
80.	.026	746	475		397	332	16	5.0	079	027	143	128	142	066	060
82.	003	770	486		397	321	15	4.0	079	.009	132	127	142	066	060
84.	019	795	476		392	321	15	2.0	087	.015	129	127	142	069	060
86.	020	807	464		389	320	14	2.0	387	.015	129	127	142	075	069
88.	032	820	464		391	320	14	2.0	087	.015	129	127	142	075	060
90.	033	833	464		389	320	14	2.0	087	.000	141	131	142	075	060
92.	033	844	464		396	320	14	2.0	087	001	142	136	142	071	060
94.	007	845	464		390	320	14	2 .C	087	016	142	136	142	066	060
96.	006	845	465		385	321	14	2 .C	087	033	155	137	142	066	060
98.	.006	846	465		386	321	14	2 .(088	049	156	142	142	066	057
100.	.008	845	459		386	322	14	2.0	088	065	156	146	142	066	049
102.	.019	834	456		387	322	14	2.0	8'80	082	170	147	143	067	050
104.	.022	826	455		381	323	14	3.0	084	096	170	147	143	067	050
106.	.033	824	455		375	316	14	9.0	081	099	171	145	144	063	047
108.	.036	805	451		375	321	15	1.0	085	113	184	144	138	060	046
110.	.046	779	- 451		379	317	14	5.0	087	116	185	147	136	059	052
112.	.047	763	450		381	322	14	5 .0	089	130	186	149	136	065	050
114.	.047	739	445		380	319	14	6 .0	590	134	186	146	130	069	052
116.	.047	721	436		384	316	14	6 .0	087	147	187	-,149	128	- 069	052
118.	.047	711	437		377	306	14	6 .(0.81	148	188	151	- 129	- 068	051

28

.

۲

FLT 63 RUN1

6 T F	FUIL PPE	SSURE DA	TA .9 P	LADE RAI	DIUS		NAS	1-LAN	GLEY AH	-1G		78/11	1/14.		
FL	F 63 PL	IN 1	TIME 537	18.300		MU≖	.151	CLP=	•0042	3 TEM	P(U60)=	9.2 C	= 48.63	F	
		UPPER SU	RFACE CP	VALUFS								LOV	IER SURFA	CE CP VAL	UES
= 7/X HTUMIISA	• 02	.10	•20	.35	•50	.70	• 80)	•90	.02	.10	• 2	.5	0.70	•90
120.	•052	702	426		377	315	5 14	•7	.081	153	193]	521	2906;	2051
127.	.062	685	418		366	309)1	+9	.085	166	204	1	491	31069	9053
124.	.062	675	419		367	308	1	+1	.086	167	205	1	.511	3106	3054
126.	.062	665	424		368	310)14	+6	•087	174	206	1	.501	32071	1048
128.	• 062	~.650	414		373	311	1	51	•078	185	208	1	.551	32067	2042
130.	.063	648	419		374	314	1	52	.076	187	209	1	541	34067	2043
132.	.063	644	419		379	315	1	j3	.075	196	210]	571	34067	2042
134.	.064	635	410		379	318	1	+4	.077	206	212	1	561	35063	3043
136.	.065	625	413		368	306	1	+3	.081	208	213	1	551	2706	5045
138.	.065	616	417		359	308	314	+4	.082	209	215	1	471	2706	5046
140.	•065	617	408		365	309	1	4	.077	211	209	1	511	19064	4044
147.	.066	611	410		365	313	1	+6	.083	202	203	1	491	21066	6046
144.	.057	602	403		369	315	· -•1	+7	.081	197	205]	.501	2106	5046
146.	• 052	604	407		369	317	/14	+9	•084	199	207	1	.401	2305	7047
148.	.053	610	413		362	~ •305	1	50	.075	188	199	1	421	24051	8048
150.	.041	603	413		367	307	71	51	.073	184	196	1	431	2205	7047
152.	.038	593	406		371	307	1	52	•070	186	197	1	.371	1905	7046
154.	•039	598	406		369	298	1	j4	.077	188	199	1	351	2705	9049
156.	•025	604	403		367	300)1	42	.078	175	189	1	.331	29060	0049
158.	•024	595	408		377	303	14	• 3	.075	157	187	1	.281	2605	7048
160.	.010	601	414		373	306	14	+6	.076	155	190	1	.311	20049	9049
162.	.008	592	412		373	303	1	5 0	.074	157	178	1	.331	2104/	8048
164.	007	597	410		368	294	1	59	.075	141	177	1	301	18040	9048
166.	009	589	413		366	297	/14	+9	•076	140	179	1	251	13040	9049
168.	008	595	409		368	301	1	50	.077	123	181		.251	.0905	1050
170.	025	600	408		372	305	51:	52	.077	123	167	1	191	.0505	2052
172.	025	59?	411		368	308	1	54	.070	124	167	1	141	0605/	2050
174.	043	599	415		371	312	1	j6	.071	105	169	1	141	0705	4040
176.	044	603	404		366	317	1	58	.075	106	171	1	.071	09049	9041
178.	046	596	398		367	309	10	50	.073	086	156	1	.061	02047	2041

FLT 63 RUN1

٠

AI	REGIL PP	ESSURE D	ATA .9 !	BLADE RA	SUIC		NASA	-LANG	LEY AH	- 1G		78/11/14	' •		
FL	T 63 P	UN 1	TIME 53	718.300		MU =	.151	CLP=	•0042	3 - TEM	P(U60)=	9.2 C =	48.63 F		,
		UPPFP SI	URFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
= 2/Х НТИМІТА	• 0?	.10	• 50	• 35	• 5 0	•70	•80		•90	•02	•10	•20	•50	• 70	•90
180.	065	603	405		370	304	15	5	.072	085	156	106	099	043	040
182.	082	611	407		376	307	14	7	.074	067	141	100	100	043	042
184.	086	618	411		379	311	14	9	.069	064	142	095	093	044	041
186.	106	625	420		382	316	15	1	.066	042	141	085	091	046	044
188.	126	626	421		378	318	16	0	.063	020	127	086	092	036	043
190.	142	622	430		376	309	16	3	.064	001	124	085	093	033	043
192.	150	630	431		395	305	15	6	.064	.004	111	078	084	032	044
194.	171	637	441		388	310	15	8	.066	.028	111	072	082	034	044
196.	194	645	444		392	312	16	0	.066	.046	108	065	072	033	045
198.	216	652	452		396	317	16	1	.066	.054	094	062	071	034	044
200.	231	660	454		402	320	16	3	.065	.079	089	065	072	033	045
202.	243	668	460		405	324	16	5	.058	.096	076	050	073	034	045
204.	267	676	468		393	328	16	7	.055	.107	077	049	060	035	047
206.	291	695	473	·	416	311	16	9	.053	.134	070	038	060	034	046
208.	316	711	473		-,404	312	17	1	.052	.150	048	039	061	021	046
210.	341	719	479		403	318	17	4	.059	.164	035	017	062	023	049
212.	367	727	489		408	321	17	6	.062	•192	026	017	063	024	051
214.	406	735	495		417	322	17	7	056	.221	015	009	~.063	021	048
216.	44?	743	499		422	326	17	8	.055	.251	004	009	064	020	048
218.	470	767	503		426	329	16	3	.055	.265	.008	008	065	006	048
220.	497	780	509		428	334	16	2	.060	.284	.021	001	065	007	051
222.	526	785	511		434	334	16	3	.057	.315	.031	.025	066	006	050
224.	570	796	531		434	317	16	6	.066	• 329	.031	.033	064	011	054
226.	606	822	562		439	318	16	6	.058	.350	.046	.040	048	019	051
228.	635	833	-,567		427	321	16	8	.058	.382	.055	.041	033	006	051
230.	684	840	572		436	323	16	9	•05°	.415	.072	.046	026	006	051
232.	719	869	577		449	326	17	1	.059	.426	.080	.059	038	006	052
234 .	750	878	589		445	329	17	2	.060	.452	.099	.059	038	006	052
236.	801	907	604		461	332	17	4	.061	.462	.106	.067	032	007	053
238.	835	914	610		457	335	17	6	.065	.490	.107	.080	023	008	055

FLT 63 RUN1

AIPEDIL PRESSURE DATA •9 BLADE RADIUS						NASA-LANGLEY AH-1G						78/11/1			
FL	T 63 P	I NU	TIME 53	718.300		MU=	.151	CLP=	.00423	TEM	P(U60)≭	9.2 C =	48.63 F		
		UPPER SU	RFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
¥/C= AZIMUTH	• 02	•10	•20	•35	.50	• 70	•80		•90	•02	.10	•20	• 50	•70	.90
240.	866	944	615		456	336	17	6	.061	.498	.128	•085	023	006	053
242.	920	952	629		464	338	17	7	.061	.528	.133	•096	015	006	054
244.	953	982	642		463	341	17	8	.062	.534	.134	•097	006	006	054
246.	-1.009	-1.010	646		478	343	17	9	.062	.566	.158	.106	006	.001	054
248.	-1.066	-1.016	646		470	344	18	0	.062	.600	.161	.116	007	.011	05
250.	-1.123	-1.024	663		469	347	18	2	.066	.605	.188	.130	007	.009	056
252.	-1.180	-1.054	676		482	349	17	6	.075	.637	.188	•139	•003	009	054
254.	-1.237	-1.083	688		475	349	16	0	.075	.670	.215	.146	•010	.011	05
256.	-1.294	-1.112	-•697		476	352	16	1	.067	.675	•218	.159	.010	•009	05
258.	-1.358	-1.141	703		486	354	16	2	.072	.709	.245	.172	.021	.018	060
260.	-1.458	-1.162	721		491	353	16	2	.074	.742	.271	.175	.027	.028	05
262.	-1.524	-1.173	728		493	353	16	2	.082	.771	•296	.187	.027	•029	05
264.	-1.621	-1.192	724		479	336	16	2	.082	.777	.300	•193	.027	.029	056
266.	-1.657	-1.184	712		468	329	16	3	.087	.805	• 324	.213	•027	.026	05
268.	-1.603	-1.150	669		471	328	16	3	.087	.770	.318	.213	•027	•015	05
270.	-1.448	-1.079	647		451	329	-•16	3	.088	.620	•275	.189	.013	004	05
272.	-1.219	977	586		447	308	15	1	.089	.509	.174	.119	004	009	060
274.	981	898	583		445	302	14	0	.079	.445	.100	.077	022	024	06
276.	824	858	563		428	300) ~.15	4	.071	.391	.054	.052	070	041	060
278.	738	831	541		424	322	16	3	.069	.369	•035	.033	075	044	05
280.	694	818	539		443	326	17	'8	.057	.368	.026	.014	075	044	05
282.	678	816	538		424	326	18	5	.038	.367	.009	005	075	044	046
284.	676	813	536		421	325	.18	4	.033	.366	.019	006	074	044	03
286.	673	810	536		440	349	,18	4	.046	.379	•035	006	074	027	-+03
288.	684	822	552		439	324	18	3	.050	.394	.035	006	074	026	05
290.	693	827	549		437	321	18	2	.064	.392	.035	004	073	026	05
292.	689	840	547		435	346	18	1	.067	.406	.034	.030	073	026	07
294.	685	843	544		433	317	18	0	.067	.435	.034	.028	073	025	07
296.	682	838	541		430	317	17	9	.067	.445	•034	.012	072	025	07
708.	677		542		428	328	17	8	066	463	024	012	- 072	- 025	- 0.6

•

٠,

FLT 63 RUN1

 $\underline{\omega}$

ATPECTL PRESSURE DATA .9 BLADE RADIUS						NASA-LANGLEY AH-1G						78/11/	14.			
	FLT	63	RUN 1	TIME	53718.300		MU=	.151	CLP=	.00423	TEM	P(U60)=	9.2 C	= 48.63 F		
			UPPFP S	URFACE	CP VALUES								LOWE	R SURFACE	CP VALUES	5
X/I AZIMU	С = Тн	•02	.10	•20	• 35	•50	•70	• 80)	•90	•02	.10	•20	•50	• 70	•90
300.		673	846	55	3	425	311	 1	77	.066	.440	•034	.01	2071	025	072
302.		668	845	54	9	422	313	31	76	.065	.437	.033	•01	2071	025	058
304.		663	839	54	5	419	333	31	74	.065	.433	.033	.01	2070	025	072
306.		658	852	54	1	415	330	1	73	.064	•430	.033	.01	1070	027	073
308.		653	848	53	7	412	328	31	72	•064	.426	.033	.01	1069	041	073
310.		647	862	54	7	414	325	51	70	.080	.423	.032	•01	1069	037	072
312.		661	856	56	4	425	322	210	59	.079	.419	.032	•01	1068	024	072
314.		659	870	55	9	421	319	10	5 7	.078	.415	.032	.01	1067	028	071
316.		653	862	56	3	424	316	510	56	.077	.411	.050	.01	1067	039	070
318.		667	876	57	6	425	321	L16	54	.077	.431	.054	•01	7066	039	070
320.		662	889	57	9	417	334	16	52	.076	.430	.054	.02	7066	038	067
322.		656	901	57	3	424	331	10	5	.075	.426	.053	.02	7065	032	051
324.		671	893	56	7	419	- 327	71	79	.074	.422	.053	.02	6064	022	050
326.		664	903	57	7	424	-, 324	1	77	.074	.417	.052	• 02	6063	029	053
328.		657	895	57	2	429	331	1	75	.073	.413	.051	.01	7063	037	066
330.		640	907	56	6	424	→ •340	o →.1	73	.072	.409	.051	.01	0062	036	065
332.		642	914	57	1	419	336	51	71	.071	.429	.050	.01	0061	036	065
334.		635	909	57	0	425	332	210	59	.076	.423	.050	.01	0061	036	064
336.		628	913	57	5	427	328	316	57	.084	.395	.049	.00	0060	035	063
338.		617	-,908	57	3	422	324	10	56	.083	.390	.049	00	5059	043	062
340.		593	911	56	7	417	321	L16	54	.082	.386	.048	00	5059	048	062
342.		582	901	56	2	413	317	716	2	.081	.381	.045	.00	5058	048	061
344.		550	890	55	4	409	313	316	0	.078	.372	.026	.00	7057	046	059
346.		509	880	54	9	404	309	919	58	.077	.349	.023	00	2067	046	058
348.		484	869	55	6	400	305	51	56	.076	.344	.006	01	8068	054	058
350.		458	867	54	9	408	316	51	54	.074	.334	.002	02	1078	047	056
352.		427	867	52	9	392	319	914	52	.075	.307	012	01	8090	044	057
354.		384	848	-,51	9	397	315	516	57	.076	.281	018	02	9091	044	057
356.		349	829	51	5	393	328	31	76	.077	255	036	04	0090	055	057
358.		319	819	50	9	404	327	716	9	.075	.222	055	05	5100	056	056

32

1

٠

FLT 63 RUN1

.

.
AIPFOIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G

•

•

79	11	11	1	14	
10		L .		* *	•

•

FL	T 63 R	UN 5	TIME 54	157.800		MU=	•257	CLP=	.00427	TFM	¤(U60)=	10.6 C =	50.99 F		
		UPPER SU	RFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
X/C= AZIMUTH	.02	.10	•20	.35	•50	.70	• 80	I	• 90	• 0 5	.10	•20	.50	• 70	•00
0.	523	867	524		378	307	15	7	.071	.352	.041	010	077	048	054
2.	488	864	519		386	302	15	4	.070	.331	.021	010	075	04R	053
4.	461	850	519		393	312	15	1	.066	.303	.014	015	076	056	051
6.	422	848	518		386	309	16	3	.064	.290	•002	027	086	055	059
9.	379	849	526		378	319	16	0	.053	.270	004	039	096	054	071
10.	351	849	516		371	313	15	7	.062	.745	016	051	106	053	070
12.	315	 835	512		369	311	15	4	.072	.235	020	058	111	055	069
14.	290	835	510		371	318	15	2	.071	.216	033	061	109	065	068
16.	255	850	507		369	313	· ~•15	1	.071	.193	048	067	107	072	066
18.	-,219	850	505		371	313	16	0	.079	.186	064	- .075	110	071	065
20.	184	851	502		370	318	15	7	.078	.167	065	091	118	073	064
22.	165	851	500		371	319	15	5	.076	•146	077	101	126	078	065
24.	118	853	491		371	323	15	5	.075	.125	091	110	134	077	074
26.	101	866	482		372	325	16	3	.077	.088	105	119	136	080	072
28.	070	864	474		371	329	16	0	.083	.069	118	126	140	085	072
30.	040	854	482		377	324	15	8	.084	.051	130	128	147	084	071
32.	012	851	487		377	327	16	0	.086	.033	129	132	154	088	070
34.	.014	839	484		378	338	16	6	.091	.016	141	140	155	091	069
36.	.030	827	481		378	339	16	3	.089	001	152	149	153	089	068
38.	.054	816	474		374	343	16	1	.086	017	152	158	151	093	066
40.	.067	806	476		377	343	15	9	.080	033	164	165	149	095	065
42.	.082	795	472		383	339	15	7	·0º3	048	172	165	147	094	065
44.	.104	786	466		390	345	16	1	•097 ·	063	173	171	159	093	068
46.	.115	777	479		387	354	16	4	•091 ·	078	181	178	167	098	073
48.	.127	762	512		392	354	16	3	.095 ·	088	182	177	174	090	072
50.	.143	748	556		398	350	16	1	.097 ·	092	190	183	173	105	066
52.	.161	740	610		396	357	15	9	•102 ·	106	192	190	171	105	067
54.	.172	727	653		392	356	15	8	•104 ·	120	202	197	185	104	064
56.	.183	715	685		398	364	15	6	•103 ·	127	208	204	184	096	060
58.	.187	709	708		395	362	15	5	.108 .	133	206	203	182	10?	066

FLT 63 PUNE

AIRFOIL	PRESSURE	DATA	•9	BLADE	RADIUS
---------	----------	------	----	-------	--------

4 I R F	REDIL PRESSURE DATA .9 BLADE RADIU.						NASA-LAN	GLEY AF	4-1G		78/11/14	•	
FLT	63	RUN 6	TIME 541	57.800		MU=	257 CLP=	•0042	?7 TFMP	(U60)= 10	••6 C =	50.99 F	
		UPPFR SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUES
/C = !TH	•02	.10	•20	• 35	•50	•70	.80	•90	• 92	.10	•20	•50	.70
•	.192	703	730		392	359	154	.109	146	210	210	181	102
	.202	697	744		398	356	144	.108	159	221	208	187	101
•	•213	685	756		396	366	141	.107	172	225	215	193	100
	•216	677	760		394	364	140	.114	178	224	213	192	100
	.222	673	765		401	361	139	.114	185	222	211	191	099
,	.225	660	770		405	361	138	.113	189	221	203	- 189	098
,	.223	655	772		386	368	138	.113	188	220	202	187	098
	•231	642	769		383	358	137	.112	187	219	203	182	097
	.241	648	762		376	364	136	.104	196	226	212	187	097

66.	•216	677	760	-,394	364	140	.114	178	224	213	192	100	058
68.	• 222	673	765	401	361	139	.114	185	222	211	191	099	057
70.	.225	660	770	405	361	138	.113	189	221	203	189	098	057
72.	• 2 2 3	655	772	386	368	138	.113	188	220	202	187	09B	057
74.	•231	642	769	383	358	137	•112	187	219	203	182	097	056
76.	•241	648	762	376	364	136	.104	196	226	212	187	097	056
78.	.252	627	-,754	379	353	136	.104	219	245	225	186	097	056
80.	•263	624	748	371	352	136	.103	236	259	236	188	096	056
82.	•273	622	737	367	355	136	.103	260	278	251	198	096	047
84.	.284	610	727	360	366	145	.103	297	292	264	207	096	046
86.	•295	599	717	360	374	145	.103	326	312	275	206	096	038
88.	•306	598	707	359	373	145	.104	353	325	288	206	096	038
90.	•317	587	693	359	373	145	.108	381	347	296	206	096	038
92.	.329	576	680	359	373	145	.103	408	360	300	206	096	038
94.	• 340	567	673	359	374	145	.103	449	382	304	207	096	038
96.	• 341	568	665	365	374	145	.103	476	395	309	207	096	038
98.	• 353	567	656	377	374	145	.100	505	407	324	207	095	037
100.	• 364	557	649	380	376	146	.103	533	420	334	208	096	038
102.	•367	551	628	388	377	146	.104	549	432	335	208	097	038
104.	• 377	546	569	~ •392	378	142	•101	577	444	325	209	-+092	035
105.	• 381	530	498	387	380	142	•100	596	448	327	210	090	030
108.	• 392	517	434	386	374	148	.101	623	460	337	211	090	030
110.	• 394	502	387	388	363	149	.098	641	462	341	206	091	030
112.	• 396	494	374	390	361	144	•09P	662	467	343	199	085	030
114.	.399	485	359	385	354	140	.000	694	476	345	199	084	030
116.	.401	477	360	386	364	141	•094	727	471	347	194	084	031
118.	•404	469	363	389	359	142	.092	761	474	327	194	085	031

۹.

ť

.

FLT 63 RUNA

.90

-.068

-.06B

-.060

8

¥/C=

AZIMUTH 60.

62.

64.

66.

•

•

AIREDIL PRESSURE DATA .9 BLADE RADIUS

.

.

158.

160.

162.

164.

166.

168.

170.

172.

174.

176.

178.

.250

.224

.211

.184

.169

.139

.110

.088

.041

.011

-.013

-.494

-.503

-.511

-.520

-.530

-.540

-.550

-.560

-.571

-.589

-.611

-.381

-.388

-.395

-.402

-.409

-.416

-.424

-.432

-.441

-.449

-.458

FLT	63 RI	JN 6	TIME 541	57.800		MU= 4	257 CLP	.004	P7 TFMP	(U60)= 10	.6 C =	50.99 F		
		UPPER SI	URFACE CP	VALUES							LOWER	SURFACE	CP VALUES	;
X/C=	.02	.10	.20	.35	.50	.70	.80	•90	.02	.10	•20	• 50	.70	• • • •
AZIMUTH														
120.	.407	461	365		383	359	143	.093	796	478	319	196	079	031
122.	.411	454	357		375	351	144	.093	826	477	321	197	078	031
124.	.408	453	343		378	352	145	.094	842	474	324	199	079	032
126.	.405	450	345		382	356	147	.089	943	473	318	193	072	032
128.	.403	450	340		375	347	148	.088	822	471	312	187	072	032
130.	.402	446	344		378	350	150	.089	777	469	307	187	~.073	033
132.	.399	448	346		373	340	151	.089	724	461	301	175	074	033
134.	.390	444	345		376	344	143	.091	678	454	297	177	066	025
135.	.390	446	349		375	345	14?	.076	658	446	301	175	064	020
138.	.386	441	351		-,377	337	144	.076	651	438	285	163	065	025
140.	.377	445	358		370	341	147	.085	643	430	271	164	068	024
142.	.369	451	359		378	329	148	.078	635	413	275	157	065	021
144.	.350	457	350		376	324	151	.078	616	400	265	153	061	035
146.	.338	463	358		369	328	152	.079	604	391	256	155	062	025
148.	.329	-,457	363		367	329	143	.080	595	383	246	157	063	037
150.	.320	464	364		372	323	145	.081	573	374	242	156	061	037
152.	.297	471	363		373	328	147	.081	56?	353	229	153	∼ .055	038
154.	.286	478	369		367	328	150	.074	537	341	222	151	053	038
156.	.261	486	375		365	323	152	.075	510	331	215	143	047	039
158.	.250	494	381		371	329	155	.074	482	321	207	141	048	040

-.155

-.157

-.156

-.149

-.152

-.154

-.157

-.160

-.156

-.159

-.161

.067

.068

.069

.071

.067

.062

.063

.064

.065

.060

-.452

-.422

-.391

-.359

-.3?3

-.270

-.234

-.196

-.156

-.115

-.311

-.285

-.273

-.262

-.249

-.235

-.207

-.193

-.178

-.163

-.329

-.327

-.324

-.329

-.326

-.324

-.330

-.325

-.325

-.331

-.324

-.371

-.378

-,377

-.378

-.377

-.378

-.385

-.383

-.386

-.393

-.401

NASA-LANGLEY AH-1G

FLT 63 RUNE

.

78/11/14.

-.200

-.192

-.177

-.164

-.155

-.146

-.136

-.126

-.115

-.094

-.132

-.125

-.121

-.113

-.111

-.113

-.107

-.089

-.085

-.087

-.049

-.049

-.045

-.040

~.035

~.031

-.031

-.024

-.020

-.021

-.040

-.041

-.038

-.034

-.039

-.031

-.032

-.032

-.033

-.033

٠

З

NASA-LANGLEY	44-1G	78/11/14.
--------------	-------	-----------

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

.

FL	T 53 9	2UN 6	TIME 54	4157.800		MU≖	.257 C	LP= .00	1427 TE	MP (U60) =	10.6 C =	50.99 F		
		UPPER SI	IPFACE CI	P VALUES							LOWER	SURFACE	CP VALUES	
×/C= Azimuth	.02	.10	.20	•35	.50	•70	.80	.90	.02	•10	.20	•50	• 70	•00
180.	057	623	467		409	325	157	.055	073	142	080	078	012	034
182.	- 109	644	477		417	332	160	.057	7021	112	068	067	009	035
184.	150	676	- 486		412	338	163	.058	.041	094	055	056	009	035
186.	201	- 699	- 497		418	327	167	.050	.081	076	5042	044	009	036
188.	257	713	- 522		427	331	170	.050	.117	057	028	044	010	037
190.	304	740	- 533		419	338	174	.061	.169	037	7014	031	.003	038
192.	- 364	763	5 4 5		427	345	5177	.063	.212	016	•001	032	•004	038
194	- 424	- 793	556		436	353	181	.064	4 .242	.005	5 .015	033	.004	039
196.	- 490	816	568		445	337	7185	.065	.288	.028	.017	034	.004	040
198.	- 554	849	580		453	344	4172	.067	7 .333	.030	•032	034	.005	041
200.	- 612	- 872	- 592		446	349	172	.068	.368	.053	.037	030	.070	042
202-	- 688	891	- 604		455	334	176	.070	.471	.078	.066	006	.020	043
204.	757	-,928	617		461	341	180	.055	.450	.089	.071	006	.021	044
206.	- 822	- 951	630		- 454	348	162	.056	.480	.10	7 .090	006	.021	045
208.	- 889	~.971	643		- 463	350	165	.05	,520	•11	7.105	001	.022	045
210.	- 958	990	555		473	336	169	.058	.538	•13	.113	.010	.022	046
212.	-1.029	-1.034	- 669		476	34	3172	.059	.573	.148	B .127	.011	.022	047
214.	-1.103	-1.055	683		470	350	176	•061	.591	.172	.130	.011	.023	048
216.	-1,179	-1.075	- 696		479	35	7176	.062	.603	.18	.140	.018	.023	049
218.	-1.257	-1.072	698		489	353	3158	.061	.643	.20	B •154	•029	• 02.4	050
220.	-1.311	-1.092	701		488	342	2161	.054	4 .659	•21	5 .157	•029	.024	051
222.	-1.391	-1.113	719		484	34	8164	.06	5 .671	.21	9 .160	•030	•025	052
224.	-1.421	-1.133	730		496	353	3167	.06	.683	.22	1.169	.031	.027	052
226.	-1.557	-1.153	741		492	359	9169	.060	.696	•22	7.182	.031	• 028	050
228.	-1.584	-1.173	735		485	36	7173	.069	9 .74?	.26	1.190	.032	.026	055
230.	-1.615	-1,193	739		491	35	6177	.07	2 .720	.26	6 .196	•032	.025	057
232.	-1.673	-1.204	751		498	34	8180	.07	7 .732	.27	1 .201	•046	•025	060
234	-1.725	-1.202	765		488	35	4171	.07	.744	.27	5 .204	• 053	• 025	061
236.	-1.758	-1.220	758		490	35	8157	.07	7.754	.27	8 .204	.054	.027	060
238.	-1.807	-1.237	764		498	36	3159	.07	5 .765	.28	2 .205	.055	.028	059

FLT 63 PUNK

•

	AIRFOIL PRESSURE DATA .9 PLADE RADIUS			olus		NASI	A-LANG	LEY AH-	•1G		78/11	/1	4.				
	FLT 53	RUN 6	TIME 54	157.800		MU≖	•257	CLP=	.00427	тем	P(1160)=	10.6 C	Ŧ	50.99 F			
		UPPER SL	IRFACE CP	VALUES								LOW	ER	SURFACE	C۵	VALUES	
X / C A 7 T MUT	:= •02 Н	•10	•20	• 35	•50	•70	• 80	0	.90	• 0?	•10	•2	20	•50		•70	.91
421-01																	
240.	-1.532	-1.242	774		505	368	16	51	.076	.776	.286	5 . 2	80	•056		.028	060
242.	-1.856	-1.240	784		511	347	16	53	.077	.786	.290		211	•057		.029	04
244.	-1.879	-1.255	770		517	342	16	55	.077	.795	.29	3.02	213	•057		.029	036
245.	-1.900	-1.269	777		523	345	16	57	.078	.805	.29	7.2	16	.058		.030	03f
248.	-1.921	-1.266	785		529	349	16	59	.079	.813	.300	.2	18	.038		.030	052
250.	-1.939	-1.263	766		508	353	1	70	.080	.821	• 30 3	3.2	20	•037		.030	054
252.	-1.957	-1.274	772		537	356	1	72	•081	.811	.305	5.1	98	•037		• 0 3 0	064
254.	-1.973	-1.284	779		515	359	1	73	.081	.794	.308	3.1	99	•037		.031	065
256.	-1.968	-1.272	784		517	361	1	74	•082	.799	.310	.2	201	•038		.031	065
258.	-1.964	-1.245	785		492	363	1	76	.082	.804	.312	22	202	•038		.031	066
260.	-1.975	-1.241	760		522	365	1	77	.062	.809	.31	4.2	203	•038		.031	066
262.	-1.961	-1.246	740		499	367	17	77	.059	.812	.315	5.2	04	•038		.031	056
264.	-1.955	-1.251	743		524	368	1	78	•05°	.815	•316	5 •2	205	•038		•032	067
266.	-1.959	-1.254	745		504	369	11	78	.059	.817	•31	7.02	205	•038		.032	067
268.	-1.936	-1.256	747		524	370	1	79	.059	.918	•31	7.2	205	.038		.032	067
270.	-1.928	-1.257	751		501	370)1	79	.059	.818	.293	22	204	.039		.032	067
272.	-1.870	-1.256	751		504	368	1	77	.052	.818	.280	•1	99	•039		.029	064
274.	-1.911	-1.254	750		503	367	1	77	.052	.816	•280	•1	99	•039		.010	063
276.	-1.858	-1.251	746		502	366	1	77	.05?	.814	.279	, 1	99	•030		.010	063
278.	-1.905	-1.213	745		499	366	1	76	.053	.P12	.279	, 2	200	.015		.016	063
280.	-1.872	-1.208	744		497	364	1	76	.056	.808	•276	5 .1	98	.015		.025	045
282.	-1.793	-1.202	738		498	360	17	73	.046	.804	•27	5.1	193	.015		.011	060
284.	-1.778	-1.194	736		493	359	17	73	•051	.799	•274	• •1	95	•015		.010	062
286 .	-1.766	-1.186	733		491	356	1	72	.049	.793	•271	l •1	91	•015		.001	061
288.	-1.750	-1.177	727		504	352	1	70	.043	.786	•268	3.1	86	•015	-	.011	056
290.	-1.702	-1.166	715		498	349	16	58	.043	.780	.266	5 •1	171	.015	-	.011	057
292.	-1.686	-1.154	705		476	348	16	57	.047	.773	.260	5.1	65	.014	-	.014	059
294.	-1.663	-1.142	697		467	346	16	57	.055	.765	•263	3.1	68	.014	-	.016	052
296.	-1.611	-1.129	690		462	342	16	55	.055	.751	• 253	7.1	66	001	-	.016	~.062
298.	-1.558	-1.106	691		456	338	16	53	.054	.708	• 22 3	3.1	64	008	-	.016	061

FLT 63 RUNA

.

.

37

. .

4	AIREDIL PRESSURE DATA .9 BLADE RADIUS						NASA-L	ANGLEY AH-	-1 G	7	8/11/14	֥	
Fl	T 63 6	RUN 6	TIME 54	157.800		MU=	.257 CI	_P= .00427	TEMP	v(U60)= 10.	.6 C =	50.99 F	
		UPPER SI	JREACE CP	VALUES							LOWER	SURFACE	CP VALUES
X/C= AZIMUTH	.02	.10	.20	• 35	•50	.70	.80	• 00	.02	.10	.20	•50	.70
300.	-1.496	-1.071	675		459	330	159	.055	- 69 R	.218	.134	007	011
302.	-1.411	-1.056	642		- 447	327	- 157	-054	.681	.212	.133	007	013
304	-1.327	-1.028	629		- 438	324	157	.064	.542	.183	135	008	015
305.	-1.254	996	624		432	- 319	154	072	.632	.172	.115	025	015
309.	-1.192	981	622		- 450	313	168	.055	. 622	.145	.105	045	029
310.	-1.123	966	- 613		431	331	174	.050	599	.141	.075	046	029
312.	-1.075	950	602		- 444	331	170	.038	.566	.129	.071	045	027
314.	-1.027	934	592		439	325	168	.031	.557	.107	.069	044	044
316.	994	917	583		431	320	165	.030	.547	.106	.048	043	046
318.	961	901	593		424	314	162	.030	.537	.104	.047	042	045
320.	931	902	582		439	308	159	.020	.527	.102	.045	042	044
322.	897	894	572		431	331	156	.045	.517	.100	.026	041	043
324.	870	895	561		423	325	153	.047	• 507	.098	.026	040	043
326.	 853	884	560		415	318	171	.046	.498	.096	.025	039	04?
328.	836	885	579		410	312	170	•045	• 4 8 P	•094	.025	042	041
330.	819	893	568		419	306	166	.044	.478	.092	.024	054	040
332.	803	879	560		415	304	163	.043	.489	.090	.024	053	039
334.	787	881	-,558		421	320	160	.043	.488	.090	.026	052	040
336.	790	887	560		408	316	160	.055	.478	.087	.030	052	042
338.	778	891	559		406	313	174	•056	•468	•085	.022	050	041
340.	762	895	556		404	324	170	.055	.458	.083	.022	049	047
342.	746	898	563		415	317	167	•054	.449	.082	.021	048	036
344.	731	901	569		418	311	163	•053	.463	.080	.021	047	035
346.	716	903	560		409	313	160	.052	.456	.078	.013	046	034
348.	701	905	555		397	322	157	.054	.447	.079	.010	053	035
350.	687	903	550		394	317	161	•061	.414	.077	.015	058	037

-.170

-.167

-.163

-.160

.406

. 396

.366

.359

.075

.073

.053

.051

.

.014

.014

.005

.002

r

-.057

-.064

-.067

-.066

.065

.072

.071

.071

FLT 63 PUNE

-.037

-.036

-.035

-.043

.00

-.057 -.054 -.059 -.058 -.055

-.050

-.047

-.046

-.045 -.044 -.044 -.043 -.042 -.041 -.040 -.039

-.039

-.056

-.052

-.055

-.071

-.070

-.058

-.067

-.070

-.068

-.067

-.065

-.045

88

352.

354.

356.

358.

-.671

-.637

-.605

-.570

.

.

-.888

-.885

-.872

-.873

-.549

-.543

-.530

-.521

-.394

-.386

-.388

-.385

-.321

-.325

-.318

-.313

ΔI	REGIL PRE	ESSURE DA	TA .9 F	LADE RA	DIUS		NASA-LA	ANGLEY AH	-16		78/11/14	4.		
. FL	T 63 RL	JN 9	TIME 544	67.200		MU≍ .	330 CLP	•= •0043	6 TEM₽	(060)= 10	•6 C =	50.99 F		
		UPPER SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUE	ç
X/C= Aztmuth	•02	.10	•50	.35	.50	.70	• 60	• 90	• 02	•10	• 2 0	.50	• 70	
٠.	750	992	588		394	303	150	•058	.484	•114	•045	037	023	
2.	681	984	573		389	308	146	•063	.450	.108	•021	048	031	
4.	623	977	559		380	306	150	.061	.422	.087	.014	059	034	
6.	556	963	545		370	299	154	• 05 4	.407	•067	•014	060	033	
8.	492	954	532		373	305	159	•059	.377	•052	•003	068	032	
10.	436	956	543		378	302	162	•056	.348	•042	009	077	048	
12.	388	950	533		371	295	158	.057	.314	.013	030	086	052	
14.	338	943	533		374	302	154	.067	.275	003	042	094	051	
16.	299	937	533		379	312	151	.069	.257	014	042	093	050	
18.	262	931	522		384	321	157	.058	.245	013	051	101	058	
20.	227	925	522		388	316	158	.074	.229	019	051	099	067	
72.	193	920	522		381	324	154	.075	.216	027	070	115	066	
24.	161	906	513		385	318	151	•073	.203	033	078	114	074	
26.	130	897	514		388	326	158	.079	.191	047	078	129	082	
28.	100	884	518		382	320	157	.080	.179	060	095	126	081	
30.	071	867	547		386	329	154	.086	.167	065	102	125	080	
32.	035	851	602		390	336	152	•086	•148	071	100	130	086	
34.	005	827	661		394	331	159	.092	•130	075	102	128	086	
36.	.021	810	711		398	339	157	.100	.1?2	082	116	131	092	
38.	•045	787	752		400	345	155	.098	.100	093	124	150	090	
40.	.069	772	780		398	342	152	.105	•079	104	128	153	092	
42.	.092	750	803		407	350	150	.103	.063	106	131	156	104	
44.	.115	738	819		404	354	148	.102	•048	114	146	169	104	
46.	.137	·717	832		408	356	146	.108	•033	124	158	177	109	
48.	.158	696	835		413	368	144	.107	.019	134	164	174	109	
50.	.169	687	833		413	368	142	• •107	007	144	171	178	113	
52.	.188	667	827		416	375	140	•112	011	154	180	188	115	
54.	.208	649	817		426	378	138	•112	-•055	163	190	196	118	
56.	.717	641	808		430	379	135	•119	035	163	196	205	117	
58.	.226	625	800		435	381	126	.125	048	171	202	210	119	

.

•

FLT 63 RUNG

ν .

•

4

•

F	LT 53 PU	IN 9	TIME 54467.200		MU= .:	330 CLP	0043	во темр	(1160)= 10	•6 C =	50.99 F		
		HDDEB SH	REACE CP VALUES							LOWER	SURFACE	CP VALUES	
¥ / C =	. 0.2	.10	.20 .35	.50	.70	.80	.90	.07	.10	.20	.50	.70	.90
AZTMUTH		•••											
60.	.245	617	792	445	378	122	.129	061	170	204	215	122	063
52.	.254	601	779	-,459	374	114	.130	073	179	210	212	117	056
64.	.262	586	763	478	365	110	.134	085	188	219	212	112	056
66.	.270	573	755	501	351	103	•136	097	197	220	213	111	055
68.	.281	566	737	523	337	098	.139	112	207	224	211	115	055
70.	.301	553	716	546	310	088	•141	147	217	234	209	117	054
72.	.328	539	701	575	289	083	.141	173	237	248	218	120	051
74.	. 347	526	682	-,588	276	082	.136	209	256	256	230	127	046
75.	.366	510	656	601	257	082	•136	245	276	279	243	128	042
78.	.385	- 493	636	602	241	081	.135	281	298	301	255	128	034
80.	.403	481	617	600	230	081	·135	314	327	328	262	132	026
82.	.419	470	600	612	226	081	•134	352	354	350	274	123	018
84.	.428	459	582	614	217	081	•134	387	374	377	286	120	014
86.	.437	- 444	573	613	215	080	.129	419	394	399	293	114	014
88.	.451	429	556	612	215	086	.127	443	421	427	300	113	009
90.	. 462	- 425	540	612	215	089	.132	472	462	449	306	107	006
92.	.472	- 419	533	- 596	224	089	•134	519	503	464	306	100	006
94.	.482	410	525	595	225	089	.128	574	545	478	300	100	006
96.	488	- 401	518	597	236	097	.127	624	582	486	286	093	006
98.	. 494	386	511	598	247	099	.128	667	609	494	260	087	000
100	.501	374	506	599	259	106	.128	706	626	496	238	073	.002
102.	.507	359	505	594	272	108	.128	738	650	502	203	074	.002
104	.509	348	500	- 595	294	117	.122	773	678	533	189	074	.002
105.	.512	340	494	588	307	118	.123	806	696	564	171	073	• 002
105.	.514	332	489	570	331	119	.123	827	717	588	160	068	•072
110.	.518	333	484	538	354	120	.117	854	742	606	154	067	.002
112.	.521	335	476	507	370	120	.118	876	761	625	150	059	•005
114.	.525	328	- 466	- 477	392	121	.119	904	778	645	145	04 R	•002

-.113

-.114

.120

.121

-.927

-.959

-.795

-.813

•

۲

-.666

-.681

-.132

-.131

-.392

-.410

-.430

-.477

-.451

-.419

NASA-LANGLEY AH-1G

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

-.328

-.330

-.333

.525

.521

.524

۲

.

114.

116.

118.

-.466

-.454

-.425

FLT 63 PUNO

-.006

.002

-.049

-.049

78/11/14.

	AIRFOIL PRESSURE DATA .9 BLADE RADIUS					SUIC	NASA-LANGLEY AH-1G					78/11/14.						
	FLT	63 F	9 PUS	TIME	54467.	200		MU=	.330	CLP=	.004	36 TE	MP(U60)=	10.6 C	×	50.99 F		
			UPPER S	URFACE	CP VAL	UES								LOI	WER	SURFACE	CP VALUES	
X/C AZIMU	C= Th	.02	.10	•20	•	35	•50	•70	• 5	0	•90	•02	•1	0.	20	•50	• 70	•90
120.		.519	336	36	36		389	43	1	.15	.121	972	83	1	594	128	049	.001
122.		.513	340	35	50		373	419	91	16	.116	-,993	84	2 –•'	713	129	050	007
124.		.508	343	32	23		368	400	01	17	.115	-1.017	86	0'	725	134	050	007
126.		.513	347	31	0		371	38	51	19	.111	-1.030	87	11	737	139	051	007
128.		.508	351	30)5		380	37	71	20	.110	-1.068	88	2:	750	141	-,052	007
130.		.503	356	31	1		390	370)1	.22	.105	-1.082	89	3'	760	142	-,052	001
132.		.498	360	31	12		394	362	21	.23	.104	-1.110	90	5*	737	144	053	007
134.		.493	363	30)7		395	355	51	.25	.100	-1.139	91	7(514	146	054	007
136.		.488	360	30)9		401	347	71	27	.102	-1.157	93	04	428	148	050	010
138.		.484	362	31	13		395	339	91	29	.100	-1.187	94	22	285	151	047	017
140.		.481	356	32	26		387	332	11	31	.093	-1.206	91	2;	237	153	048	017
142.		.484	353	32	25		382	332	21	.33	.090	-1.225	72	7:	248	156	049	013
144.		.469	359	32	29		378	329	91	35	.087	-1.243	57	4:	270	158	050	008
146.		.461	366	33	35		366	320)1	37	.084	-1.228	50	5;	293	161	050	008
148.		.443	372	34	•1		367	322	21	40	.081	-1.135	48	7;	95	150	045	008
150.		.424	379	34	7		365	328	31	.42	.078	-1.032	46	9;	291	135	043	008
152.		.405	393	35	54		360	323	31	.45	.080	936	45	02	279	135	037	008
154.		.380	407	35	50		365	326	51	48	.075	837	42	6;	264	138	036	-+014
156.		.351	415	36	58		373	320	1	51	.073	747	39	62	240	132	029	020
158.		.329	432	37	6		380	325	51	45	.075	675	37	52	223	125	028	020
160.		•300	455	39	95		377	318	81	.44	.076	600	34	72	207	108	028	020
162.		.268	479	40)4		384	323	31	48	.070	522	31	5 –.:	189	101	019	021
164.		.235	505	41	14		380	33(01	.51	.069	450	29	01	172	102	019	030
165.		.193	522	43	34		389	338	81	.54	.062	384	26	4 –•:	163	085	020	025
168.		.149	545	44	5		397	329	91	58	.051	315	23	8 –.:	144	087	009	022
170.		.102	573	45	58		395	336	51	62	.063	242	21	0 –.1	123	086	.002	033
172.		.054	604	47	79		415	320	51	52	.064	178	18	0 –.1	102	067	.003	026
174.		.003	635	49	91		413	313	71	54	.066	107	14	9 –.(082	058	.013	024
176.		050	668	50)7		421	325	51	58	.068	037	11	6(960	047	.014	025
178.		120	703	53	30		419	333	31	62	•069	•043	08	2(047	036	.014	025

FLT 63 RUN9

4

AIRFOIL PRESSURE DATA	• 9	BLADE	RADIUS	
-----------------------	-----	-------	--------	--

•

1 **1**

-	78	11	1	11	4.	
					_	

۴L	T 63	8UN 9	TIME 5	4467.200		MU=.	.330	CLP≖	•00436	TEM	P(U60)= 10	.6 C =	50.99 F		
		UPPER SU	JRFACE C	P VALUES								LOWER	SURFACE	CP VALUES	
×/C≖ ∆ZIMUTH	.02	.10	•20	.35	•50	.70	• 81	0	• 90	• 02	•10	•20	•50	. 70	•a0
180.	198	739	544	,	430	33	81	50	.071	•118	059	031	025	.017	026
182.	265	5776	558	i i	437	33	11	54	•060	.174	027	008	013	• 02 B	026
184.	348	816	579)	436	334	41	58	.061	.226	002	.011	004	032	027
186.	421	857	604		443	32	71	62	.063	.281	.034	.035	005	.043	028
199.	513	900	620)	443	33/	61	64	.065	.339	.060	•051	.001	.044	029
190.	593	925	637	•	455	33	71	52	.046	.399	•084	•061	.015	.045	028
192.	696	971	654	r	467	33	2 -•1	56	•068	.440	.109	.077	•023	.046	013
194.	784	-1.018	672		472	34	11	61	.070	.479	.134	•104	.031	.053	014
195.	898	6 -1.045	691		474	350	01	65	•068	.520	.162	•124	•047	.064	014
198.	-1.017	7 -1.078	710)	488	34	81	70	• 058	.564	.191	.144	•056	.066	014
200.	-1.119	-1.128	730)	501	35	71	74	•060	.609	.197	.156	.058	.068	015
202.	-1.226	-1.159	750)	503	360	61	72	.061	•656	.227	.171	•069	.078	015
204.	-1.338	-1.191	771		508	34	91	70	.063	.703	.235	•194	.077	.089	016
205.	-1.455	5 -1.224	777	,	508	34	61	80	.065	.723	.266	.207	•080	.091	016
208.	-1.577	7 -1.258	793	L	514	350	61	60	•066	•747	•277	.213	.094	.094	017
210.	-1.705	5 -1.293	815	;	512	34	71	51	•068	.796	.309	•232	.102	.096	017
212.	-1.831	-1.328	837	•	519	34	51	55	•070	.818	.317	•245	.105	• 099	017
214.	-1.932	-1.364	840)	515	33	31	59	•072	.840	• 332	•251	.108	.102	018
215.	-2.005	5 -1.389	859)	522	33	21	49	.074	.853	.365	•275	•111	.104	019
218.	-2.048	3 -1.409	860)	536	34	11	40	.076	.849	.375	•287	•114	.092	019
220.	-2.081	1 -1.446	880)	550	35	01	44	.078	.871	.384	•294	•117	.089	019
222.	-2.135	5 -1.467	878	3	541	35	91	47	• 080	. 93	• 394	• 302	.120	.091	020
224.	-2.188	-1.472	903	5	551	36	81	51	.082	.901	•404	•309	•123	.093	020
226.	-2.242	2 -1.493	895	i	542	370	61	54	.079	. 909	.413	.312	.126	.078	019
228.	-2.280	-1.509	916)	549	35	31	58	•067	.920	.410	.324	.129	.075	020
230.	-2.297	7 -1.531	935	5	532	35	81	62	.082	.922	.398	.307	.131	.076	022
232.	-2.312	-1.543	927	•	544	36	61	66	•090	.919	.407	•314	•111	•07P	022
234.	-2.325	5 -1.541	922		554	374	41	70	•092	.916	.416	•319	•113	.079	023
236.	-2.335	5 -1.536	936)	536	34	21	45	•094	.914	.425	•300	.116	.081	023
238.	-2.368	-1.557	930)	547	34	81	42	.096	.933	.434	•307	.118	•083	024

NASA-LANGLEY AH-1G

ATRENIL PRESSURE NATA .9 BLADE RADIUS			NASA-LANGLEY AH-1G					78/11/14.								
£	LT 53	RUN 9	TIME 54	467.200		M()=	.330	CLP=	.00436	TEM	P(U60)= 10.0	5 C =	50.99 F			
		UPPER S	URFACE CP	VALUES								LOWER	SURFACE	C۵	VALUES	
×/C= AZIMUTH	•02	•10	•20	• 35	• 50	•70	.80		•90	. 02	.10	•20	•50		• 70	•90
240.	-2.414	-1.558	940		557	355	14	5	.073	.922	•419	.312	•120		.084	024
242.	-2.430	-1.547	933		562	362	14	7	.072	.920	•410	.318	.122		.083	025
244.	-2.460	-1.567	940		543	368	150)	.073	.936	.417	.317	•125		.060	025
245.	-2.500	-1.558	932		552	374	152	2	.074	.917	. 424	.299	.127		.061	026
248.	-2.538	-1.541	934		560	380	155	5	.076	.916	.430	.304	.129		.062	026
250.	-2.539	-1.558	926		558	385	~.15	7	.104	.929	.404	.308	.121		.062	026
252.	-2.564	-1.539	923		539	390	159	э·	.077	.941	•398	.312	.104		.053	027
254.	-2.594	-1.555	914		545	395	·161	L	.078	.952	•403	.316	.105		• 064	027
256.	-2.581	-1.528	923		551	399	162	2	.074	.916	.407	.306	•106		.065	027
258.	-2.559	-1.500	932		556	385	164	4	.049	.917	.411	.290	.107		.065	027
260.	-2.575	-1.508	900		560	357	165	5	.056	.924	.414	.292	.108		.066	028
262.	-2.502	-1.478	873		546	360	166	5	.081	.930	.416	.294	.108		.066	028
254.	-2.514	-1.485	878		528	361	167	7	•073	.934	•418	.296	•093		.066	028
265.	-2.523	-1.490	881		530	363	168	3	.050	.938	.420	.297	.079		.067	028
268.	-2.525	-1.485	883		531	364	168	3	.050	.940	.375	.297	.080		.067	028
270.	-2.485	-1.451	883		531	364	168	3	.050	.940	.375	.298	.080		.050	028
272.	-2.477	-1.450	883		531	364	168	3	.050	.940	• 375	•276	•080		.036	028
274.	-2.433	-1.447	881		530	363	168	3	.050	.938	• 374	.264	•079		• 036	028
276.	-2.424	-1.428	878		528	362	167	7	.050	.934	.373	.263	.079		.035	028
278.	-2.402	-1.392	844		526	360	166	5	.049	.930	•371	.262	.079		.035	028
280.	-2.353	-1.384	833		550	358	165	5	.049	.924	.368	.260	.055		.035	028
282.	-2.335	-1.373	826		527	355	164	4	.049	,917	• 366	.258	.048		.035	027
284.	-2.300	-1.361	819		514	352	162	2	.066	,909	.362	.256	.048		.035	027
286.	-2.248	-1.347	811		539	348	161	L	.060	.900	•359	.253	.047		.034	027
288.	-2.722	-1.332	801		508	344	159	7	.047	.890	.355	.251	.047		.034	027
290.	-2.194	-1.315	797		528	340	157	7	.047	.878	.350	.247	.046		.033	026
292.	-2,145	-1.320	819		530	372	154	÷	.040	.866	.344	.238	.046		.036	024
294.	-2.090	-1.317	807		522	+.372	151	L	.037	.853	.339	.234	.045		.036	043
296.	-2.057	-1.296	794		514	366	149	7	.037	.861	• 333	.230	.045		.009	053
298.	-2.022	-1.274	775		- 505	360	146	5	.036	.873	.328	.726	-069		.033	053

FLT 63 RUN9

43

٠

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

٠

٠

NASA-LANGLEY	4H-1G
--------------	-------

78/11/14.

F	LT 63	RUN 9	TIME	54467.200		MU=	•330	CL P=	.00436	TEMP	₽(U60)=	10.6 C		50.99 F			
		UPPER SI	URFACE	CP VALUES								LO	WER	SURFACE	CP VAL	UES	
×/C= ∆ZIMUTH	•02	.10	.20	• 35	•50	.70	.8	0	•90	• 02	•10	•	20	•50	.70	• 9	10
300.	-1.986	-1.251	76	2	491	356	51	73	.042	.858	.323		228	.043	•03	10)54
302.	-1.948	-1.254	75	2	484	344	91	77	.042	.841	•316	•	223	•042	•03	00	31
304.	-1.909	-1.239	73	7	509	340	01	72	•058	. 824	• 309	•	213	•042	.03	5 -•0	21
306.	-1.869	-1.214	72	2	498	336	61	68	•036	. 834	• 303	•	209	•045	•03	20	19
308.	-1.829	-1.215	72	2	488	364	41	65	•033	.833	•297	•	205	•064	•03	10	19
310.	-1.789	-1.195	74	7	482	356	51	61	•056	.815	.290		200	•057	.03	00)19
312.	-1.748	-1.196	72	8 .	495	348	61	88	•031	.796	.283		195	.038	.03	00	18
314.	-1.707	-1.172	71	8	482	~.340	01	54	.031	.778	•277	•	192	.030	•02	90	18
316.	-1.666	-1.173	71	7	468	334	41	52	•059	.759	•271	•	192	.007	• 02	60	20
318.	-1.625	5 -1.147	71	0	456	~.32	51	76	•05P	.771	.264	•	187	007	02	50	020
320.	-1.584	-1.118	70	7	445	32	71	72	•056	.759	.258	•	182	007	.02	50)44
322.	-1.544	-1.119	68	9	443	342	21	68	.055	•740	•251	•	178	007	• 02	40	143
324.	-1.504	-1.118	68	5	448	~.333	31	63	.053	.721	• 245		173	007	• 02	30)42
326.	-1.465	5 -1.091	68	1	448	324	41	59	•051	.733	.237		157	007	•02	40	140
328.	-1.426	-1.090	67	5	441	32	71	54	•045	.717	•231	•	139	006	•02	40)37
330.	-1.388	-1.085	66	5	428	33	51	56	•044	.698	• 225	•	136	006	.07	40	136
332.	-1.351	-1.060	66	1	426	32	71	70	• 044	.712	.220	•	134	006	.01	30)36
334.	-1.314	-1.057	66	4	427	318	81	66	.051	. 592	•213	•	130	006	• 00	40)36
336.	-1.279	-1.053	65	1	437	309	91	69	•053	.674	•508		127	006	.00	30	140
338.	-1.244	-1.049	63	4	433	317	71	79	.051	•658	•203	•	125	006	• 00	z0)54
340.	-1.211	-1.044	63	1	421	319	91	75	.060	•667	.197	•	122	006	00	70)53
342.	-1.178	-1.039	63	3	410	312	11	70	•058	.649	•192	•	119	005	01	40)51
344.	-1.146	5 -1.033	63	4	412	318	81	65	•056	.631	.187	•	116	017	01	30	50
346.	-1.115	5 -1.035	63	5	406	318	81	61	•055	•670	•186	•	112	020	01	30)56
348.	-1.092	-1.041	63	8	410	326	61	57	•053	. 623	.198	•	109	019	01	30)64
350.	-1.077	7 -1.034	63	6	419	32	z1	52	•058	•607	•193	•	104	018	01	.10	161
352.	-1.042	-1.036	62	1	410	314	41	59	.063	• 5 9 1	.188	•	103	018	01	20)60
354.	994	-1.039	62	0	413	306	61	62	•063	• 575	•183		101	018	01	20	159
356.	940	-1.031	61	9	404	316	51	58	•061	.552	•172		086	017	01	10)58
358.	869	-1.023	60	4	394	31	11	54	•069	• 5 ? 3	.148	•	070	017	01	10)56

.

.

FLT 63 RUN9

٨	AIRFAIL PRESSURE DATA .9 BLADE RADIUS				NASA-LANGLEY AH-16					78/11/14.			•	
F	LT 63 R	UN 10	TIME 54	641.600		MU=	.356 CL	P= .00421	TEM	P(U60)= 10)•6 C =	5C.99 F		
		UPPER SI	IRFACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/C=	• 02	.10	.20	.35	.50	•70	.80	.90	.02	.10	.20	•50	.70	.90
AZIMUTH														
0.	875	988	593		391	291	142	.051	• 5 2 3	.152	.071	024	010	049
2.	815	992	577		379	285	152	.052	.497	.129	•058	026	020	048
4.	746	987	561		371	295	150	.051	.475	.118	•044	037	020	047
6.	674	990	545		373	288	146	.061	•450	.105	•029	047	030	058
8.	595	984	540		365	283	143	.063	•418	.085	.010	057	032	059
10.	526	975	543		368	290	139	.058	.387	.066	•009	064	040	057
12.	477	965	534		360	287	150	.060	.372	.059	.007	066	040	056
14.	422	944	533		361	293	146	.069	.349	•047	004	074	039	055
16.	37 ^P	949	528		356	294	144	.067	.322	.041	015	083	040	054
18.	339	928	521		360	310	153	.064	,297	.029	022	087	053	076
20.	303	920	521		365	303	149	.056	.287	.025	029	093	068	084
22.	255	913	521		-•369	301	148	.064	.280	.012	046	109	073	071
24.	220	906	520		373	309	154	.071	.245	014	059	117	068	060
26.	188	888	514		371	318	152	.079	.222	029	072	115	061	071
28.	158	881	522		374	320	151	.077	.?16	030	076	112	064	078
30.	128	863	563		384	319	157	.077	.197	030	075	114	071	078
32.	100	846	619		388	320	153	.083	.193	042	080	116	078	084
34.	072	828	678		391	321	151	.087	.189	041	082	124	081	082
36.	033	804	720		388	328	148	.089	.184	041	086	127	084	078
38.	.002	786	763		387	328	145	.093	.167	052	092	125	091	070
40.	.025	765	794		391	330	143	.096	.149	062	094	134	093	072
42.	.049	749	811		395	337	140	.097	.133	063	093	147	091	075
44.	.071	730	826		392	336	138	.100	.117	074	115	160	100	075
46.	.093	714	833		393	339	136	.102	.101	084	128	161	103	074
48.	•114	693	839		404	346	134	.105	.086	094	140	171	107	073
50.	•134	673	829		409	353	132	.111	.072	104	148	171	113	072
52.	.154	659	826		413	360	130	.113	.058	114	147	181	113	071
54.	.174	645	816		425	358	129	.111	.044	120	159	187	118	070
56.	•193	627	816		438	363	127	.115	.031	122	165	198	124	065
58.	•207	610	798		444	370	119	.119	.018	132	172	209	123	060

,

4

FLT 63 RUN10

	AIRFOIL PRESSURE DATA .9 BLADE RADIUS					SUIC	NASA-LANGLEY AH-16					78/11/14.				
	FLT 63	R	UN 10	TIME	54541.600		MU =	•356	CLP=	.00471	L TEM	P(U60)= 1	.0.6 C =	50.99 F		
			UPPER SI	JRFACE (P VALUES								LOWER	SURFACE	CP VALUES	
x / (.0	2	• 10	.20	.35	•50	•70	.80		• 90	•05	•10	•20	• 50	.70	• 90
AZIMU	111															
60.	• 2	20	594	789)	456	368	11	5	.125	.005	141	178	214	128	059
62.	• 2	33	578	774	•	478	364	10	7	.125	~.007	146	191	212	127	058
64.	• 2	47	563	765	5	508	350	09	7	•130	020	149	196	211	126	052
65.	• 2	60	555	749)	528	337	08	7	•137	038	158	194	223	126	050
68.	• 2	73	544	729)	557	303	07	8	•144	062	172	207	233	125	050
70.	• 2	97	530	712	2	577	289	06	8	.150	092	191	221	233	124	050
72.	.3	25	517	686	5	582	266	05	9	•149	127	210	240	246	129	043
74.	• 3	46	505	664	•	569	244	04	9	.149	162	229	254	260	123	035
76.	. 3	71	485	638	3	608	224	04	8	.148	204	254	274	260	135	034
78.	• 3	92 -	472	618	3	611	224	04	0	.149	242	282	294	269	135	034
80.	. 4	10	453	595	5	608	226	04	0	.148	277	311	321	285	134	034
82.	• 4	28	441	575	5	606	247	703	9	.148	311	332	346	295	134	027
84.	. 4	46	422	555	5	606	266	03	1	.147	353	359	369	305	133	019
86.	. 4	64	412	535	5	607	291	03	0	.144	381	388	397	326	130	010
88.	• 4	75	402	519	7	603	329	03	0	•143	413	424	419	351	125	003
90.	• 4	84	384	507	7	598	357	r03	0	•143	458	471	433	373	119	002
92.	• 5	03	375	496	b	595	381	03	0	.143	514	512	447	393	104	.005
94.	. 5	13	366	488	3	584	405	503	0	.144	573	543	458	409	097	.006
96.	• 5	15	357	476	5	575	412	203	1	.144	622	574	462	426	086	.012
98.	.5	35	347	457	7	576	404	03	3	•146	659	596	474	443	072	.011
100.	• 5	37	331	460)	573	380)03	9	•144	696	627	504	461	066	•013
102.	• 5	48	322	455	5	567	345	504	2	•140	722	649	533	478	059	.019
104.	• 5	50	304	450)	562	309	905	1	•140	760	672	557	493	049	.019
106.	.5	53	289	443	3	562	279	906	0	.137	787	686	577	509	039	.020
108.	.5	57	284	437	7	559	262	07	0	-136	815	710	594	530	033	.020
110.	. 5	60	283	42	7	553	260)08	0	•139	834	734	612	539	027	.019
112.	• 5	64	275	419	7	545	261	08	5	•135	864	751	631	528	024	.019
114.	• 5	67	271	414	÷	531	278	309	0	.132	893	774	645	487	020	.020
116.	. 5	64	274	~.404	•	517	295	. 09	6	.135	913	785	663	406	014	.019
118.	. 5	66	276	383	3	512	308	309	6	.135	934	808	685	325	011	.020

FLT 63 PUNIO

.

۲

¥.

46

4

AIRFOIL PRESSURE DATA .9 BLADE RADIUS			NASA-LANGLEY AH-1G					78/11/14.						
FLI	r 63 Ri	JN 10	TIME 54	541.600		NU= .	356 CL	.P= •004	21 TEM	P(U60) = 10	.6 C =	50.99 F		
		UPPER SU	REACE CP	VALUES							LOWER	SURFACE	CP VALUES	;
×/C= AZIMUTH	.02	•10	.20	•35	•50	.70	.80	.90	• 0 2	.10	•20	•50	• 70	.90
120.	•561	279	354		-,501	323	097	.133	956	816	700	240	012	.016
122.	.557	282	326		488	338	098	.132	975	831	715	170	012	.007
124.	•552	291	304		492	343	099	.127	994	855	731	114	017	.009
126.	.548	299	282		490	347	107	.121	-1.027	869	748	098	019	.013
129.	•544	303	277		487	352	111	.120	-1.054	891	765	078	013	.013
130.	.540	313	281		484	356	113	•116	-1.075	910	783	064	005	.007
132.	•537	321	293		454	361	114	•116	-1.097	923	-,795	058	005	.005
134.	.527	326	306		440	367	116	.119	-1.127	936	806	059	013	.004
136.	.526	331	320		418	349	110	.115	-1.151	951	818	061	021	.004
138.	.520	328	333		415	342	119	.109	-1.169	966	830	070	021	003
140.	.512	331	336		413	335	122	.109	-1.197	982	834	087	022	013
142.	.509	337	333		417	341	124	.104	-1.224	999	804	103	030	015
144.	.497	343	331		404	344	126	.097	-1.246	-1.017	621	113	032	015
146.	.490	349	338		390	328	129	.098	-1.279	-1.020	404	124	040	015
148.	.496	345	344		378	331	131	.100	-1.308	918	266	133	040	016
150.	.476	362	351		372	327	134	.093	-1.323	717	233	135	041	016
152.	.467	370	354		363	330	137	•085	-1.298	575	253	138	040	016
154.	.441	390	351		367	326	140	.079	-1.209	514	278	141	034	017
156.	.420	399	354		368	329	143	.080	-1.060	469	277	140	032	017
158.	.389	421	362		377	325	145	.078	938	445	264	130	025	016
160.	•367	418	370		386	333	149	.071	834	413	·245	118	027	016
162.	.346	442	391		395	335	152	•073	728	377	223	111	016	017
164.	•309	467	411		398	333	156	.075	634	340	201	098	012	019
166.	.254	496	428		401	334	160	•074	536	315	178	091	006	030
168.	.213	537	443		404	333	160	.068	434	275	159	087	002	028
170.	.168	566	463		407	333	153	~.070	346	248	138	072	.004	019
172.	.105	597	489		418	333	158	.073	254	204	118	059	.010	-,024
174.	•055	633	507		421	331	161	•068	158	174	097	049	.016	033
176.	015	680	~.530		427	332	166	.063	077	142	074	038	.016	029
178.	085	716	549	•	439	341	163	.065	.006	109	059	027	-024	021

FLT 63 RUN10

AIRFOIL PRESSURE DA	ATA .9	BLADE	RADIUS
---------------------	--------	-------	--------

-		0	11		 	
	1	С		 Li	. 4	۲

FL	T 53	RUN 10	TIME 54	541.600		MU=	• 356	CLP*	.00421	TEMP	(U60)= 10	0.6 C =	50.99 F			
		UPPER SU	JRFACE CP	VALUES								LOWER	SURFACE	CP VAL	IES	
X/C= AZIMUTH	•02	.10	•20	• 35	• 50	•70	• 80	ז	•90	• 02	.10	.20	.50	.70		•90
180.	152	760	564		440	338	315	59	•066	.074	074	037	016	.030)	021
182.	248	~.812	592		448	340) 16	53	.068	•146	037	011	013	•039	5	-•055
184.	334	854	610		461	336	515	59	.070	.222	.003	.007	013	• 04 !	5	-•055
186.	425	890	627		472	340)1	55	•067	•296	•040	•036	.008	•05!	5	024
198.	522	934	645		471	333	316	50	.064	.362	.062	.055	.024	.060)	026
190.	624	993	680		467	338	816	55	.066	.435	•093	•086	•039	.062	2	026
192.	732	-1.044	704		478	348	816	59	.068	.474	.133	.106	•042	•061	3	027
194.	845	-1.086	725		477	357	711	74	•067	•516	.160	•123	•058	• 06	7	027
196.	965	-1.131	744		508	346	516	55	•068	•571	.189	.143	•075	• 069	2	-+027
198.	-1.092	-1.175	772		503	355	516	54	.073	.622	.210	•152	.077	•069	7 -	029
200.	-1.213	-1.226	788		523	363	316	58	.069	.655	.227	.167	•096	• 091	ł	027
202.	-1.341	-1.272	794		512	353	11	74	.063	.706	.261	.216	.099	• 093	1	030
204.	-1.474	-1.311	818		526	361	L16	50	.063	.744	•283	•224	.103	•094	÷ '	032
206.	-1.618	-1.351	843		521	343	316	51	.065	•766	.306	•249	.122	.096	5	033
208.	-1.780	-1.392	864		534	353	316	56	.067	.809	.328	.256	.126	.099	7	034
210.	-1.932	-1.434	873		529	362	217	71	.069	.848	.338	•264	.130	.103	2	036
212.	-2.101	-1.477	899		541	344	1	76	.071	.873	•367	•272	.134	.101	3	037
214.	-2.287	-1.497	919		536	354	15	55	.073	.899	•390	•285	.138	.093	L i	038
215.	-2.483	-1.537	929		552	36	515	58	•075	.900	•401	•311	•142	.117	2	039
218.	-2.712	-1.555	947		568	369	916	53	•078	.915	•413	•320	.146	.11	1	040
220.	-2.933	-1.597	958		577	351	116	5 7	.080	.941	•425	•329	.150	.09	5	041
222.	-3.155	-1.611	974		564	361	L14	42	.082	.936	.437	.338	.155	.090	,	042
224.	-3.387	-1.622	972		550	371	L14	46	.084	.954	.449	•339	.159	.102	2	043
226.	-3.562	-1.666	983		545	369	1	50	.087	.980	•462	•332	•164	.104	4	045
228.	-3.665	-1.674	995		559	353	31!	54	.089	.968	.474	•341	.168	.10	7 .	046
230.	-3.725	-1.681	-1.009		574	362	21	58	.091	.987	.453	.350	.172	.110	,	047
232.	-3.741	-1.686	-1.017		576	353	316	52	.092	.969	.459	.355	.164	.11	4	048
234.	-3.672	-1.689	-1.010		572	337	710	55	.083	.944	.471	.364	.141	.11	7	041
236.	-3.589	-1.695	-1.023		586	34	516	50	.068	.964	.481	.372	.132	.120)	018
238.	-3.419	-1.726	-1.025		583	352	213	35	•073	.985	•492	.378	.135	.17	4	023

NASA-LANGLEY AH-1G

48

FLT 63 RUN10

		2000AL 01	• / • / •		103		114 3 4		10		101 1111	••		
FL	T 63 R	UN 10	TIME 545	641.600		MU=	•356 C	LP= .004;	21 TEM	P(U60)= 10	-6 C =	50.99 F		
		UPPER SU	JRFACE CP	VALUES							LOWER	SURFACE	CP VALUE	۲
X/C=	.02	.10	.20	.35	.50	.70	. 80	. 90	• 02	.10	.20	.50	.70	.90
AZIMUTH					• - •									
240.	-3.280	-1.722	-1.036		579	359	138	.084	.957	.460	.368	.138	.112	040
242.	-3.177	-1.715	-1.033		-,569	367	141	. 078	.977	.469	• 363	.141	.100	016
244.	-3.103	-1.706	-1.017		565	374	144	•086	.990	.478	•349	.144	•084	016
246.	-3.031	-1.693	-1.026		576	381	147	069	.960	.482	•345	.147	•092	017
248.	-3.000	-1.692	-1.015		586	387	149	.070	.977	.449	•351	.149	.105	017
250.	-3.000	-1.702	-1.024		595	360	151	.071	• 981	.456	.356	.151	•086	017
252.	-3.008	-1.681	-1.006		574	384	154	.072	.950	.463	.361	.154	.077	017
254.	-3.033	-1.675	-1.014		571	367	156	.073	.963	.469	•366	.156	.078	018
256.	-3.019	-1.673	950		578	358	157	.054	.974	.462	•341	•157	•078	018
258.	-3.000	-1.665	953		579	363	160	•047	•984	•432	•346	•159	.076	020
260.	-2.976	-1.655	961		583	367	162	•051	.993	.435	•350	.160	.076	023
262.	-2.968	-1.618	968		550	370	163	.051	1.000	.439	•353	.130	•977	023
264.	-2.961	-1.633	972		548	372	164	•051	1.006	.441	•355	•129	.077	023
266.	-2.922	-1.631	938		551	373	~.165	.052	1.010	• 443	•321	.130	•078	023
268.	-2.904	-1.586	940		594	374	165	•05?	1.012	.444	•321	.130	.078	023
270.	-2.851	-1.569	941		552	374	165	•080	•983	.444	•321	.128	•07B	023
272.	-2.804	-1.568	940		552	374	165	.058	•952	• 4 4 4	•321	.097	•078	023
274.	-2.797	-1.564	930		551	373	165	.052	.950	.416	•320	.097	•078	023
276.	-2.786	-1.523	894		549	~.372	164	.051	•946	.391	.319	.096	•077	023
278.	-2.738	-1.502	889		546	370	163	.051	.941	•388	•317	.096	•077	023
280.	-2.703	-1.492	883		542	367	162	•051	.934	•386	•315	.095	•073	056
282.	-2.645	-1.479	878		537	364	161	•050	•926	.382	•312	.094	•042	061
284.	-2.604	-1.465	873		533	360	159	•050	•957	.377	.307	.094	•042	050
286.	-2.574	-1.448	863		541	354	156	•040	.963	.373	•288	.093	•045	-,055
288.	-2.503	-1.429	852		553	349	154	•040	.951	.368	•260	•082	.044	018
290.	-2.459	-1.409	840		517	344	152	•039	•937	•363	•257	.060	•036	054
292.	-2.421	-1.387	827		509	339	149	•039	.923	•357	.253	.059	.012	053
294.	-2.380	-1.364	813		514	333	147	.038	.907	.351	.248	.058	•012	052
296.	-2.296	-1.341	816		529	343	150	.037	.891	.345	•244	.057	•012	051
298.	-2.249	-1.355	818		519	367	180	.036	.874	.338	.239	.056	.011	050

AIRFOIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G 78/11/14.

*

,

• •

FLT 63 RUN10

AIRFOIL PRESSURE DATA .9 BLA				DE RADIUS		NASA-LAN	GLEY AH-	IG		78/11/14	•		
I	FLT 53 F	RUN 10	TIME 54541	.600	MU=	•356 CLP=	.00421	TEMP	(060)= 1	0.6 C =	50.99 F		
X/C= AZIMUTI	• •02	UPPER S .10	URFACE CP VI .20	.35 .50	.70	.80	•90	•02	•10	LOWER .20	SURFACE (•50	P VALUES	•00
300.	-2.204	-1.328	801	508	360)177	•036	.856	•331	.234	.055	.011	049
302.	-2.157	-1.299	784	497	352	2173	•035	.838	• 324	•229	.068	•023	048
304.	-2.109	-1.271	767	486	344	169	.034	.868	.317	.224	.064	.038	040
306.	-2.060	-1.248	769	475	336	165	.033	.848	.310	.219	•051	.037	015
308.	-2.011	-1.243	762	482	-:328	3161	.033	• 82 B	.302	.214	.050	•037	014
310.	-1.961	-1.226	743	484	342	2157	.032	.811	•295	.209	.049	•036	014
312.	-1.911	-1.222	724	472	351	153	.031	.831	•290	.203	.047	•035	014
314.	-1.861	-1.200	705	459	342	163	.030	.809	.312	•198	.030	•034	023
316.	-1.811	-1.202	686	467	333	s177	.029	.787	.277	.193	•022	•033	040
318.	-1.762	-1.191	712	463	324	172	.029	.774	.293	•187	.021	•032	039
320.	-1.713	-1.158	701	471	339	167	•040	.784	•257	.182	.021	•031	038
322.	-1.665	-1.138	704	465	315	5162	•049	.762	.258	.177	.020	.030	037
324.	-1.617	-1.123	709	452	322	2158	.035	.740	.275	.172	.020	.029	036
326.	-1.571	-1.105	691	439	321	L153	.038	.730	.267	.167	•037	•029	035
328.	-1.525	-1.101	667	426	31)	L149	•045	.733	•259	.162	.020	.028	034
330.	-1.492	-1.097	674	410	329	9145	.047	.725	•252	.162	000	•025	035
332.	-1.464	-1.077	655	401	323	3157	•044	.724	•244	•153	001	.009	033
334.	-1.421	-1.060	656	411	313	3160	.041	.703	.237	•148	018	.007	031
336.	-1.379	-1.055	642	421	304	4155	.040	.682	.229	.144	018	.007	030
338.	-1.338	-1.048	641	412	294	150	.049	.676	•222	.135	017	•00P	02B
340.	-1.298	-1.041	624	401	311	L163	.050	•671	•215	.114	017	.008	-+040
342.	-1.246	-1.034	623	408	30	2163	•049	.651	.210	.111	016	008	044
344.	-1.200	-1.026	623	395	296	5158	.037	•632	.204	.111	016	010	044
346 .	-1.165	-1.018	619	401	310)154	.049	.614	.198	.108	015	009	044
348.	-1.131	-1.010	603	392	30	149	.049	.613	•192	.105	015	009	042
350.	-1.098	-1.002	603	393	290	5164	.051	.604	.187	.105	015	011	058
352.	-1,067	-1.010	603	386	30	7160	.050	.604	•182	.102	014	010	058
354.	-1.037	-1.004	604	389	30	2156	.062	.594	.190	.098	014	010	056
356.	-1.007	-1.011	602	- 388	30	150	.057	.577	.191	.093	013	008	053
358.	964	-1.003	601	400	30	1146	.056	.562	•17Ī	.087	013	008	052

FLT 63 RUN10

•

•

ъ

.

٠

	AIRFOIL PR	ESSURE DA	TA .9 F	BLADE RA	DIUS		NASA-L	ANGLEY AH	-1G		78/11/1	4.		
	FLT 63 R	11 NUN 11	TIME 540	548.800		MU≖ .	370 CL	.P= .0043	3 TEM	P(U60)= 1	0.6 C =	50.99 F		
		UPPER SU	PFACE CP	VALUES							LOWER	SURFACE	CP VALUES	;
X / C	- .02	.10	.20	• 35	.50	.70	.80	• 90	.02	.10	.20	.50	.70	.90
AZIMUT	н													
٥.	813	-1.027	582		391	313	154	.043	.510	.133	.050	043	026	045
2.	724	-1.028	590		392	306	153	.056	.486	.111	•038	042	026	045
4.	656	-1.021	576		383	298	149	.056	•460	.100	.024	043	026	055
6.	592	-1.010	572		385	307	159	•054	.476	.087	.011	053	025	056
8.	525	999	562		378	299	156	.053	• 394	.067	.000	062	026	055
10.	474	989	- .556		381	293	151	•060	•377	.059	004	069	035	052
12.	418	978	544		374	302	147	.047	• 354	•047	018	073	047	073
14.	373	969	541		377	312	157	.047	• 327	.020	036	089	061	062
16.	321	959	539		378	322	155	.062	•287	.011	040	094	054	062
18.	281	937	-,538		377	326	164	•070	.272	001	039	095	052	061
20.	233	-,928	532		372	322	160	•069	•266	004	041	102	054	060
22.	210	920	532		380	325	156	•076	.245	004	051	105	062	070
24.	179	900	543		392	323	152	.075	•532	005	057	107	066	+.078
26.	148	892	574		396	329	151	.077	• 232	016	061	113	067	074
28.	131	874	631		398	331	157	•080	•227	017	069	120	07?	075
30.	102	867	690		395	330	154	.087	.222	017	077	121	074	084
32.	063	850	741		398	337	151	• 092	• 2 0 3	029	079	119	082	088
34.	037	833	779		406	338	148	.093	•100	029	083	117	084	079
36.	011	815	813		408	338	145	.097	.195	040	084	129	083	078
38.	.014	791	839		416	345	143	.100	•191	040	082	141	091	080
40.	•048	778	849		422	345	140	.107	•173	050	080	141	101	085
42.	.070	761	853		425	354	138	.109	.158	050	101	149	107	083
44.	.089	738	857		434	357	136	•111	.153	061	115	162	109	092
46.	•102	719	855		440	359	134	.114	•138	072	122	163	112	081
49.	.125	705	852		450	357	132	.115	.122	080	129	177	122	079
50.	.153	680	840		463	360	124	•120	.107	081	135	185	130	073
52.	.172	654	828		473	359	118	.123	•093	091	146	195	125	073
54.	.188	636	818		478	355	112	.126	.079	100	153	201	133	072
56.	.200	618	808		503	350	106	•132	.065	110	159	205	135	057
58.	.218	601	798		532	346	099	.133	•048	119	171	204	139	062

FLT 63 RUN11

ក

NASA-LANGLEY AH-1G	78/11/14.
--------------------	-----------

AIRFOIL PRESSURE DATA .9 BLADE RADIUS

FLT	63 R	UN 11	TIME S	54648.800		MU≠	• 370	CLP=	•0043	3 TEM	P(U60)=	10.6 C =	50.99 F		
		UPPER SL	JRFACE C	P VALUES								LOWER	SURFACE	CP VALUES	
X/C= AZIMUTH	.02	.10	•20	• 35	•50	.70	• 80)	.90	•02	•10	•20	•50	. 70	.90
60.	.736	584	78]		561	333		39	.136	.027	128	177	227	130	058
62.	.254	569	765	j	582	319	01	79	•142	.010	137	183	226	137	052
64.	.272	554	743	3	586	~.295	5	59	.148	020	151	195	243	136	049
66.	.294	533	721	L	616	280)	52	.150	050	170	210	247	127	042
68.	.321	516	699)	628	~.277	704	¥8	.150	085	188	223	251	125	039
70.	.348	503	677	,	631	276	504	0	•154	126	212	243	251	131	038
72.	.375	484	649)	627	305	503	31	•149	166	235	269	268	137	038
74.	.396	462	619)	623	~.336	03	30	.149	212	258	288	278	143	033
76.	.420	448	589)	632	377	703	38	.144	250	292	312	286	144	032
78.	.440	430	570)	622	425	504	46	.143	284	318	333	305	149	026
80.	.457	410	548	3	623	464	04	6	.134	317	342	360	327	146	017
82.	.475	398	527	7	624	501	L05	54	.131	350	377	385	346	139	015
84.	.485	380	506		608	528	30	55	.127	392	414	402	369	133	009
86.	.502	369	490)	596	550	06	53	.126	437	452	415	385	126	009
88.	.512	351	477	,	584	575	506	53	.121	491	490	428	400	116	002
90.	. 522	342	468)	581	585	06	52	.115	539	529	439	418	098	002
92.	.531	333	454	-	573	596	0	53	.128	585	552	445	432	088	002
94.	541	324	44	,	562	603	304	45	.129	631	572	461	442	077	002
96.	.552	307	- 440)	- 554	604	0	36	.136	668	600	- 489	455	063	.005
98.	.553	297	434		551	- 605	0	30	.142	593	622	515	472	056	.006
100.	.564	281	428	3	- 550	607	70	30	.142	729	644	- 534	486	047	.012
102.	.567	273	42	3	- 544	609	03	30	•141	744	656	550	501	037	.013
104.	569	265	422	•	- 539	607	0	30	.142	770	669	570	526	+.027	.015
106.	.571	257	418	3	542	- 605	0	30	.142	787	692	586	539	017	.021
108.	.566	252	- 413	1	539	604	0	31	.145	- 815	716	601	- 550	011	.018
110.	.569	253	- 408	1	- 534	597	70	34	.146	- 843	731	614	- 563	005	.015
112.	.565	255	- 400		525	591	04	.3	.144	- 861	745	631	- 569	002	.020
114.	.567	257	- 406	1	519	- 579	04	.9	.141	880	753	~.645	57A	006	.017
116.	.562	- 260	401	•	508	- 555	5 - 0'	53	.143	898	770	658	- 570	004	.016
118.	.557	- 266	395		502	521	0	58	144	909	785	672	- 535	002	.024

52

FLT 63 PUN11

	ATRED	IL PRI	ESSURE DA	P. ATA	BLADE RAD	IUS		NAS	SA-LAN	GLEY AH	-1G		78/	11/1	4.		
	FLT	63 RI	UN 11	TIME 54	648.800		MU≖	.370	CLP=	.0043	3 TEM	P(U60)=	10.6	c ▪	50.99 F		
													L	OWER	SURFACE	CP VALUES	
v //	· -	02	.10	.20	.35	.50	.70		30	.90	.02	.1	0	.20	• 50	.70	.90
AZIMUI	тн	•02	•10	• 2. 0	• 55	••••											
120		. 553	-,274	387		- 499	47	4(064	.140	930	79	3 -	.686	471	.009	.026
122		.548	- 282	375		503	42	3(068	.138	-,949	80	2 -	.702	384	.013	•022
126.		- 544	- 290	- 347		509	38	9(075	.135	961	81	7 -	.717	291	•013	•025
124		526	- 294	- 318		- 493	36	9(79	.134	981	84	2 –	.727	215	.007	.023
120.		. 526	- 303	- 286		- 488	34	1	080	.131	-1.015	85	3 -	.737	146	000	.023
120		. 523	-, 312	283		484	32	1	082	.127	-1.037	86	5 -	.746	103	.004	.018
122		.510	- 323	- 288		483	31	2	090	.120	-1.058	88	z -	.765	082	001	•009
126		510	- 332	- 310		- 481	31	6	101	.113	-1.081	90	2	.777	062	001	.007
134+		. 405	337	- 324		- 469	33	2	105	.113	-1.098	91	1 -	.781	062	009	.007
120		. 487	- 343	- 336		438	33	8	107	.109	-1.124	92	o –	.794	058	009	•000
160		494	- 348	- 349		- 414	33	3	110	.113	-1.150	93	6 -	.794	074	019	004
140.		404	- 355	- 353		410	32	6	112	.108	-1.171	95	з –	.745	091	019	004
144		. 470	370	- 351		400	31	9	114	.102	-1.201	95	6 -	.544	100	020	004
144.		. 453	- 371	- 352		- 404	31	3	116	.103	-1.229	91	9 -	.338	110	028	004
140.		. 446	376	- 357		393	31	6	128	.084	-1.744	76	3 -	.228	119	027	002
160		. 442	- 383	- 364		377	31	2	132	.090	-1.233	59	3 -	.225	122	029	004
150		428	402	373		365	31	6	135	.091	-1.155	49	8 -	.237	124	028	005
154		200	413	- 383		365	31	1	138	.084	-1.025	44	6 -	.243	121	021	005
154		367	434	383		376	31	7	140	.072	894	41	1 -	.244	112	020	002
159		. 333	458	- 379		385	32	4	143	.073	762	37	7 -	.230	111	018	003
160		. 297	469	- 393		394	32	7	147	.074	651	34	2 -	.210	100	008	014
162		. 260	481	- 414		403	32	5	150	.067	557	30	5 -	• 183	083	002	015
164		. 235	508	- 437		408	32	7	151	.068	461	26	6 -	160	074	• 002	026
164.		180	551	458		411	32	5	144	.070	360	23	9 -	•136	071	.009	027
168		. 121	594	- 474		413	32	7	148	.071	272	19	7 -	109	057	•00B	028
170.		.058	- 628	- 494		415	32	7	153	.069	161	16	8 -	086	048	.012	028
172	-	. 007	674	512		426	32	.7	157	.071	084	12	1 -	063	037	.01P	019
174	-	077	709	526		430	32	7	156	.073	003	08	9 -	040	022	.024	023
176	_	. 153	750	- 541		427	33	16	150	.075	.083	05	5 -	023	011	•031	029
178.	-	. 246	802	560		433	33	15	148	.077	.171	02	o ·	002	.001	.039	020

1

FLT 63 RUN11

រ

í

AIRENTI	PRESSURE	DATA	.9	BLADE	RADIUS	
		· · · · · ·	•			

4

ł

NASA-LANGLEY	(AH-16	78/11/14.
--------------	---------	-----------

FI	LT 63	RUN 11	TIME 54	648.800		MU=	.370	CL P=	.00433	TEM	P(U60)=	10.6 C	■ 50.99	F		
		UPPER SU	JRFACE CF	VALUES								LOW	R SURFAC	E CP	VALUES	
X/C# AZIMUTH	• 02	.10	.20	• 35	•50	•70	.80	•	90	•02	•10	•20	•50		•70	• 90
180.	329	849	596		449	335	.14	2.	070	•241	.015	•02	.00	5	.047	020
182.	416	905	619		449	332	214	6.	064	.295	•039	•0•	42 .00	5	•048	019
194.	513	951	638		456	335	515	1.	070	.357	.077	•07	70 .02	5	.057	02?
186.	625	992	657		457	330)15	i 5 .	072	•431	.105	•0	79 .03	2	•063	023
188.	730	-1.030	677		466	334	15	• •	075	.470	•146	.10	.04	4	.065	024
190.	839	-1.074	705		481	344	14	.6 .	077	.517	•172	•13	28 .06	0	.078	024
192.	964	-1.117	720		487	333	14	9.	062	.579	.200	.1	39 .07	7	.088	013
194.	-1.092	-1.163	742		477	341	15	.4	061	.626	.224	• • • • • •	58 .0 8	1	.088	015
196.	-1.209	-1.200	765		488	352	16	.0	068	.664	.239	•19	92 .08	3	.090	016
198.	-1.335	-1.238	788		484	341	16	5.	070	.697	•263	.20	.10	2	.092	009
200.	-1.466	-1.292	775		498	349	915	i4 .	072	.737	•281	21	24 .10	5	.095	009
202.	-1.618	-1.327	800		514	334	15	3.	075	.760	• 306	.2	.12	5	.098	009
204.	-1.779	-1.360	826		509	343	315	7.	077	.785	. 328	•2	57 .11	.3	.101	009
205.	-1.948	-1.404	852		546	354	16	.3	080	.810	• 353	.2	.13	4	.105	010
208.	-2.143	-1.429	879		517	364	14	6.	065	• ^A 36	• 365	•21	94 .13	8	.108	010
210.	-2.361	-1.446	902		531	346	514	7.	082	.867	• 376	• • 30	.14	5	.111	010
212.	-2.590	-1.485	912		526	354	15	2.	800	.889	.406	• • 33	13 .16	3	•115	011
214.	-2.852	-1.532	934		538	335	515	6 .	069	.917	.432	•3	23 .15	2	.119	011
215.	-3.115	-1.554	945		532	345	516	1.	071	.920	.445	• 31	33 .15	6	.122	011
218.	-3.356	-1.597	965		549	356	5 1 3	37 .	073	.936	• 4 5 9	•3	44 .15	5	•125	012
220.	-3.597	-1.616	967		565	359	914	1.	075	.935	•473	• 3!	54 .14	4	•130	-+012
222.	-3.792	-1.631	978		574	341	L14	·5 •	077	.952	•461	. •3	65 •14	8	.128	012
224.	-3.979	-1.643	995		560	351	L14	9	080	.945	• 465	• 3'	76 .15	2	.113	013
226.	-4.073	-1.690	-,994		555	361	L15	j4 .	082	.964	• 479	• 3	77 .15	7	.117	013
228.	-4.150	-1.701	-1.005		558	371	L15	3.	084	•952	.492	.3	70 .16	1	•112	014
230.	-4.151	-1.709	-1.017		553	367	712	7.	087	.930	• 472	.3	80 .16	6	.096	014
232.	-4.139	-1.715	-1.029		553	349	913	81 .	089	.949	.479	•3	77 .17	0	.099	014
234.	-4.079	-1.719	-1.037		548	358	313	34 .	091	.974	• 491	3	71 .17	'5	.102	015
236.	-4.008	-1.721	-1.029		562	367	713	37 .	094	. 949	.504	• • 31	81 .16	4	.104	015
238.	-3.927	-1.727	-1.047		575	376	514	1	096	.971	•473	•3	90 .15	5	.107	015

FLT 63 RUN11

۹ E

AIRFOIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G

4

۱

298.

-2.493 -1.461 -.842

•035

.961

78/11/14.

.303

.073

.401

1 1

FL	.T 63 R	RUN 11	TIME 546	648.800		MU≖ •	370 CLF	•004	33 TEMP	(060)= 10	•6 C =	50.99 F		
		110050 51	IDENCE CD	VALUES							LOVER	SUREACE	CP VALUES	
¥/C=	. 02	.10	.20	.35	. 50	.70	. 80	. 90	- 02	. 10	.20	.50	.70	. 90
AZIMUTH	•02	•10	.20	• 5 5	• 20	••••		• 70	• 0 2.	•10	•20	• > 0	• • •	• •
240.	-3.830	-1.759	-1.052		-,595	382	143	.082	•939	.480	•390	•159	•113	014
242.	-3.687	-1.753	-1.063		590	388	144	•063	.959	•490	•373	.163	.118	008
244.	-3.574	-1.744	-1.032		586	396	147	.072	.979	.501	•368	•166	.121	008
246.	-3.450	-1.745	-1.031		598	404	150	• 054	.998	• 506	•375	.169	•123	008
248.	-3.336	-1.762	-1.050		609	379	153	•054	1.017	•471	•382	•173	.105	009
250.	-3.292	-1.744	-1.068		590	366	155	•055	1.012	•479	•362	•151	.094	008
252.	-3.254	-1.740	-1.057		587	371	157	.056	•931	•486	•358	.145	.096	008
254.	-3.248	-1.745	-1.066		600	375	159	052	.943	•491	.357	.148	.100	006
256.	-3.236	-1.737	-1.031		608	378	160	.048	.955	.498	.360	.178	.102	004
258.	-3.238	-1.733	-1.037		605	387	164	.060	.967	. 492	.378	•155	.097	009
260.	-3.248	-1.698	-1.046		608	392	167	•069	.976	.459	•384	•152	.096	014
262.	-3.241	-1.686	971		613	395	168	•069	.960	•462	.387	•153	.097	014
264.	-3.236	-1.696	977		576	397	169	.070	.975	•465	•353	.154	.098	014
266.	-3.196	-1.703	982		575	399	170	.070	.930	.467	•353	.154	.098	014
268.	-3.176	-1.675	997		576	400	170	.070	•932	• 466	• 35 4	.121	.098	014
270.	-3.151	-1.659	985		589	395	167	•054	.932	•466	• 337	•154	.072	007
272.	-3.124	-1.657	986		576	400	169	.067	.932	•468	•354	•120	• 062	011
274.	-3.084	-1.653	993		576	399	170	.070	.929	•465	•351	.120	.098	014
276.	-3.051	-1.646	977		584	392	166	.020	.926	.463	•336	.120	•069	006
278.	-3.033	-1.597	971		569	395	168	.031	•921	.462	•349	.118	.061	012
280.	-2.975	-1.574	964		565	392	167	.067	.914	.459	•347	.118	.061	014
282.	-2.932	-1.560	955		560	388	165	•068	.905	•455	•344	•125	.060	013
284.	-2.901	-1.543	945		554	384	164	•068	.939	•450	•340	.131	.060	013
286.	-2.826	-1.524	934		547	380	162	•067	.945	• 444	•336	.081	.059	013
288.	-2.736	-1.548	921		539	374	159	.066	.932	.438	.331	.080	.058	013
290.	-2.686	-1.527	907		531	369	157	.065	.918	• 432	•326	.078	.057	013
292.	-2.641	-1.502	892		522	363	154	•064	.903	.424	•321	.077	•056	013
294.	-2.594	-1.475	876		528	356	152	•063	.935	•417	•315	•076	.055	012
296.	-2.545	-1.449	859		542	367	149	.055	.974	•409	•309	•074	.054	012

-.531 -.391 -.154

FLT 63 PUNII

.053 -.012

Δ]	AIRFOIL PRESSURE DATA .9 BLADE RADIUS					NAS	A-LANO	GLEY AH-1	G	78	/11/1	4.			
Fl	.T 53 R	UN 11	TIME 546	48.800		MU=	•370	CLP=	.00433	TEM	P(U60)= 10.6	• C =	50.99 F		
		UPPER SU	JRFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
×/C≠ AZIMUTH	•02	•10	.20	• 35	•50	•70	• 84	0	•90	• 02	•10	.20	.50	.70	.90
300.	-2.439	-1.430	824		520	382	1	32	• 059	.940	• 392	•296	.071	.057	012
302.	-2.385	-1.404	805		508	374	1	78	.049	.919	.383	.290	.070	.051	011
304.	-2.328	-1.405	829		496	365	51	74	.027	.898	.374	.283	•068	.050	011
306.	-2.279	-1.379	833		503	356	1	70	•026	.877	• 365	.276	•066	.048	011
308.	-2.294	-1.375	812		506	370	10	56	.036	.902	.397	.269	.065	.047	011
310.	-2.234	-1.348	813		513	380	1	51	• 052	.878	• 386	.262	•063	.046	010
312.	-2.174	-1.350	799		511	369	1	57	.051	.860	.376	•255	.061	.045	010
314.	-2.114	-1.338	804		497	359	1	53	•049	.875	•365	•248	•060	.044	010
316.	-2.063	-1.312	789		486	348	16	53	•044	.850	.354	•236	•058	.044	008
318.	-2.030	-1.309	790		474	337	·1	74	.040	.835	.344	.228	•057	.044	006
320.	-1.970	-1.291	795		460	354	1	59	•039	.842	•334	.221	.037	.042	018
322.	-1.912	-1.267	774		469	353	10	54	.037	.829	.324	.215	•032	.041	019
324.	-1.855	-1.260	771		460	342	1	59	•050	.831	• 314	.208	.012	.040	019
326.	-1.799	-1.237	749		443	333	1	55	.061	.819	• 306	.207	•009	.037	031
328.	-1.757	-1.215	~ .750		451	323	51	51	•061	.818	• 296	.201	•009	.035	032
330.	-1.719	-1.207	728		440	314	1	46	.059	.793	.298	•195	.008	.034	031
332.	-1.666	-1.197	727		426	331	1	50	.057	.783	.307	.189	•00B	.033	030
334.	-1.615	-1.187	706		436	324	1	52	•055	.778	.297	.183	•025	•032	029
336.	-1.565	-1.177	704		423	314	1	57	.054	.753	•288	.177	•008	.014	028
338.	-1.516	~1.165	685		431	304	1	52	•052	.746	•279	•170	.007	.013	042
340.	-1.469	-1.154	684		420	321	1	56	.050	.737	•271	.148	.007	.012	046
342.	-1.424	-1.142	679		426	313	10	54	•049	.715	.262	•144	.007	005	044
344.	-1.365	-1.130	663		415	327	/1	59	.047	.693	•254	•139	•004	005	059
346.	-1.316	-1.118	661		419	320)1	55	•046	.672	•232	.132	008	004	060
348.	-1.259	-1.106	659		406	331	1	50	.060	.651	.217	.115	008	007	058
350.	-1.183	-1.093	651		403	321	1	45	•058	.632	.210	.112	008	019	056
352.	-1.138	-1.081	639		417	311	1	42	.056	.631	.204	.108	012	018	054
354.	-1.088	-1.087	633		406	307	1	55	• 054	.599	.197	.099	021	017	053
356.	-1.036	-1.076	613		403	312	1	49	.047	.577	.191	.078	025	015	048
358.	953	-1.082	609		400	310	14	45	•061	•560	•170	•069	032	015	048

FET 63 RUN11

1 E

1

ŧ

AIR	PEOIL PR	RESSURE DA	ATA .9	BLADE RAI	DIUS		NASA-LA	NGLEY AF	I+1 G		78/11/1	2.		
FLT	65 R	RUN 15	TIME 54	474.400		MU= .	243 CLP	0037	2 TEM	P(U60)= 19	= 3 8.€	67.58 F		
		UPPER St	JRFACE CP	VALUES							LOWER	SURFACE	CP VALJES	
X/C=	.02	.10	•20	.35	• <u>5</u> 0	.70	. 80	•90	•02	.10	.20	•50	.70	•90
AZIMUTH														
0.	296	801	450		300	294	153	.083	•215	001	048	096	057	073
2.	263	786	448		294	294	150	.082	.195	017	056	103	063	071
4.	236	772	451		299	289	148	.080	.187	029	066	103	065	070
6.	208	758	444		296	296	152	•079	.165	032	076	101	072	07:
8.	183	744	436		301	294	155	.077	.143	051	096	099	073	07
10.	150	731	439		298	289	152	.075	• 122	070	097	098	071	071
12.	125	718	432		303	284	158	.081	.102	074	105	123	070	06
14.	102	729	436		299	279	160	.090	•083	081	114	122	077	073
16.	078	741	440		305	274	157	•091	.064	085	112	129	-•086	074
18.	063	734	443		312	310	154	•090	.046	098	121	127	085	073
20.	041	739	437		307	308	161	•088	.029	110	129	134	084	071
22.	021	745	434		303	303	161	•087	.003	115	137	141	082	070
24.	.006	-,746	434		308	312	158	.085	020	120	144	148	090	077
26.	.023	738	438		305	308	156	• 08 4	036	131	152	152	089	07!
28.	.039	736	442		311	316	154	.083	051	141	159	144	096	07
30.	•055	737	443		315	313	161	.082	066	152	166	145	094	076
32.	.067	739	440		313	322	160	•039	080	154	171	148	093	07
34.	.078	751	443		317	329	158	•088	094	160	171	156	093	074
30.	.094	754	447		313	325	156	.095	108	162	178	166	099	073
38.	.103	756	447		314	323	154	.094	121	168	182	104	097	07
40.	.120	757	446		324	329	162	•093	134	169	182	164	096	07
42.	.133	770	450		323	320	160	.092	147	176	189	167	097	070
44.	.143	773	454		329	333	158	•098	148	176	192	168	102	070
46.	.152	775	453		331	334	156	.097	158	184	193	171	100	07
48.	.162	707	453		332	338	155	.096	158	183	196	172	099	068
50.	.172	769	453		334	339	153	•097	169	191	198	178	098	06
52.	.170	763	453		335	343	152	.102	181	200	204	160	097	06
54.	.179	764	453		341	339	150	.101	180	199	206	175	097	07
56.	.179	760	454		342	342	149	.102	178	197	204	181	099	074
58.	.166	761	459		339	345	148	.107	177	196	203	182	102	07

.

.

FLT 65 RUN15

١

AIRFUIL PRESSUPE	DATA	.9 BLADE	RADIUS	
------------------	------	----------	--------	--

1 .

70/	1	1	11	6	
(8)	- 1		/ 1	2.	

r 1'

FLT	65 F	RUN 15	TIME 5	4494.400		Mu=	•243	CL P =	.03372	E TEM	IP(U60) = 19	•8 C ≖	67.58 F		
		UPPER SU	JRFACE C	P VALUES								LOWER	SURFACE	CP VALUES	
X/C=	.02	.10	•20	• 35	.50	•70	.80) .	90	• 02	.10	.20	• 50	.70	.90
AZIMUTH															
60.	.196	755	464		342	348	314	6 .	106	188	204	206	181	101	072
62.	.196	750	487		343	351	14	5 .	105	188	203	207	175	100	072
64.	.203	745	518		341	348	314	.4	107	198	201	200	172	100	071
66.	.202	743	554		338	346	• - .14	3.	111	197	199	199	170	099	071
66.	.201	745	586		336	344	14	3 .	110	193	189	196	169	099	076
70.	•197	741	616		341	342	14	2.	109	180	108	195	174	098	070
72.	.192	738	639		341	341	14	1 .	109	169	187	194	174	095	070
74.	•204	735	654		340	339	914	1 .	138	175	189	199	179	102	069
7 5.	• 224	-,727	660		339	338	314	0.	104	199	204	212	180	104	065
78.	.240	720	659		330	337	/13	9.	101	228	230	226	185	103	061
80.	•249	713	633		328	 33ó	13	9	100	260	245	234	185	103	061
82.	•263	701	591		327	344	13	39 i	100	289	259	248	191	103	061
84.	•279	690	533		327	345	514	5	1 00	326	275	256	197	103	050
86.	.288	674	468		326	345	514	·7 ·	100	357	289	270	197	102	053
88.	•298	654	413		326	354	14	7.	100	388	304	277	197	102	053
90.	.308	647	383		334	344	14	7 .	.100	419	319	285	203	102	053
92.	•324	+.634	367		334	344	14	7	100	450	334	292	203	102	053
94.	.333	622	354		335	345	5 14	7	100	481	344	293	204	096	053
96.	• 339	599	353		334	349	514	0	100	513	360	301	204	096	047
98.	.350	571	347		327	346	13	9	100	544	375	308	204	096	045
100.	.361	551	348		328	345	5 ~.13	9.	100	570	385	308	205	096	045
102.	.365	533	347		327	+.337	713	9	.101	580	397	311	205	096	045
104.	.374	507	342		322	338	14	0	101	582	401	318	206	096	046
106.	• 378	505	341		323	339	914	0	094	575	410	319	205	090	040
106.	.388	499	334		322	341	14	1.	095	565	415	320	201	091	046
110.	.391	482	327		318	339	914	2	095	555	424	322	199	091	046
112.	.393	474	324		319	333	314	3 .	096	535	429	323	196	092	039
114.	.396	467	322		318	֥335	. 14	3 0	095	523	431	322	195	090	039
116.	.398	460	316		315	333	314	4 .	.090	514	434	320	192	086	039
118.	.401	453	314		317	329	14	5	.090	-,528	437	318	190	084	039

RASA-LANGLEY AH-1G

FLT 65 RUN15

	AIRFUIL	PRESS	UKE D	ATA .	9 BLADE KA	DIUS		NAS	A-LANG	GLEY AH	I-1G		78/11	/15.			
	FLT 65	RUN	15	TIME	54494.400		MU=	.243	CLP =	.0037	2 TEN	1P(UpC)=	19.8 C	* 6	7.58 F		
		UP	PERS	URFACE	CP VALUES								LOW	EK S	URFACE	CP VALUES	
X/	C= .U	2	.10	•20	•35	.50	.70	.80	0	.90	•02	.10	.2	0	.50	.70	•90
AZIMU	ITH																
126.	.4	04	446	31	2	315	326	1	44	.091	533	431	3	13	188	080	040
122.	• 4	07	440	30	o	313	322	213	36	.092	524	434	3	11	185	081	041
124.	• 4	iC	442	30	5	311	325	514	40	.093	515	427	·3	10	184	081	047
126.	• 4	04	438	30	7	309	322	214	41	•093	507	430)3	04	185	082	041
128.	• 4	06	440	30	4	296	319	1	42	.091	527	424	3	04	187	079	041
130.	• 4	00	435	30	5	288	316	 14	43	.088	559	417	73	02	184	070	041
132.	• 4	03	437	30	1	291	314	•14	45	.088	593	421	2	90	184	077	042
134.	.3	96	435	30	2	294	317	714	42	.089	625	414	2	91	180	078	042
136.	• 3	83	439	29	8	297	313	31:	38	.087	646	407	72	86	175	074	043
136.	• 3	84	440	30	0	294	313	314	40	•083	062	398	3 2	80	169	072	043
140.	• 3	86	439	30	4	295	308	14	+2	.085	659	382	2	75	169	073	044
142.	.3	78	445	30	ხ	291	30c	s1·	43	•08ó	660	375	j2	70	165	373	044
144.	.3	67	445	30	3	293	302	214	+5	.087	643	368	2	64	166	068	045
146.	.3	52	445	30	6	288	303	31	41	.033	631	361	2	59	154	067	045
148.	.3	44	451	31	6	291	297	713	39	.081	010	354	2	53	154	068	046
150.	.3	37	458	30	5	285	299	.14	41	.082	587	346	2	47	149	062	047
152.	• 3	29	457	31	0	209	303	314	43	.083	564	343	52	41	151	062	047
154.	.3	20	459	31	4	293	295	5 10	+5	.084	541	338	2	35	153	Jó3	048
156.	.3	05	466	31	9	287	298	314	47	.085	517	31	72	29	146	055	049
158.	• 2	91	474	32	3	291	289)14	40	.087	492	302	22	23	132	056	042
160.	• 2	82	481	31	9	285	265	5 . .14	40	.086	466	280	2	16	141	057	040
162.	• 2	64	489	32	4	288	270)1	42	.090	449	26	j2	80	127	048	041
164.	• 2	46	487	32	9	283	274	1	45	.074	430	269	,1	92	128	348	041
166.	• 2	25	493	33	5	288	279	,14	• 7	.073	413	251	71	85	120	040	042
163.	• 2	64	501	34	1	293	284	1:	38	.074	390	242	1	77	111	041	043
170.	•1	78	510	34	7	295	289	91	40	•076	361	232	21	69	098	042	044
172.	.1	62	532	35	3	291	294	14	42	.077	330	221	1	61	099	041	044
174.	.1	38	543	36	0	296	296	51	45	.079	298	210)1	53	101	033	045
176.	• •1	09	553	36	6	298	292	21	48	.079	265	187	1	40	103	034	046
178.	.0	79	-,563	37	3	294	311	 1	50	.971	231	171	1	23	097	031	047

1

ĩ

FLT 65 RUN15

	AIRFOIL	PRESSURE D	ATA .9	SnIC		NA S	A-LAN(GLÊY AH-	-1G		78/11/1	5.			
	FLT 55	RUN 15	TIME 544	494.400		MU =	•243	CLP=	.00372	2 TEMI	F(U60)=	19.8 C =	67.58 F		
		UPPER S	URFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
X7C AZIMUT	:= •02 [H	.10	•20	•35	• 50	.70	• 8	0	.90	.02	.10	.20	• 50	.70	.90
180.	• 0 4	8574	380		300	311	1	52	.072	196	158	113	086	024	040
. 182.	•03	0600	400		305	305	1	42	.073	142	131	103	083	025	-+049
184.	01	7613	408		311	305	1	45	.075	100	114	093	078	025	050
186.	05	3640	410		311	299	1	47	.076	060	099	002	080	021	050
188.	08	9654	424		309	305	1	50	.078	018	084	070	070	014	051
190.	12	7682	432		315	311	1	53	.076	.026	051	052	060	015	052
192.	18	4695	441		321	308	1	56	.068	.071	034	033	061	015	054
194.	22	5712	459		328	304	1	59	.070	.119	016	020	048	009	055
196.	26	9745	473		334	310	1	57	.071	.166	.003	006	039	003	056
198.	33	0773	483		331	316	1	49	.072	.195	.020	001	040	003	057
200.	38	0794	492		331	322	1	52	.074	.245	.023	.009	041	003	053
202.	44	3823	502		327	315	1	55	.075	.278	•043	.024	041	.005	044
204.	49	3845	512		340	313	1	58	.077	• 329	.064	•040	032	.010	044
206.	54	5882	522		339	319	1	52	.078	.367	.082	.045	029	.011	045
208.	59	8911	546		341	313	1	.46	.080.	•414	.088	.058	030	.011	046
210.	65	3929	559		347	309	1	49	.081	.429	.112	.075	019	.011	047
212.	71	0946	569		339	315	1	52	.083	• 46 4	.130	.079	017	.011	048
214.	76	8964	- • 5 80		342	321	1	54	.084	.491	.139	.109	004	.011	049
216.	62	9982	591		348	307	1	44	.086	•510	.157	.115	003	.012	050
218.		0 -1.012	583		355	308	1	40	.037	•548	.168	.117	003	.012	051
220.	94	3 -1.039	593		361	314	1	.43	.089	.575	.185	.119	003	.012	052
222.	99	6 -1.057	004		367	319	1	45	.091	.585	.188	.121	003	.012	052
224.	-1.04	9 -1.075	614		353	300	1	.48	.092	•610	•202	.124	002	.012	053
226.	-1.09	2 -1.077	624		339	304	1	50	.094	.635	.219	.144	.013	.013	054
228.	-1.15	0 -1.087	631		344	309	1	.34	.095	.645	•222	.146	.014	.013	055
230.	-1.20	3 -1.104	624		350	313	1	.33	.097	.655	.226	.148	.014	.013	050
232.	-1.24	8 -1.121	633		355	310	1	55	.098	.684	.244	.151	014	.013	057
234 .	-1.29	3 -1.137	643		360	323	1	39	.100	.707	•258	.153	.014	.013	358
236.	-1.31	9 -1.153	652		361	327	1	39	.101	•717	.262	.155	.014	.014	058
238.	-1.35	7 -1.168	653		343	327	·1	40	.102	.726	.265	.157	.019	.014	059

FLT 65 RUNIS

¥.

t

.

Α	IRFOIL PRI	ESSURE DA	TA .9 B	LADE RAD	SUIC		NA SA-LAN	IGLEY AH-	LG	76	/11/1	5.		
F	LT 65 R	UN 15	TIME 544	94.400		MU= .:	243 CLP=	.00372	TEMP	(U60)= 19.8	5 C =	67.58 F		
		UPPER SU	RFACE CP	VALUES							LUWER	SUR FACE	CP VALUE	s
÷ג∕ג AZIMUTH	.02	.10	.20	•35	.50	.7ŭ	.80	•90	•02	.10	•20	.50	•70	•90
240.	-1.402	-1.183	647		335	307	142	.104	.735	.268	.159	.027	.014	060
242.	-1.425	-1.198	655		350	311	144	.105	.744	.272	.161	.015	.014	061
244.	-1.441	-1.211	662		337	314	146	.104	.753	.275	.163	.015	•014	061
246.	-1.456	-1.198	660		341	317	147	.088	.761	.278	.164	.015	.009	062
248.	-1.470	-1.209	654		344	321	149	.088	.739	.280	.166	.015	005	063
250.	-1.484	-1.193	659		338	323	150	.089	.740	.283	.167	.016	005	063
252.	-1.496	-1.203	665		336	326	151	.090	.746	.285	.169	.016	005	004
254.	-1.507	-1.212	657		342	329	152	.091	•752	.287	.170	.006	005	064
256.	-1.517	-1.216	651		331	317	153	.091	.757	.289	.171	.007	005	065
258.	-1.524	-1.199	655		333	301	154	.092	•761	.291	.172	.016	005	065
260.	-1.504	-1.205	658		334	303	155	.092	.765	.292	.173	.016	005	065
262.	-1.510	-1.210	661		336	304	156	.093	.765	.294	.174	.004	005	066
264.	-1.511	-1.206	646		337	305	156	.093	.771	.295	.174	003	005	066
266.	-1.489	-1.196	641		337	366	156	.093	•772	.295	.175	.010	005	066
268.	-1.491	-1.218	641		338	306	157	.093	.773	.292	.175	.00Z	005	- .066
270.	-1.491	-1.209	642		321	306	157	.093	.774	.266	.175	.011	005	066
272.	-1.463	-1.179	641		331	305	157	.093	.773	.266	.175	.016	005	066
274.	-1.459	-1.171	641		319	306	156	.093	.772	.266	.175	.000	005	066
276.	-1.446	-1.173	639		312	305	156	.093	.771	.265	.174	.013	005	065
278.	-1.422	-1.166	637		311	304	156	.093	.768	.265	.155	001	005	066
280.	-1.405	-1.177	635		310	303	155	.092	.765	.264	.151	003	005	065
282.	-1.380	-1.157	632		330	301	154	.092	.749	.262	.151	.014	005	065
284.	-1.372	-1.137	626		309	300	153	.091	.721	.261	.150	.016	005	065
286.	-1.350	-1.129	624		327	298	152	.091	.717	.259	.149	003	005	064
288.	-1.310	-1.121	019		303	296	151	.090	.711	.257	.148	004	005	004
290.	-1.270	-1.112	614		300	293	150	.089	.706	.242	.146	022	005	063
292.	-1.214	-1.102	606		297	320	-,149	.088	.682	.225	.145	022	005	063
294 .	-1.161	-1.073	5B1		295	2.68	147	.088	.658	.223	.144	022	024	062
295.	-1.087	-1.053	574		312	313	145	.087	.632	.206	.138	024	024	061
298	-1.025	-1.022	563		288	283	144	.036	.611	.176	.097	034		051

FLT 65 RUN15

1 E

. . .

۵	IRFC1L P	RESSURE DA	DIUS		NAS.	A-LAN	GLEY AH-	1G	7	8/11/1	5.				
F	LT 65	RUN 15	TIME 54	494.400		MU=	•243	CLP=	.00372	TEM	P(U60)= 19.	8 C =	67.58 F		
		UPPER SU	IRFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
X/C= AZIMUTH	•02	.10	.20	•35	•50	.73	• 8)	•90	•02	•10	•20	.50	.70	•90
300.	907	-1.004	540		268	307	1	42	.085	.583	•162	•U79	042	024	060
302.	900	970	533		299	300	1	41	.084	. 563	.144	.074	056	041	078
304 .	834	953	526		277	275	1	39	.083	.534	•1 32	.058	055	040	079
306.	809	940	519		278	~.300	1	37	.081	.517	.130	.057	055	040	078
308.	777	926	511		291	318	1	57	.080	.509	.110	.050	054	039	077
310.	740	913	504		286	307	1	55	.080	• 50Z	.102	.036	053	038	076
312.	724	899	496		282	282	1	53	.095	.494	.100	.029	052	038	094
314.	713	908	497		278	266	1	50	.094	.486	.099	.017	051	037	093
316.	679	893	499		281	299	1	48	.092	.478	.077	.017	051	037	091
318.	666	879	491		288	294	1	45	.091	•470	.072	.017	050	036	090
320.	654	885	493		292	289	1	43	.089	•462	•071	.016	049	035	088
322.	043	872	492		288	264	1	40	.088	.454	.070	.016	056	041	087
324.	631	879	484		263	279	1	43	.086	.446	.068	.016	070	049	085
326.	620	881	486		297	285	1	55	•084	.438	.067	.016	076	049	084
328.	609	869	483		30ú	292	1	52	.083	•430	.087	•C15	074	048	082
330.	597	874	486		294	287	·1	49	.061	•422	.085	.015	073	-+Ü47 ·	086
332.	586	872	482		289	281	1	46	.080	.414	.063	.015	071	054	079
334.	575	862	486		295	289	1	51	.078	.406	.064	.014	070	059	077
336.	564	865	493		295	292	1	58	.077	.398	.081	.014	078	058	076
338.	553	868	487		301	301	1	55	. 075	.391	.079	. 014	080	057	075
340.	543	870	490		300	287	'1	52	.081	•383	.078	.014	089	056	073
342.	532	672	496		294	305	1	49	•086	.376	.076	.002	090	055	079
344.	522	873	489		301	310	1	46	.084	.369	.070	001	088	054	085
346.	512	866	493		298	289	1	53	.082	.361	.055	001	086	053	083
346.	495	858	484		305	295	1	56	.081	• 354	.054	001	074	051	082
350.	467	849	489		314	292	1	53	.079	.348	•053	013	082	050	080
352.	441	842	479		310	287	1	50	.078	• 324	•046	013	081	050	076
354.	407	833	471		304	298	1	48	.076	.293	.035	025	091	059	077
356.	373	827	474		298	310	1	45	.084	.278	•027	025	090	059	076
358.	341	817	465		306	305	1	53	.085	.243	.010	038	099	058	074

۲

ŧ

FLT 65 RUN15

62

.

A	IRFOIL	PRESSURE D	414 .9 1	BLADE RAI	SUIC		NASA	-LANG	LEY AH-1	LG	7	8/11/1	5.		
F	LT 65	RUN 18	TIME 54	782.700		MU=	.241	CLP≠	.00619	TEM	P(U60)= 19.	8 C =	67.58 F		
		UPPER S	URFACE CP	VALUES								LOWER	SURFACE	CP VALUES	
X/C=	.02	.10	•20	•35	.50	.70	• 80)	.90	.02	.10	.20	• 50	.70	.90
AZIMUTH															
0.	58	4 -1.021	558		328	309	16	3	.089	.444	• 111	.027	055	020	059
2.	51	2 -1.002	554		328	313	17	1	.007	.400	.094	.015	059	029	058
4.	44	3987	550		334	307	16	8	.086	.373	.078	.004	058	035	059
6.	40	5996	545		346	301	16	2	.087	.348	.062	007	067	038	067
8.	34	1992	535		347	295	15	53	.093	.325	•047	018	075	047	066
10.	29	2986	533		335	305	15	9	.091	.301	.032	033	07s	052	067
12.	23	2973	528		335	315	1ć	0	.087	.262	•004	053	092	055	074
14.	18	9983	526		341	317	16	9	.079	.258	010	067	102	064	073
15.	18	7992	535		340	326	17	4	.080	.254	•003	065	101	063	072
18.	19	7 -1.003	540		341	335	17	71	.091	.265	.016	054	099	057	076
20.	20	6 -1.022	549		346	336	15	9	.105	.261	.016	049	097	061	092
22.	20	1 -1.027	547		345	338	16	2	.109	.256	.015	054	096	064	096
24.	18	2 -1.024	545		352	339	-+15	3	.104	.238	.003	063	100	063	087
26.	14	4 -1.020	540		343	334	15	54	•097	.231	010	071	112	075	083
28.	11	o -1.013	539		330	329	15	<u>,</u> 9	.096	.198	022	085	121	078	075
30.	07	8999	534		325	332	15	56	•098	.166	034	101	133	082	077
32.	04	3982	519		333	340	15	8	.101	.134	056	112	136	084	079
34.	01	7960	511		348	340	16	2	.100	.100	067	119	145	083	075
36.	.01	3948	496		351	343	16	50	.101	.088	079	127	147	086	079
38.	.02	7932	480		353	351	15	58	.104	.059	099	133	145	088	078
40.	.04	4913	465		357	351	16	51	.108	.033	107	139	144	087	078
42.	.03	8903	467		363	355	16	54	.107	.027	102	140	142	086	077
44.	•01	8896	484		368	355	16	2	.096	.056	080	128	140	080	072
40.	.01	3893	541		+.373	-,359	16	0	.092	.090	061	103	133	066	070
48.	.02	7883	619		378	351	15	54	.095	.099	060	090	125	061	078
50.	.04	8874	634		390	344	14	3	.106	.095	060	093	122	061	086
52.	.06	2861	730		384	340	13	37	.115	.084	059	102	121	070	089
54.	.06	2648	773		385	337	13	36	.117	.090	054	095	125	079	084
56.	.06	1 640	809		383	334	13	35	.117	.108	040	092	131	085	080
58.	.06	1833	835		366	340	13	33	.116	.103	050	098	131	086	079

.

1

FLT 65 RUN18

63

• •

AIRFUIL	PRESSURE	LATA L	• 9	BLADE	RADIU
---------	----------	--------	-----	-------	-------

• •

DIUS NASA-LANGLEY AH-1G 78/11/15.

r 3

F L '	Т 65	RUN 18	TIME	54	782.700		MU =	.241	CLP≖	•00619	9 TEM	P(U60) = 3	19.8 2 =	67.58 F		
		UPPER	SURFAC	E CP	VALUES								LOWER	SURFACE	CP VALUES	
×/C= AZIMUTH	•02	•1	0.	20	•35	.50	•70	.80		•90	• 02	.10	•20	•50	•70	• 90
						a / a			•			0.51	0.00		0.50	0.74
6 0 .	• 1 19		27 -•	674		360		J13	2	+112	.098	0.54		130	080	070
02.	•12		26	012		343	33	/ ~.1 3	1	•114	•109	044	104	129	078	070
04 • ((+030	~ •e	25	003		330	33	2 ~.13		•109	•125	034	098	134	078	075
00.	• 023	→ •0	24	901		330	33	313	0	•105	• 144	027	095	134	077	009
68.	.01	58	29	912		334	33	112	.9	• 105	.156	023	089	127	077	073
70.	•00•	· -•0	34	924		332	~.32	912	8	.109	•172	017	068	120	075	070
12.	.01	8	39	934		332	32	12	<u>_</u>	•110	•185	017	089	132	081	075
74.	•024	· - · B	45	937		329	32	512	7	•115	.185	020	094	137	032	075
16.	• 03.	38	46	934		313	32	512	. (•122	•174	030	101	143	088	075
78.	• 041	5 - •6	38	938		295	31	512	0	•123	• 155	039	108	143	088	070
80.	• 06	78	31 -•	928		286	31	311	7	•123	.137	049	115	149	082	067
82.	•06	18	18	925		261	31	211	.7	.118	.113	062	122	149	087	062
84.	• 09:	l –.8		916		261	31	112	3	.116	•089	077	129	155	088	059
86.	.100)7	'94'	907		252	31	112	5	•116	.065	091	143	161	081	-•059
88.	•110	7	'90	698		244	31	112	5	.115	•042	105	150	161	081	059
90.	•110	77	'84 –.	890		230	32	112	5	.115	.018	119	157	161	081	059
92.	.12	97	75	683		236	32	1 ~.12	5	.115	012	134	164	161	081	053
94.	.13	97	72	876		236	32	112	5	.116	041	143	171	161	081	052
96.	•143	3 ·7	67	869		237	32	212	5	.110	058	153	178	161	075	052
98.	.149	77	66	E63		246	33	212	6	.115	077	158	178	161	075	052
100.	.15	37	60	859		254	33	312	6	.115	101	163	180	162	075	052
102.	• 15	47	60	859		262	33	412	6	.111	118	174	186	162	075	052
104.	.16	07	'63	655		263	33	612	7	.110	130	178	187	162	375	052
106.	.17	L7	'59	850		268	34	512	7	.104	143	185	188	157	075	046
108.	.17	57	60	847		291	33	813	6	.111	156	189	189	158	069	~.051
110.	.17	6 7	64	842		302	33	912	8	.110	168	190	191	157	069	052
112.	.17	67	68	842		311	34	112	9	.105	182	191	189	151	069	053
114.	.17	07	72	844		322	34	313	88	.104	187	-,192	186	147	063	053
116.	.16	17	69	841		330	34	613	1	.107	190	194	184	148	064	054
118.	.16	7	73	833		335	34	613	1	.105	201	195	181	145	063	053

FLT 65 RUNIS

Ale	REDIL FRE	SSURE DA	TA .98	BLADE RA	DIUS		NASA-LA	NGLEY AN	1 – 1 G		78/11/15	ò.		
FLI	T 65 RI	JN 18	TIME 54	782.700		MU= .	241 CLP	= •0061	L9 TEMP	(U60)= 19	••8 C =	67.58 F		
× / C =	0.2	UPPER SU	RFACE CP	VALUES	50	70			0.2	10	LOWER	SURFACE	CP VALUES	0.0
AZIMUTH	• 02	•10	•20	•32	•50	• 70	• 6 J	• 90	• 02	•10	•20	• 50	• 10	•90
120.	.161	779	603		343	340	132	.108	203	189	179	137	058	055
122.	•154	785	743		346	340	133	.109	204	188	174	136	059	055
124.	.153	791	663		349	334	135	.103	197	159	174	132	059	055
126.	.146	798	583		352	335	136	+104	195	184	170	133	060	056
128.	.137	806	520		352	329	137	•104	197	183	169	134	060	056
130.	.128	814	487		350	329	138	•098	189	177	166	136	059	057
132.	.110	822	479		351	324	138	•097	188	176	166	137	053	057
134.	.118	831	470		346	324	131	•098	190	178	162	136	054	057
136.	.110	840	462		339	320	133	.101	181	171	160	130	055	050
138.	•100	850	454		337	320	135	.102	181	171	156	127	054	051
140.	.090	549	455		341	316	135	•096	171	164	155	126	049	052
142.	. 080	837	457		331	319	128	•097	172	164	148	120	050	052
144.	.069	816	453		312	319	130	•098	162	157	146	117	050	053
146.	.069	804	449		317	311	131	•098	162	157	145	118	050	053
148.	•059	792	446		320	307	133	• 099	151	149	137	116	049	053
150.	.048	780	443		325	307	133	•094	138	150	134	110	044	046
152.	•036	768	439		325	303	127	•0.95	139	141	131	099	045	046
154.	.024	756	436		319	302	129	•095	127	142	129	093	046	047
156.	•012	745	438		319	299	131	•090	114	133	126	094	046	048
150.	•012	743	439		324	298	133	•091	115	134	118	096	043	049
160.	.011	732	436		324	295	135	•090	101	124	116	097	039	049
162.	014	729	432		318	300	137	•085	103	125	112	094	040	050
164.	028	716	436		318	291	139	•087	088	114	104	097	036	051
166.	042	715	436		317	281	138	•085	072	103	096	091	032	052
168.	057	706	432		311	286	132	•080	057	091	093	092	032	053
170.	072	7 15	430		311	291	134	.081	040	092	069	091	033	054
172.	088	714	436		310	296	137	•083	022	081	079	083	028	051
174.	104	713	441		310	293	139	•084	.012	081	077	081	024	044
175.	121	716	440		~.316	291	142	• 086	.031	068	071	082	-,025	045
178.	141	725	445		314	296	139	.087	.050	054	061	077	019	046

.

.

FLT 65 RUN18

1

	AIRFOIL PRESSURE DATA .9 BLADE RADIUS						NASA-LANGLEY AH-1G									
	FLT 6	5 R	UN 18	TIME 54	782.700		MU =	.241	CL P =	.00619	TEN	1P(U60)= 1	9.8C =	67.58 F		
			UPPER SU	REACE CP	VALUES								LOWER	SURFACE	CP VALUES	s
X/X AZIMU	і= .0 ГН	20	.10	.20	• 35	•50	.70	•8	0	.90	• 02	.10	.20	• 50	. 70	.90
180.	:	172	728	444		315	292	21	34	.089	.070	041	051	068	J15	047
182.		191	737	450		321	291	11	36	.091	.090	040	048	066	015	048
184.	·	211	741	458		318	297	71	39	.092	.112	025	041	060	016	048
186.	:	231	755	457		320	302	21	42	.094	.134	012	029	050	009	049
188.	;	256	764	463		316	296	51	44	.096	.157	009	017	048	005	050
190.		296	769	472		318	296	51	47	.098	.181	.007	015	049	005	051
192.	:	331	784	481		314	302	21	42	.087	.206	.021	005	041	005	052
194.	:	356	799	479		316	294	41	38	.077	•232	.025	002	049	005	053
195.	:	386	808	486		323	29	51	40	.079	.259	.044	.008	043	005	048
198.		425	814	490		317	300	1	43	.080	.286	•058	.022	041	.004	04]
200.		458	830	505		320	305	5 1	46	.082	.309	.064	.025	032	.037	042
202.	4	499	846	515		326	312	21	49	.084	.328	.079	•038	020		043
204.	:	535	862	525		332	302	21	52	.085	•368	•086	.053	018	.007	044
206.	:	585	888	535		339	301	31	44	.087	• 383	.102	.081	019	.007	044
208.		629	915	546		331	304	91	40	.080.	.415	.110	.087	007	.019	045
210.	(670	932	556		335	31:	51	42	.076	.449	•132	.688	006	.022	04t
212.	'	725	950	566		341	321	11	45	.077	•474	.149	.090	.007	.022	047
214.	'	782	978	577		331	30	8 1	48	.079	.492	.159	.106	.008	.022	048
216.		830	-1.006	587		336	310	01	51	.091	.528	.183	.124	.022	• 023	049
218.	:	887	-1.024	598		342	315	51	40	.097	.554	.200	.128	.023	.023	039
220.	'	950	-1.042	609		348	299	91	36	.099	.575	.204	.130	.038	.024	033
222.	-1.	000	-1.060	619		354	302	21	39	.089	.613	.226	.149	•039	.024	033
224.	-1.	076	-1.091	629		341	30	71	41	.086	•640	.257	.151	.040	.025	034
226.	-1.	141	-1.118	640		346	312	21	43	.087	.650	•261	.171	.041	.025	047
228.	-1.	196	-1.136	650		351	31	71	46	.089	.675	.265	.174	.057	.025	054
230.	-1.	264	-1.154	660		357	322	21	48	.09ü	.701	.269	.177	.058	.026	025
232.	-1.	333	-1.171	670		362	32	71	50	.091	.726	.285	.180	.058	.042	05t
234.	-1.	388	-1.204	680		367	332	21	52	.093	.752	.302	.201	.059	.044	05t
236.	-1.	448	-1.228	689		373	309	91	54	.094	•762	.306	.203	.060	.044	057
238.	-1.	519	-1.245	698		377	313	31	56	.111	.773	. 323	.206	.061	.044	058

FLT 65 RUN18

•

٩

66

,

AIRFOIL PRESSURE DATA .9 BLADE RADIUS						NASA-LANGLEY AH-1G				78/11/15.					
	FLT 65	RUN 18	TIME 54	782.700		MU=	.241 CLP	.0061	9 TEMP	(USC)= 19.	8 C =	67.58 F			•
		UPPER SU	IRFACE CP	VALUES							LOKER	SURFACE	СP	VALUES	
X	20 • = 21	.10	.20	•35	•50	.70	• 80	.90	.02	.10	.20	• 50		.70	•93
AZIMU	JTH														
240,	-1.575	-1.260	707		380	317	139	.115	.800	.340	.211	.062		.U28	059
242	-1.637	-1.275	716		367	321	137	.116	.824	.344	.231	•062		.029	059
244.	-1.692	-1.309	719		386	324	159	.117	.833	.347	.233	•063		.045	060
246.	-1.720	-1.329	710		350	326	122	.119	.842	.351	•236	.064		.028	0ói
248.	-1.736	-1.342	718		354	302	118	.120	.850	.355	.238	.064		.029	061
250.	-1.771	-1.355	726		357	305	141	.121	.857	.373	.239	.065		.029	062
252.	-1.794	-1.365	729		362	306	120	.116	.864	.387	.237	.065		.031	060
254.	-1.807	-1.375	734		362	309	144	.104	.871	.391	.244	•066		.032	063
256.	-1.819	-1.384	739		305	311	146	.104	.877	.393	.250	•066		.049	063
258.	-1.830	-1.392	745		367	313	147	.105	.882	.396	.268	.067		.049	064
260.	-1.839	-1.400	752		369	315	123	.105	.910	.396	.267	.067		.050	064
262.	-1.846	-1.405	756		373	315	147	.099	.923	.398	•264	.067		.051	041
264 .	-1.852	-1.435	770		375	315	147	.099	.925	.418	•263	.067		.052	051
266 .	-1.902	-1.441	782		378	315	146	.094	.927	.426	.259	•067		.053	060
268.	-1.939	-1.442	778		377	316	146	.095	.930	.429	•263	•068		.053	060
270 .	-1.969	-1.468	778		373	318	148	.106	.931	.430	.279	.068		.050	042
272.	-1.997	-1.469	790		373	318	124	.100	.959	.452	.293	•068		.050	065
274.	-2.023	-1.467	802		373	317	124	.105	.964	.456	.290	.068		.050	064
276.	-2.048	-1.464	800		373	316	122	.103	.962	.456	•288	.068		.051	062
278.	-2.096	-1.514	809		371	325	123	.124	.988	.454	•297	.067		.044	064
280.	-2.119	-1.535	815		369	344	125	.117	•990	.476	.307	.067		.031	062
282.	2.138	-1.555	823		396	344	147	.108	1.016	.479	.318	.067		•030	064
284.	-2.180	-1.573	841		384	331	150	.124	1.045	.500	.337	•083		.030	063
286.	-2.356	-1.592	858		409	310	170	.123	1.073	.525	.347	.103		.029	063
288.	-2.615	-1.634	874		406	319	168	.122	1.099	.548	• 354	.102		.037	065
290.	-2.952	-1.674	877		403	334	167	.121	1.155	.571	•362	.101		.048	083
292	-3.06t	-1.703	856		399	319	160	.120	1.150	.544	.359	.100		.047	083
294.	-2.844	-1.654	814		395	299	134	.129	1.075	.487	.325	.090		.039	082
296	-2.518	-1.555	775		391	309	115	.155	.966	.404	.261	.071		.020	081
298.	-2.196	-1.436	732		387	334	121	•1 <u></u> 3	.889	.346	.210	.053		.002	000

×.

FLT 65 RUN18

ŧ

ATRECT	PRESSURE	ΔΔΤΔ	. 9	BLADE	RADTUS	
	111100000	0-1-	• •	UL HUI.	NAOT 00	

FLT 65 RUN 18 TIME 54782.700

NASA-LANGLEY AH-1G 78/11/15.

MU= .241 CLP= .00519 TEMP(U60)= 19.8 C = 67.58 F

.

.

		UPPER SUP	RFACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/C= AZIMUTH	• 02	.10	• 20	•35	.50	.70	•80	•90	•02	•10	.20	.ċ0	.70	•90
300.	-1.885	-1.331	708		382	345	142	•151	.846	.315	.189	.035	008	070
302.	-1.661	-1.295	699		376	341	163	.138	.804	.310	.176	.017	.001	038
304.	-1.541	-1.278	690		373	336	177	.106	•794	.306	.166	.010	.010	037
306.	-1.472	-1.260	680		368	332	174	•093	.785	.302	•164	.020	.009	037
308.	-1.429	-1.248	671		362	327	164	.091	.802	.298	.161	.015	.009	042
310.	-1.408	-1.247	675		357	322	156	•0.90	.790	.293	.159	.009	.000	061
312.	-1.387	-1.228	670		352	317	167	.095	.778	.289	.156	.009	007	079
. 314.	-1.365	-1.221	673		359	312	164	.104	.769	.284	.154	.009	007	084
316.	-1.343	-1.240	667		347	307	161	.102	.782	.283	.152	•039	307	071
318.	-1.320	-1.235	656		340	317	159	.100	•769	.275	•149	.009	007	069
320.	-1.298	-1.221	659		348	321	156	•099	.760	.270	.146	.009	007	062
322.	-1.276	-1.221	665		355	316	153	•097	.770	.269	.144	002	007	050
324.	-1.253	-1.220	657		341	310	151	.095	.756	.282	.141	006	007	049
326.	-1.231	-1.219	659		343	304	-,157	.094	.743	.277	.139	006	006	048
328.	-1.208	-1.217	650		341	314	104	.092	.735	.272	.136	006	006	054
330.	-1.186	-1.214	652		348	315	161	.098	.741	.267	.134	.00j	006	062
332.	-1.164	-1.211	656		346	309	158	.110	.727	.262	.131	014	006	061
334.	-1.142	-1.208	646		339	319	155	•114	•713	.257	.129	008	006	060
336.	-1.127	-1.212	648		346	319	152	.112	.700	.252	.120	016	016	059
338.	-1.124	-1.217	651		342	313	149	.110	.700	.253	.124	018	019	058
340.	-1.135	-1.220	653		349	322	156	.108	.740	.271	.145	018	018	064
342.	-1.155	-1.232	656		357	320	159	.106	•779	.297	.170	017	008	070
344.	-1.144	-1.226	644		353	314	156	.104	.772	.299	.158	006	005	0ó9
346.	-1.129	-1.211	645		359	308	153	.102	.735	.281	.142	016	005	075
348.	-1.110	-1.204	633		354	302	140	.108	.707	.270	.150	006	305	079
350.	-1.057	-1.197	621		360	295	142	.110	•694	.248	.136	015	015	078
352.	979	-1.164	596		342	291	144	.100	.664	.226	.110	026	016	058
354.	074	-1.119	584		334	301	142	•0.94	.603	.200	.0 63	026	025	054
355.	766	-1.073	561		328	297	149	.093	• 532	.164	.069	036	027	057
358.	649	-1.023	551		321	307	150	.091	• 464	.130	.045	046	036	058

FLT 65 RUN1:

.

.
	AIRFOIL F	RESSURE D	ATA .9 I	BLADE RAD	162		NASA-LA	NGLEY AH	-1G		78/11/1:	•		
	FLT 65	RUN 23	TIME 555	583.000		MU= •	241 CLF	• •0051	2 TEMP	(USO)= 1	9.8 C =	67.61 F		,
		UPPER S	URFACE CP	VALUES							LUWER	SURFACE	CP VALJES	
۲۸ AZ IMU	C= .C2 Th	•10	• 20	•35	.30	.70	60.	•90	• 02	•10	.20	•50	•70	• 90
э.	439	874	484		300	271	133	.094	. 355	.068	.006	070	044	059
2.	375	5858	476		300	270	136	.093	.313	.049	014	072	049	067
4.	337	843	467		294	278	147	.091	.282	.020	029	ē 60	053	056
5.	301	828	459		297	283	152	• 3 89	.246	.007	039	059	052	065
δ.	266	813	460		305	294	149	.088	.224	.004	050	095	057	064
10.	232	804	464		303	294	153	.056	.206	010	060	095	060	003
12.	199	798	457		297	289	156	.0 85	.198	024	069	101	059	 062
14.	172	790	459		301	284	154	•083	.177	034	070	101	065	066
16.	151	790	453		308	301	151	.082	.157	037	077	100	066	070
18.	126	784	455		305	303	149	.086	.138	050	086	098	072	069
20.	105	5778	459		300	275	153	.088	.119	062	095	096	073	068
22.	082	2778	452		305	300	155	.097	.096	074	112	119	072	067
24.	057	779	455		311	314	153	•08c	.068	086	120	127	078	006
20.	029	786	458		307	311	151	.084	.052	097	128	133	078	571
28.	004	792	452		313	307	156	.089	.035	104	127	140	084	074
30.	.01	792	456		319	314	107	.091	.013	107	134	138	084	073
32.	.02	7793	458		315	323	155	.089	010	~.118	141	152	083	072
34.	.044	4 ε01	453		320	332	153	.088	025	128	148	149	182	+.071
36.	.062	806	457		316	328	159	.094	039	133	155	141	081	070
38.	.078	807	460		312	324	159	.094	053	137	161	146	087	078
40.	.096	8 08	464		310	332	157	.093	067	146	-,160	145	087	+.077
42.	.125	809	406		334	329	155	.099	088	156	167	151	093	076
44.	.150	803	462		338	337	152	.098	123	172	174	157	0.92	075
46.	.175	794	408		336	344	 152	.104	136	172	186	161	091	067
48.	.161	794	481		342	342	159	.104	110	160	180	158	088	065
50.	.145	796	497		347	350	158	.103	078	147	157	149	073	064
52.	.141	799	529		353	357	156	.109	059	135	149	140	068	071
54.	.139	802	585		357	354	146	.116	025	130	148	134	074	079
56.	.138	796	639		356	350	144	.115	054	129	149	137	081	079
58.	.137	7799	687		357	348	134	•114	054	123	153	145	005	076

.

FLT 65 RUN25

69

AIR	FUIL PR	ESSURE DA	TA .9 8	BLADE RA	DIUS		NASA-LA	NGLEY AI	-16		78/11/1	5.		
FLT	65 RI	JN 25	TIME 55	583.000		MU≖ .	241 CLP	.0051	L2 TEM	v(U60)= 10	9.8 C =	67.61 F		
		UPPER SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUES	
×/C= AZIMUTH	•02	.10	.20	•35	.50	•70	. 83	.90	.02	.10	.20	.50	•70	.90
60.	.145	793	724		351	348	134	.119	053	135	152	147	092	078
62.	.154	787	757		354	353	141	.112	063	136	153	152	040	069
64.	.163	792	781		349	351	140	.111	076	143	160	156	084	059
66.	.164	787	797		341	349	139	.111	088	135	01	155	084	068
68.	.153	773	805		339	347	138	.110	067	134	152	154	063	008
70.	.133	778	813		341	349	138	.109	042	116	144	150	080	068
72.	.112	775	825		344	350	137	.109	017	104	135	146	075	067
74.	.101	781	838		346	342	136	.108	.019	094	127	142	075	06s
76.	.081	788	851		349	340	134	.108	.045	083	127	141	078	074
78.	•091	794	864		348	339	127	.110	.057	062	130	144	081	074
8 0 .	.101	791	873		347	358	126	.114	.045	092	134	147	084	072
82.	.110	769	673		337	332	126	.114	.032	101	141	150	088	066
84.	.120	786	872		329	332	126	.114	.00s	111	148	153	087	066
86.	.130	778	871		324	336	126	.113	017	130	155	100	087	064
88.	.140	777	654		321	330	125	.113	041	140	162	166	087	058
90.	.150	774	856		321	336	126	.113	065	150	175	168	687	058
92.	.166	768	854		321	335	129	.113	090	160	184	168	÷.083	058
94.	.170	765	849		321	336	134	.110	114	170	192	169	081	055
96.	.177	760	842		321	337	134	.107	139	180	194	169	081	051
98.	.180	758	829		322	337	135	.107	161	190	194	169	081	051
100.	.185	754	822		329	338	135	.107	177	198	201	169	081	051
102.	192	752	816		332	339	135	.108	195	199	203	170	070	051
104.	.199	749	810		333	340	135	.108	203	204	203	165	075	051
106.	.200	-,747	798		334	342	136	.108	228	222	204	165	075	051
iu8.	.204	746	778		336	343	132	.109	250	230	205	165	075	052
110.	.212	744	710		337	345	129	.109	264	231	206	166	076	052
112.	.213	744	632		339	347	130	.105	276	236	207	161	076	052
114.	.214	743	545		341	339	130	.103	292	244	208	161	371	052
116.	.215	743	484		343	340	131	.104	302	246	210	162	070	053
118.	.217	742	455		346	342	132	.105	309	247	211	157	071	053

FLT 65 RU125

• •

70

• •

	AIRFCIL	PRESSURE	DATA	• 9	BLADE RAD	DIUS		NASA-LA	NGLEY AN	H - 15		78/11/19	•		
	FLT o5	RUN 25	TIM	E 55	593.000		MC=	241 CL	• • 005	12 TEM	P(U6C)≠	19.8 C =	67.61 F		
		UPPER	SURFA	CE CP	VALUES							LOWER	SURFACE	CP VALUES	i
X/ AZIMU	C= .02 Th	•1	C	•20	•35	• 50	.70	• 80	•90	•02	•10	•20	.50	•70	.90
120.	. 21	H7	38 -	. 442		340	334	133	.106	319	249	213	151	071	048
122.	. 22	07	33 -	437		342	336	134	. 101	327	251	207	152	- ūb5	046
124.	. 21	67	22 -	431		345	328	135	.100	337	248	208	153	072	046
125.	.21	3 - 7	08 -	420		347	319	135	.101	- 340	- 245	- 210	- 154	066	046
128.	.20	96	94 -	. 423		- 342	322	138	.102	- 343	247	204	148	066	047
130.	.20	76	87 -	418		337	314	139	.103	- 336	- 244	205	142	060	047
132.	.20	26	έ4 -	413		339	317	132	.097	336	229	199	138	060	048
134.	.2û	06	80 -	409		334	319	132	.097	340	222	194	139	061	048
136	. 18	76	85 -	407		332	- 312	134	.098	335	225	195	141		049
138.	.18	26	75 -	.409		320	314	135	.099	334	227	190	142	055	049
140.	.17	66	71 -	404		308	- 307	137	.093	338	230	- 191	142	055	050
142.	.17	56	68 -	.400		312	311	138	.094	332	225	187	136	056	051
144.	• 16	86		399		316	310	130	.095	311	- 225	186	132	057	051
146.	.15	86	51 -	401		317	- 294	132	.096	308	219	180	134	057	052
148.	.14	e6	59 -	396		- 314	- 2 98	134	.097	300	219	173	133		043
150.	.14	86	23 -	396		- 315	- 2 99	- 136	.091	301	- 212	-,170	127	051	044
152	.13	96	31 -	. 397		309	294	136	.0.92	280	203	169	123	052	+.045
154.	.12	96	40 -	393		307	284	129	. 092	253	- 204	162	125	052	045
156.	.11	ε6	38 -	.389		308	- 2 02	131	086	253	196	159	123	050	046
158.	.10	66	35 -	.390		306	266	133	.087	257	186	157	117	045	047
160.	.09	56	32 -	390		306	270	135	.088	246	188	149	105	042	047
162	.09	66	30 -	392		300	274	137	.087	233	179	142	098	037	048
164.	.07	06	27 -	.392		299	279	139	-062	220	- 168	134	100	038	049
166.	.05	76		394		- 304	284	142	.083	207	157	131	101	039	050
168.	.04	46	24 -	401		303	289	140	.0.85	- 192	145	128	103	035	051
170.	.03	06	35 -	400		309	294	134	.086	- 161	- 148	119	099	030	048
172	.01	46	46 -	404		313	2.90	-136	-088	144	-130	110	097	031	041
174.	01	46	 54 -	411		306	288	- 139	.0 69	111	-123	101	086	031	042
176.	03	0 - 6		410		307	- 294	-141	.091	092	110	091	088	026	047
178.	04	96	 6к —	414		- 304	- 2 89	144	.093	058	097	081	085	022	- 055

r

٠

FLT 65 RUNZS

71

.

۵	AIRFUIL PRESSURE DATA .9 BLADE RADIUS						NASA-	LANG	LEY AH-	1 G		78/1	1/1	5.		
F	LI 65 R	UN 25	T1ME 55	63.000		MU =	.241 (`L P =	.00512	TEM	P(J60)=	19.8 (; =	67.61 F		
		UPPER SU	JRFACE CP	VALUES								L	JWER	SURFACE	CP VALUES	5
×J/X AZIMUTH	•02	.10	.20	• 35	•50	.70	• 80		•90	.02	.10) .	20	• 50	• 70	•90
180.	082	675	422		305	288	140)	• 094	040	085	,	07 9	084	023	052
182.	112	678	430		311	293	135	5	•091	016	061		072	077	023	045
184.	135	691	438		307	299	138	3	.037	.020	056	, <u> </u>	061	068	016	046
186.	167	704	435		309	292	141		.082	.046	054	• - •	050	067	013	047
188.	193	718	442		315	292	143	3	.078	.083	038	3 —	038	058	013	048
190.	226	731	450		321	298	145)	.Ü80	.106	021	-	.026	050	013	049
192.	255	746	459		315	2 69	140)	.081	·137	009) —	024	047	013	049
194.	296	760	468		306	291	136	>	•0 83	.177	004	, - ,	.013	048	004	050
196.	339	775	477		310	290	139)	.085	.204	.015	i –	.012	049	001	051
198.	376	790	486		316	302	142	2	.085	.231	.027	,	001	039	001	052
200.	411	805	481		322	308	144	ł	.088	.259	.035) .	015	039	302	053
202.	449	821	490		313	295	147	7	.080	.288	.047	7	030	027	002	045
204.	488	837	500		318	299	150)	.077	.319	.057	7	031	027	002	040
206.	539	866	509		324	305	153	3	.079	.362	.078	3.	047	027	.011	041
208.	-,579	889	519		330	311	142	2	.080.	.395	.090) .	.063	015	.012	042
210.	624	906	529		337	294	141	L	.062	.416	.102		.066	015	.013	042
212.	679	923	542		343	300	→.143	3	• 084	.436	.11	õ	.097	014	.013	043
214.	722	955	562		347	305	146	5	.085	.459	.129		.098	001	.013	044
216.	772	978	559		337	311	149	,	.067	.495	.153	3	.100	001	.013	045
218.	632	996	573		343	314	151	L	.088	.515	.165	5	.105	001	.013	046
223.	893	-1.013	592		346	297	154	4	• 090	.542	.182	2	.121	.002	.014	046
222.	956	-1.031	589		336	303	156	`	.071	.580	.194	•	.126	.014	.014	047
224 .	-1.003	-1.048	598		341	 30d	139	7	.093	.599	.197	7	.142	.014	.014	065
226.	-1.062	-1.066	608		347	313	141	L	•094	•ó30	. 217	7	.144	.019	.014	068
228.	-1.129	-1.105	618		353	318	143	3	.096	.649	.228	3	.152	.031	.015	032
230.	-1.197	-1.123	628		358	310	14	5	.097	.659	. 249)	.167	.031	.015	060
232.	-1.245	-1,139	637		363	300)147	7	.099	.693	.278	ė	.170	.032	.315	051
234.	-1.311	-1.156	646		361	305	14	9	.100	.710	. 285	3	.172	.039	•015	072
236	-1.359	-1.172	655		300	309	149	9	.102	.719	.292	2	.175	.050	.016	073
238.	-1.420	-1.167	664		362	313	134	4	.103	•729	.296	5	.177	.051	.022	072

FLT 65 RUN25

1 **1**

- 72

1

• •

AIRFOIL PRESSURE DATA .9 BLADE RADIUS NASA-LANGLEY AH-1G 78/11/15.

FLT 65 RUN 25 TIME 5583.000 MU= .241 CLP= .00512 TEMP(U60)= 19.8 C = 67.61 F

• 4.

		UPPER SU	RFACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X/C= AZIMUTH	•02	.10	.20	•35	• 50	•70	. 30	•90	•02	.10	.20	•50	•70	•90
240.	-i.475	-1.204	672		339	317	155	.104	.735	.300	.166	.051	.028	054
242.	-1.520	-1.242	680		343	31J	157	.105	.747	•303	.201	.052	.016	054
244.	-1.564	-1.256	688		347	295	159	.107	.786	.307	.203	.052	.016	055
246.	-1.609	-1.269	695		351	298	155	.108	.797	.310	.206	.053	.J16	060
248.	-i.652	-1.281	702		342	 301	138	.109	.804	.313	.208	.054	.017	074
250.	-1.668	-1.288	694		334	304	139	.110	.311	.316	.269	.054	.017	057
252.	-1.706	-1.277	691		336	306	140	•111	.316	.318	.211	.054	.017	053
254.	-1.721	-1.286	696		339	309	141	•115	.824	.321	.213	. 055	.017	0o£
256.	-1.736	-1.294	701		341	311	142	.105	.830	.324	.214	.055	.017	036
258.	-1.766	-1.302	705		343	313	143	.093	.834	•353	.215	.043	.017	050
260.	-1.750	-1.308	708		345	314	144	•0 93	. 838	.354	.216	.050	.017	065
262.	-1.757	-1.313	711		346	315	144	.094	.842	.356	.217	.056	.017	053
264.	-1.763	-1.317	713		347	315	145	.094	. 544	•357	.218	.056	.017	082
266.	-1.767	-1.320	715		348	317	145	•094	•846	.358	.210	.056	.018	082
268.	-1.769	-1.322	716		330	317	145	.094	.847	.358	.219	.056	.018	082
270.	-1.770	-1.323	716		324	318	145	.094	.848	.358	.219	.050	.015	071
272.	-1.769	-1.322	716		324	317	145	.094	.847	.358	.219	.056	.013	073
274.	-1.767	-1.334	715		344	317	145	.094	•846	.358	.218	.056	.018	082
276.	-1.763	-1.345	713		327	316	145	.094	.856	.357	.218	.056	.017	082
278.	-1.770	-1.341	711		322	315	144	.094	.877	.356	.217	.038	.017	056
280.	-1.780	-1.336	709		342	314	144	.093	.874	.355	•236	.037	.017	049
282.	-1.784	-1.345	728		343	313	143	.093	.870	.364	.237	.037	.017	072
284.	-1.803	-1.349	724		341	311	142	.107	.865	.379	.235	.055	.017	006
286.	-1.806	-1.357	719		339	309	141	.097	. 875	.377	.234	.055	001	058
288.	-1.808	-1.358	714		337	307	146	.091	.887	.386	.253	.054	002	073
290.	-1.838	-1.365	711		334	304	139	.090	.880	.398	.252	.054	002	079
292.	-1.878	-1.361	724		331	301	158	.106	.872	.408	.269	.054	002	076
294 .	-1.053	-1.348	713		328	299	141	.108	.864	.404	.267	.055	002	077
296.	-1.812	-1.315	684		324	245	135	.107	.817	.372	.261	.070	.016	093
298.	-1.692	-1.235	649		321	292	134	.105	.760	.326	.232	.067	002	09

FLT 65 RUNZÓ

AIRFOIL PRÉSSURE DATA .9 BLADÉ RADIUS

NASA-LANGLEY AH-1G

78/11/15.

.

.

	FLT 65	RUN 25	TIME 5	5553.000		KU =	.241	CLP=	.00512	TEM	(U60)= 19	•8C ≖	67.61 F		
		UPPER S	SURFACE C	P VALUES								LDWER	SURFACE	CP VALUES	
X/C AZIMUT	• •02 H	.10	•20	•35	• > 0	.70	.80)	.90	•02	.10	.20	•50	.70	.90
300.	-1.528	-1.163	3603	l .	314	286	511	11	.104	.698	.284	.173	•044	004	076
302.	-1.330	-1.097	7575	>	291	26	10	90	.103	.665	.238	•135	•008	022	094
304.	-1.146	-1.032	2552		287	281	110	06	.102	.635	•199	.117	023	037	075
306.	-1.03	2 -1.011	L545	5	284	278	812	27	.082	•595	.188	.116	035	034	072
308.	960	 996	5537	,	279	279	914	7	.081	.577	.185	.114	030	019	052
310.	915	962	2537	,	281	295	514	15	.054	• 56×	.163	.113	016	019	050
312.	896	967	7541		298	298	816	54	.079	.583	.180	.111	017	019	050
314.	962	2974	540)	301	313	310	52	.078	.580	.177	.109	023	023	049
316.	891	981	l551	l	289	308	819	59	.078	.571	.174	.107	033	034	067
318.	696	-1.010)552	2	297	303	31	57	.091	.586	.171	.106	032	034	067
320.	06	-1.014	543	}	292	298	815	51	.090	.580	.168	.104	031	033	082
322.	669	997	7543	3	287	293	313	35	.068	.570	.165	.087	038	032	081
324.	854	981	L542		290	287	714	÷9	.087	.560	.163	.068	052	032	079
326.	860	965	5 542	•	304	282	214	46	.085	• 550	.160	.066	059	031	076
328.	645	988	539	1	308	277	714	43	.084	.540	.157	.065	057	031	077
330.	829	990)540)	302	203	314	+1	.082	.556	.154	.064	056	030	075
332.	814	988	3547	,	296	289	914	44	.031	.545	.151	.063	055	030	074
334 •	799	973	3542		300	284	41	53	.084	.535	.148	.053	054	036	072
330.	784	974	543	1	302	278	81	50	.091	.525	.145	.040	053	042	076
338.	769	975	5537	•	306	28	514	7	.090	.517	.144	.045	052	041	085
340.	754	969	9536	;	306	288	814	45	• 088	.528	.159	.054	051	040	ú83
342.	743	962	2543	1	311	29	514	+2	.086	.518	.156	.057	050	040	082
344.	748	973	3548	3	310	29	713	39	.085	•512	.153	.056	049	039	080
346.	752	972	2540)	304	291	114	44	.083	.525	.153	.055	048	038	079
348.	755	97]	L542	2	309	265	514	÷9	.088	• 537	.164	.054	047	037	077
350.	753	969	.533	5	307	293	314	46	.099	• 543	.161	.073	047	037	076
352.	728	960)523	3	312	293	314	4	.102	• 521	.154	.077	046	230	074
354 .	668	934	513	1	309	28	714	+1	.100	.470	.129	.054	045	035	073
356.	577	7901	503	5	303	282	213	36	.098	.420	.099	.029	044	035	071
356.	481	675	o431		298	27	713	36	•096	.372	.076	.004	063	043	070

FLT 65 RUN25

•

.

ΔŢ	6 EÛIL P	RESSURE DA	ATA .9	BLADE RAD	DIUS		NAS	A-LAN	GLEY AH-	16		78/11/	27.		
Ft.	T 66	RUN 22	TIME 55	789.850		MU=	•245	CLP=	.00754	TEM	P(U60)=	14.5 C	= 58.13 F	:	
		UPPER SI	IRFACE CP	VALUES								LOVE	R SURFACE	CP VALUES	:
¥/С= А7ІМИТЧ	.02	.10	•20	.35	.50	.70	.8	Û	• 90	.07	.10	•20	•50	• 70	•00
0.	792	-1.535	605		399	321	1	3 A	.083	.560	•204	•06	6021	016	046
2.	705	-1.409	594		403	327	71	49	.075	.520	.181	.05	4029	014	040
4.	616	-1.288	594		398	324	1	51	.076	. 473	.149	.03	3021	013	039
6.	527	-1.205	583		390	318	1	40	.079	.437	.123	.02	1036	021	038
8.	459	-1.157	583		393	313	1	41	.077	.412	.107	.01	1054	030	044
10.	416	-1.130	584		388	318	1	43	•064	.389	•096	.00	1054	039	048
12.	392	-1.116	584		381	316	1	47	.052	.376	.094	00	069	040	047
14.	390	-1.115	584		384	321	1	56	.070	. 390	.100	00	2062	032	046
16.	396	-1.120	585		398	319	1	51	.077	.410	.116	.00	8053	023	051
18.	384	-1.125	585		395	324	1	44	.079	.413	.114	.01	7051	027	054
20.	345	-1.131	-,585		397	322	1	36	•083	.406	.109	.01	0057	029	059
22.	307	-1.131	594		392	316	1	29	.090	. 396	•095	•00	1064	035	062
24.	255	-1.119	648		386	311	1	27	.092	.371	.079	01	5078	3049	061
26.	208	-1.10?	721		380	307	/1	31	.091	.337	.057	03	2079	058	060
28.	170	-1.076	785		375	311	1	33	.094	.304	•041	04	8097	065	059
30.	141	-1.043	839		377	319	1	37	.096	.27?	.021	06	4106	066	059
32.	124	-1.017	890		374	327	71	40	.095	.245	.012	07	3112	065	058
34.	111	993	-,923		384	334	1	43	.094	.232	.012	07	3111	059	057
36.	124	974	955		390	333	31	46	.092	.235	.014	07	2110	056	056
38.	14]	951	978		394	337	1	39	.091	.255	.025	05	9108	3055	055
40.	146	953	992		391	327	1	32	.094	.268	.035	04	9101	054	055
42.	145	95?	-1.013		393	320)1	31	.092	.287	•045	04	0099	054	054
44.	140	951	-1.020		391	317	1	29	.088	.293	.053	03	8097	053	054
46.	125	950	-1.032		393	~.313	1	28	.087	.290	.050	03	8096	052	060
48.	103	945	-1.024		385	310	1	26	.090	.284	.042	04	3101	057	069
50.	082	932	-1.028		378	314	1	25	.092	. 260	•039	05	i6106	063	068
52.	-,064	917	-1.020		368	322	21	28	.091	.257	•031	06	4112	069	060
54.	056	909	-1.017		363	322	1	32	.090	.254	.030	06	5112	2071	051
56.	053	901	-1.016		360	319	1	30	.090	.252	.030	06	5116	066	057
59.	043	889	-1.009		363	331	i1	29	.092	.250	.030	06	4117	063	065

FLT 66 PUN22

• •

75

1

AIRFOLL	PRESSURE D	ATA .9	BLADE RADIUS	NASA-LANGLEY A4-1G
		••••		NASH CHINELIN NI IN

4

78/11/27.

FLI	5 6 6	PUN 22	TIME 55	789.850		MU =	.245 (CLP# •	00754	TFM	P(1160)= 14	4.5 C =	58.13 F		
		UPPER SU	IRFACE CP	VALUES								LOWER	SURFACE	CP VALHES	
X/C=	.02	.10	.20	.35	.50	.70	.80	• 9	0	.02	.10	.20	.50	.70	.90
ΔΖΙΜΟΤΗ							-								
60.	035	377	-1.007		362	335	12	8.0	95	.748	.030	064	116	062	065
52.	035	870	-1.007		359	332	12	7 .0	98	.240	.031	063	115	062	054
64.	035	868	-1.002		363	330	12	7.1	00	• 258	.039	063	114	062	064
66.	035	863	-1.002		357	321	1?2	2.1	03	.268	.040	057	113	065	-,067
68.	032	863	997		352	309	11	3.1	09	.278	.048	055	113	057	071
73.	023	858	998		-,351	304	10	۶ • 1	12	.286	•048	055	117	071	070
72.	014	854	994		343	296	10	3.1	14	.282	.046	059	122	073	070
74.	004	847	984		339	285	09	e •1	17	.272	.036	066	123	073	067
76.	.007	838	979		343	274	094	4.1	20	.267	.027	072	127	076	056
78.	.025	832	969		361	263	08	9.1	23	.246	.018	079	133	079	047
80.	.043	821	954		378	253	08	6.1	27	.234	.007	085	139	078	047
82.	.061	810	937		398	242	08	1.1	22	.219	010	096	144	078	047
84.	.078	797	920		421	232	08	1.1	22	·1º7	020	105	146	078	047
86.	.083	782	910		449	228	08	1.1	22	•165	037	116	150	074	047
88.	.105	757	902		480	222	07	7.1	21	.143	048	124	156	072	047
90.	.116	743	889		511	218	07	2.1	21	.120	065	131	158	071	047
92.	.132	729	680		-,537	218	07	6 •1	21	.088	074	138	158	072	044
94.	•141	720	874		556	224	08	1.1	22	.066	084	144	158	069	040
95.	.149	715	868		562	728	08	1.1	19	.044	102	151	158	065	040
98.	•149	714	852		553	229	08	1.1	16	.024	110	154	154	065	040
100.	.151	709	862		529	229	08	1.1	16	.011	111	158	152	062	040
102.	.159	711	859		489	236	084	4.1	14 -	.010	121	161	149	059	038
104.	.160	714	855		444	241	+.090	0.1	10 -	.021	130	162	147	056	033
105.	.159	717	856		403	247	09	3.1	11 -	• 032	130	162	148	054	033
108.	•152	720	960		360	258	09	9.1	11 -	• 043	131	159	145	050	035
110.	.151	723	864		318	264	09	9 • 1	12 -	• 054	132	157	139	048	041
112.	•143	727	869		289	271	10	0.1	10 -	.054	132	158	130	048	039
114.	.134	734	874		267	277	10	0.1	06 -	.054	133	150	126	045	034
115.	•126	745	879		244	279	10	1.1	07 -	• 043	124	142	123	042	036
118.	•117	750	R91		236	286	10	5.1	05 -	•031	116	136	117	039	042

.

FLT AS PUNZ?

*

	AIRFO	IL P	RESSURE DA	۸TA	• J B	LADE KAU	D1US		NASA	-LANG	SLEY NH	1-16		78/	11/2	7.		
	FLT (56	RUN 22	TIME	557	89.850		MU=	•245	CLP=	.0075	4 TEM	P(U60)=	14.5	C =	58.13 F		
			UPPER SI	IRFACE	CP	VALUES								L	OWER	SURFACE	CP VALUES	5
X / I A Z I MU	С= ТН	•0?	•10	•2	ວ້	• 35	•50	.70	.80)	•90	•02	•10)	•50	•50	• 70	• 0)
120.		108	759	9	00		237	293	11	1	.102	020	116	. –	.130	116	736	042
122.		098	773	9	07		244	295	11	12	.102	008	098	3 -	.124	117	036	042
124.		.081	787	9	20		259	303	11	3	.101	.003	098	- ۱	.118	114	036	043
126.		.071	796	9	31		274	311	11	4	.097	.015	089)	.111	104	033	043
129.		.061	811	9	45		285	314	11	l5	.098	.028	080) -	.110	100	030	043
130.		.042	821	9	57		301	312	11	.6	.099	.040	071		.106	101	030	044
132.		.022	840	9	67		317	310	11	17	.098	.065	061		.100	098	031	044
134.		.002	859	9	183		324	313	1	10	.094	•07P	052	2 -	.094	-,092	031	+.045
136.	-	.008	878	9	97		333	311	12	` 0	.095	.091	052	2 -	•087	091	028	045
138.	-	.019	897	-1.0	09		346	309	11	ļ Ģ	.096	.105	042	· -	.081	088	025	046
140.	-	.041	910	-1.0	21		359	313	11	.3	.095	.119	032	2 -	•078	082	025	046
142.	-	073	931	-1.0	12		368	311	11	15	.091	.134	032	! -	.075	076	025	047
144.	-	.085	954	9	158		363	309	11	16	•092	.149	022	2 -	.068	073	026	048
146.	-	.109	976	8	94		368	308	11	8	.094	•164	011		.065	074	026	048
148.	-	132	991	8	0.9		374	306	 12	20	.095	•180	011	. –	•062	075	023	049
150.	-	157	-1.015	7	25		379	304	12	21	.094	.196	000) -	.054	077	019	048
152.	-	.171	-1.031	6	54		380	302	12	0	.090	.200	.001	i –	.051	078	019	041
154.	-	.197	-1.057	6	06		375	301	11	14	.091	.216	.012	2 -	•047	075	019	042
155.	-	.212	-1.073	5	79		376	299	11	16	.090	.220	.013	3 -	.044	068	020	042
158.	-	.227	-1.090	5	65		382	303	11	18	.085	.238	.013	3 -	•040	065	016	043
160.	-	255	-1.109	5	60		383	303	12	20	.085	.247	• 02 4	, –	• 032	062	012	044
162•	-	.272	-1.126	5	59		379	300	12	22	.079	•261	.037	7 -	.028	055	017	043
164.	-	289	-1.144	5	59		379	299	12	24	.081	.266	.039) -	.024	052	009	035
166.	-	.320	-1.148	5	64		381	296	12	24	.080	.285	• 052	? -	.019	048	003	036
169.	-	.339	-1.115	5	69		376	302	11	17	.074	.291	.054	, –	.015	045	003	036
170.	-	358	-1.072	5	67		376	301	11	9	.076	.296	.067	- 7	.006	041	.000	037
172.	-	.392	-1.027	5	67		383	298	12	21	.077	•317	.070)	.004	037	.006	038
174.	-	.413	995	5	72		385	298	12	23	.077	• 339	.083	3	.010	029	.006	038
176.	-	.435	986	5	77		385	294	12	25	.070	.347	.087	7	.015	020	.010	039

.071

.354

.101

.021

-.020

-.387 -.299 -.128

.

-.471 -.977 -.576

178.

· · ·

1

•

.

78/11/27.

.

.

FLT 66 PUN22

-.040

.016

77

•	V I	LEEDIC BE	ESSURE DI	ата "9 3	LADE RA	DIUS		NASA-LA	NGLFY AH-	16		78/11/27	7.		
	FL	.T 66 R	UN 22	TIME 557	89.850		Mti≖ .	245 CLP	• • 00754	TEMP	(U60)= 14	•5 C =	58.13 F		
			UPPER SU	JREACE CP	VALUES							LOWER	SURFACE (P VALUES	;
	×/C≠ ∆7IMUTH	• 02	•10	•20	•35	• 50	.70	•80	• 00	•02	.10	.20	•50	. 70	• 90
	180.	496	959	581		377	299	128	.073	.377	.105	.026	021	.016	041
	182.	534	973	586		369	295	119	.074	.386	.107	•032	021	.017	041
	184.	561	977	585		376	300	122	.074	400	.122	.038	022	.017	042
	186.	602	981	591		384	301	124	.066	.420	• 127	.045	017	.017	043
	198.	630	985	- 596		391	295	126	.057	.445	.143	•051	012	.018	043
	190.	689	990	601		394	295	 127	.040	.456	.148	•059	007	.018	032
	192.	722	-1.009	607		393	289	117	.070	.482	.151	.065	001	.019	032
	194.	753	-1.013	612		395	295	119	.072	.495	.168	.073	001	.023	033
	196.	800	-1.017	617		388	289	121	.073	.505	.174	.075	.003	•031	034
	198.	835	-1.020	616		386	269	124	.074	.532	.178	.076	.010	.032	034
	200.	870	-1.041	620		394	275	126	.074	.546	.181	.083	.006	.032	035
	202.	905	-1.044	626		396	280	129	•065	.557	.200	.093	002	.033	036
	204.	942	-1.047	630		394	286	131	•066	•568	.207	•094	.003	.034	036
	206.	979	-1.049	636		401	291	132	.067	.579	.212	.101	.011	.034	037
	208.	-1.017	-1.069	439		404	297	119	.069	.591	.216	.112	.011	.035	038
	210.	-1.056	-1.071	645		400	297	122	.070	• 602	.220	.114	.011	.036	039
	212+	-1.097	-1.091	648		408	287	124	•071	•614	.240	•117	.016	.035	039
	214.	-1.138	-1.093	653		410	292	126	.073	.625	.249	•119	•020	.037	024
	216.	-1.162	-1.093	656		405	298	129	.074	•637	.253	.131	.012	.038	024
	218.	-1.201	-1.112	668		413	303	131	.074	.669	.258	•154	.012	•03P	025
•	220.	-1.244	-1.132	673		414	303	133	.061	.666	.263	•157	.017	.039	025
	222.	-1.269	-1.13?	674		408	290	135	•063	.692	•267	.160	•027	.040	026
	224.	-1.310	-1.151	696		415	295	119	.064	.710	•272	•162	•033	.040	026
	226.	-1.336	-1.150	697		422	300	139	•065	.722	.293	.165	.043	.045	027
	229.	-1.376	-1.167	701		429	305	122	.066	.734	.304	•168	.044	.058	009
	230.	-1.421	-1.185	701		431	310	124	.067	.745	.309	.171	.045	.059	027
	232.	-1.447	-1.203	704		422	315	126	.068	.757	•314	•173	.045	.060	028
	234.	-1.488	-1.200	703		434	314	128	•069	.768	.318	.176	.046	.060	010
	236.	-1.533	-1.214	713		450	298	129	•070	.779	• 323	•178	.047	.058	009
	239.	-1.559	-1.231	722		435	302	131	.071	.789	•327	.181	.047	.045	009

FLT 66 RUN22

.

٩

٠

.

1

	AISEUIL PR	ESSURE DA	TA .9	BLADE RA	0105		NASA-LA	NGLEY AH	I-16		78/11/2	7.		
	FLT 56 F	NN 55	TIME 55	789.850		MU= .	245 CLP	.0075	4 TEM	P(1160)= 14	•5 C *	58.13 F		
		UPPER SI	JREACE CP	VALUES							LOWER	SURFACE	CP VALUES	
X /	50 . = 3'	.10	.20	.35	•50	.70	.80	.00	.02	.10	•50	• 5 0	.70	.90
A714U	тн													
240.	-1.599	-1.247	731		424	305	133	.072	.709	.349	.183	.053	.045	009
242.	-1.624	-1.262	740		- 429	309	135	.073	. 809	• 361	.190	.065	.049	028
244.	-1.662	-1.276	742		434	313	136	.073	.818	• 365	.206	.066	• 061	011
246.	-1.686	-1.290	736		439	316	137	.074	.827	• 369	.208	.067	.047	010
248.	-1.703	-1.303	743		443	319	139	.075	.835	.373	.210	.067	.048	010
250.	-1.738	-1.315	750		447	322	140	.076	•°43	•376	.212	•068	.048	010
252.	-1.760	-1.304	756		451	325	141	.076	.850	.380	.214	.069	.048	010
254 •	-1.773	-1,331	762		455	327	142	.077	.856	•382	.216	•069	.049	029
256.	-1.785	-1.344	767		458	329	143	.077	.862	.385	.217	.070	.049	032
258.	-1,795	-1.352	772		460	331	144	.078	.889	•405	.218	.070	.052	032
260.	-1.804	-1.359	-,775		463	333	145	.078	.005	•417	.223	•070	.059	032
262.	-1.831	-1.365	785		464	334	145	.078	• 0 <u>0</u> 8	•419	.240	.075	.069	032
264.	-1.864	-1.390	803		466	335	146	.050	•011	• 420	.241	•089	•069	032
266.	-1.396	-1.399	805		467	336	146	.078	.913	•421	.242	•089	.069	032
269.	-1.926	-1.422	812		468	337	146	.079	.915	•438	.242	.089	. 069	032
270.	-1.955	-1.428	829		468	337	147	.061	.934	.450	.242	•090	.059	032
272.	-1.981	-1.448	834		468	337	146	.060	.948	.449	.245	.089	.069	032
274.	-2.025	-1.473	850		467	336	146	.077	.967	•465	•262	•089	.069	032
276.	-2.057	-1.496	853		466	335	146	•079	.978	•476	.261	.089	•068	032
278.	-2.096	-1.497	867		467	334	145	.078	.995	.490	.263	•089	.050	032
580.	-2.124	-1.511	869		486	333	145	•078	1.005	•500	.279	•089	.050	032
282.	-2,141	-1.550	886		484	331	144	.078	1.019	• 498	.278	.088	.049	032
284.	-2.156	-1.573	- 898		481	331	143	.077	1.027	•495	.276	•088	.049	032
286.	-2.152	-1.538	896		480	356	142	.077	1.039	•491	.277	.087	.049	048
288.	-2.152	-1.602	911		497	354	141	.092	1.045	.502	.292	•086	.049	053
290.	-2.161	-1.633	925		493	351	140	.094	1.054	•511	.290	.086	.066	052
292.	-2.151	-1.650	934		491	348	139	.093	1.059	• 506	.287	.085	.066	052
294.	-2.145	-1.659	924		506	344	138	.092	1.048	•501	.284	.084	.065	051
296.	-?.134	-1.666	915		501	341	136	.091	1.037	•482	.280	.083	• 064	051
298.	-2.110	-1.637	909		496	364	153	•090	1.025	.464	.259	.082	.064	050

FLT 66 PHN22

.

4

۷

78/11/27.

• •

F	LT 56	RUN 22	TIME 55	5789.850		MU=	•245	CLP=	.0075	4 T F M	P(U60)= 14	•5 C =	58.13 F		
		UPPER SU	REACE CP	VALUES								LOWER	SURFACE	CP VALUES	
¥/C= AZIMUTH	• 02	.10	•20	•35	•50	•70	•80) •	90	• 92	•10	•20	•50	•70	•00
300.	-2.070	-1.611	897		493	358	15	54 .	099	1.01?	.458	.250	.081	.065	048
302.	-2.033	3 -1.590	886		508	354	15	52 .	100	.999	.452	.230	•080	.064	047
304.	-1.992	-1.569	R74		501	349	16	. 8	085	.986	.446	.227	•079	•063	046
306.	-1.954	-1.547	858		494	344	17	70 •	0.81	.973	.440	•224	•077	.062	031
309.	-1.913	-1.525	846		484	365	16	. 8	084	.950	•434	.225	.061	.044	041
310.	-1.874	-1.50?	936		477	361	16	66.	083	.945	• 42.8	.222	.059	•043	046
312.	-1.844	-1.493	842		489	355	16	53.	082	.930	.421	.218	.044	.047	045
314.	-1.815	5 -1.491	829		424	348	+.16	50 .	077	.928	.413	.210	•044	.043	043
316.	-1.785	-1.474	817		476	342	15	57.	075	.927	.407	•207	.057	.042	017
318.	-1.766	5 -1.463	819		487	337	715	54 .	073	.923	.400	.203	•056	.041	018
320.	-1.746	-1.458	807		479	331	15	52 .	072	.921	• 393	•200	.055	.054	023
322.	-1.716	5 -1.466	809		470	325	.14	.9	071	.917	.395	.196	.054	.055	012
324.	-1.695	5 -1.457	612		462	319	14	. 6	080	.926	.400	.208	• 0 5 3	.054	006
326.	-1.675	-1. 472	813		453	313	14	44 .	072	.922	.393	•204	•052	.053	027
328.	-1.653	3 -1.471	814		461	327	715	54 •	067	.016	.394	.229	.051	.052	038
330.	-1.633	3 -1.474	813		470	342	15	56 .	076	.922	.398	.211	.050	.038	037
332.	-1.611	-1.472	796		462	338	15	53.	078	.910	.391	.221	.050	.036	046
334.	-1.581	-1.494	796		451	332	15	51 .	079	.002	.384	.208	.049	.035	05?
335.	-1.541	-1.546	795		457	343	14	48 .	079	.994	.384	.203	.036	.034	051
338.	-1.511	-1.613	795		449	339	14	•5 •	078	. R98	.388	.199	.035	.033	050
340.	-1.490) -1.685	794		441	333	14	+2 .	085	.902	.387	.208	•034	.022	049
342.	-1.478	-1.752	807		432	342	214	40 .	087	.914	•404	.216	.033	.030	057
344.	-1.467	7 -1.808	833		450	338	313	37.	085	.938	.424	.225	•033	.031	041
345.	-1.455	5 -1.853	897		457	332	213	34.	083	.960	.439	.232	.043	.031	060
348.	-1.443	-1.887	999		463	325	514	•1 •	090	•981	.458	.751	.042	.030	056
350.	-1.418	-1.896	-1.031		455	333	13	34 •	099	.973	.449	.748	.042	.029	070
352.	-1.345	3 -1.882	-1.012		446	330	1?	?7.	108	.902	.403	•222	.031	.020	-,069
354.	-1.239	-1.845	-,945		438	323	12	24 .	124	.809	.348	.185	.011	.009	068
356.	-1.130	-1.802	841		420	317	12	21 .	120	.733	.300	.136	000	001	066
354.	-1.045	5 -1.768	741		408	324	12	27 .	102	.689	.274	.111	019	012	051

NASA-LANGLEY AH-16

80

FLT 66 RHN22

APPENDIX E. - AIRFOIL COEFFICIENT DATA

The listings of airfoil coefficent data are presented as reduced copies of two-page computer listings. The top of each page segment contains identification as to flight number, run number, and time. The ratio of Reynolds number per unit Mach number is identified as RN/M; blade azimuth is listed in degrees. CN, CC, and CM identify columns of normal-force, chordwise-force, and pitching-moment coefficients, respectively.

The data of Table VI serves as a guide to this set of listings.

78/10/12.

.

٠

AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	cc	СM	м	AZIMUTH	CN	cc	СМ	м
0.0	•251	003	003	.623	60.0	.251	003	000	.623	120.0	•355	012	.011	•623
2.0	•245	003	002	•623	62.0	.251	003	000	.623	122.0	•359	013	.011	.623
4.0	•239	002	031	•623	64.0	.252	003	000	•623	124.0	•360	013	.011	•623
6.0	•234	002	001	•623	66.0	.254	004	000	.623	126.0	.362	013	.012	.623
8.0	.231	002	002	•623	68.0	.258	004	.001	.623	128.0	•364	014	.012	•623
10.0	.228	002	002	.623	70.0	.258	004	.001	.623	130.0	•364	014	.012	•623
12.0	•232	002	003	•623	72.0	.259	004	.001	.623	132.0	•365	014	.012	•623
14.0	•232	002	003	.623	74.0	.261	004	.001	.623	134.0	•370	014	.012	.623
16.0	•231	001	003	.623	76.0	•264	004	.001	.623	136.0	•372	015	.012	•623
18.0	.228	002	002	•623	78.0	•268	004	.002	.623	138.0	.373	015	.012	•623
20.0	.227	002	002	.623	80.0	.268	005	.002	.623	140.0	•375	015	.012	•623
22.0	•231	002	003	.623	82.0	.270	005	.002	.623	142.0	•376	015	.011	•623
24.0	.230	002	002	•623	84.0	•276	005	.002	.623	144.0	•371	015	.012	.623
26.0	•230	002	002	.623	86.0	.280	005	.002	.623	146.0	•370	015	.013	•623
28.0	•231	001	003	.623	88.0	.281	005	.003	.623	148.0	•369	015	.013	•623
30.0	.231	002	002	.623	90.0	.287	006	.004	•623	150.0	.370	015	.013	•623
32.0	.231	002	002	•623	92.0	.290	005	.005	•623	152.0	.373	015	.012	•623
34.0	.231	002	002	•623	94.0	.296	006	.006	.623	154.0	.372	015	.012	•623
36.0	•232	002	002	.623	96.0	.299	007	.006	.623	156.0	•366	015	.013	•623
38.0	.232	002	003	•623	98.0	.300	007	.007	•623	158.0	•366	015	.013	.623
40.0	.232	002	003	•623	100.0	.307	008	.007	.623	160.0	.370	015	.012	•623
42.0	.234	002	002	.623	102.0	.312	008	.009	.623	162.0	.370	015	.012	.623
44.0	•238	002	003	•623	104.0	.323	009	.007	.623	164.0	•367	015	.013	.623
46.0	.240	002	003	.623	106.0	.328	009	.008	.623	166.0	.367	015	.013	.623
48.0	.238	002	003	•623	108.0	•336	010	•008	•623	168.0	•367	015	.013	.623
50.0	.242	002	002	•623	110.0	.337	011	.010	.623	170.0	.367	015	.013	.623
52.0	.244	002	002	.623	112.0	.343	011	.010	.623	172.0	•369	016	.013	.623
54.0	.251	003	002	•623	114.0	•346	012	.010	•623	174.0	•370	016	.013	.623
56.0	.251	003	002	.623	116.0	.347	012	.011	•623	176.0	•372	016	.013	.623
58.0	250	003	001	.623	118.0	.350	012	- 011	.623	178.0	. 375	- 016	. 012	622

FLT 61 RUN 268 TIME 55556.200 RN/M= 16.37 MILLINN RDTOR SPEED= 34.0205 RAD/SEC

FLT 61 RUN26B

78/10/12.

FLT 61	RUN 2	68 TIN	1E 555	56.200	RN/M	= 16.3	7 MILLI	DN	ROTO	R SPEED=	34.0205	RAD/SEC			
AZIMUTH	CN	CC	CM	м	AZIMUTH	CN	cc	C٩	м	AZIMU	TH CN	cc	CM	м	
180.0	.376	016	.012	•623	240.0	.377	015	.011	.623	300.0	•292	006	•000	•623	
182.0	.378	016	.012	•623	242.0	.370	015	.011	.623	302.0	.292	006	001	.623	
184.0	.381	016	.012	.623	244.0	.363	014	.009	.623	304.0	•286	006	000	.623	
186.0	.383	016	.012	•623	246.0	•359	014	.009	•623	306.0	.286	006	•000	•623	
188.0	.384	016	.012	.623	248.0	•356	013	•907	•623	308.0	.286	-,005	.001	•623	
190.0	.387	016	.012	•623	250.0	•355	012	.207	.523	310.0	.288	005	.000	.623	
192.0	.385	917	.012	.623	252.0	•352	012	.006	.623	312.0	.289	005	•000	•623	
194.0	.387	016	.012	.623	254.0	•349	011	.006	.623	314.0	.284	006	.001	.623	
196.0	.388	016	.012	.623	256.0	•339	010	.006	.623	316.0	.281	005	.001	.623	
198.0	•389	016	.012	.623	258.0	•333	010	.006	•523	318.0	.278	005	.001	.623	
200.0	•398	017	.011	•623	260.0	•328	010	.006	.623	320.0	.274	005	.000	.623	
202.0	.402	017	.011	•623	262.0	.325	009	.005	.623	322.0	.276	-,005	001	.623	
204.0	.401	017	•011	•623	264.0	•325	009	.004	.623	324.0	.275	005	001	.623	
206.0	•398	017	.011	•623	266.0	.323	008	.004	.623	326.0	.273	004	002	.623	
208.0	•398	017	.011	.623	268.0	•316	008	.003	.623	328.	.273	004	002	.623	
210.0	.402	017	.011	•623	270.0	•311	-•008	.004	.623	330.0	.271	004	002	.623	
212.0	.402	018	.011	•623	272.0	.310	008	.004	.623	332.0	.270	004	002	•623	
214.0	.403	018	.012	.623	274.0	.307	008	.003	.623	334.0	•266	004	002	.623	
216.0	•402	018	.012	.623	276.0	.304	007	.003	.623	336.	.265	004	001	.623	
218.0	•398	018	.013	.623	278.0	•301	007	.003	.623	338.	.264	004	001	•623	
220.0	.401	017	.012	•623	280.0	.299	005	.002	.623	340.0	.260	003	.000	.623	
222.0	•393	018	.013	•623	282.0	•298	006	.002	.623	342.0	.259	004	•000	.623	
224.0	.391	018	.012	•623	284.0	.298	006	.001	.623	344.	.261	004	001	.623	
226.0	• 390	018	.013	•623	286.0	•297	006	.001	.623	346.0	•260	004	002	.623	
228.0	•387	017	.013	.623	288.0	.294	006	.001	.623	348.	•256	004	001	.623	
230.0	•388	017	.013	•623	290.0	•293	005	.001	.623	350.	.251	003	001	.623	
232.0	.387	016	.012	.623	292.0	•288	006	.003	.623	352.	.247	003	001	.623	
234.0	•384	016	.012	•623	294.0	.290	005	.002	.623	354.0	•245	003	001	.623	
236.0	.383	016	.012	•623	296.0	.289	006	.001	.623	356.0	.242	003	002	.623	
238.0	.380	316	.011	•623	298.0	.291	006	.002	.623	358.0	.237	002	003	.623	

FLT 61 RUN26B

FLT 63	RUN 1	TI	ME 537	718.300	RN/M	= 16.8	1 MILLI	אס	ROTOR	SPEED= 34	•1966 I	RADISEC		
AZIMUTH	CN	cc	CМ	M	AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	cc	CM	м
0.0	.276	001	011	•633	60.0	.153	.004	018	.725	120.0	.171	.002	016	•725
2.0	.274	001	013	•637	62.0	.151	.004	015	.727	122.0	.161	•002	015	•724
4.0	.260	001	011	•641	64.0	.152	.003	014	•729	124.0	•159	•002	015	•722
6.0	.248	000	009	.644	66.0	.149	.003	014	.731	126.0	.160	•002	016	•719
8.0	.237	.000	009	•648	68.0	.149	.003	016	.732	128.0	.161	.002	019	.717
10.0	230	.001	010	.652	70.0	.148	.003	016	•733	130.0	.162	•002	019	•715
12.0	.222	.001	010	•655	72.0	.155	.004	018	.735	132.0	.162	.002	020	•712
14.0	.215	.001	010	.659	74.0	.166	.004	018	•736	134.0	.158	•002	019	.710
16.0	.210	.001	011	•663	76.0	.179	.004	016	.737	136.0	.155	.002	018	.707
18.0	.205	.002	011	.666	78.0	.191	.004	015	.737	138.0	.153	.002	018	.705
20.0	.200	.002	012	•670	80.0	.204	.003	014	.738	140.0	.157	•003	019	•702
22.0	.193	.002	013	•673	82.0	.210	.002	012	.739	142.0	.157	.003	018	.699
24.0	.185	•005	013	.677	84.0	.208	.001	010	•739	144.0	.157	•003	019	•696
26.0	.179	.002	012	•680	86.0	.202	.001	007	•739	146.0	.160	•003	019	.693
28.0	.171	.003	012	•683	38.0	.206	.000	900	.740	148.0	.160	.003	019	.690
30.0	.162	.003	011	.686	90.0	.204	000	008	.740	150.0	.163	.003	019	.687
32.0	.161	.003	013	.690	92.0	.206	001	009	.740	152.0	•165	•003	020	.683
34.0	.158	.003	014	•693	94.0	.203	000	009	.739	154.0	.160	.003	018	.680
36.0	.149	.003	013	•696	96.0	.200	000	009	•739	156.0	.160	.003	017	.677
38.0	.144	.003	013	•699	98.0	.198	000	010	•739	158.0	. 167	.003	018	.673
40.0	.145	.003	015	.702	100.0	.197	001	011	•738	160.0	.171	•003	019	.670
42.0	.140	.003	015	.704	102.0	.193	001	012	•737	162.0	.172	.003	020	•666
44.0	.136	.003	015	.707	104.0	.190	000	012	.737	164.0	.173	•003	018	.663
46.0	.132	.004	015	.710	106.0	.189	000	013	•736	166.0	.173	.003	018	.659
48.0	.131	.004	017	•712	108.0	.188	000	014	•735	168.0	.176	•003	018	•655
50.0	.118	.004	017	.715	110.0	.184	.000	014	.733	170.0	.181	.003	018	.652
52.0	.106	.004	017	•717	112.0	.181	.001	014	•732	172.0	.183	.003	019	.648
54.0	.107	.004	020	•719	114.0	.179	.001	014	.731	174.0	.188	.003	020	.644
56.0	.110	.004	020	•722	116.0	.177	.001	015	.729	176.0	.186	.003	020	•641
58.0	.131	.004	020	.724	118.0	.174	.001	015	•727	178.0	.190	.003	021	.637

FLT 63 RUN1

AIRFOIL COEFFICIENT DATA .9 BLADE RADIUS

NASA-LANGLEY AH-1G

78/11/14.

x

.

FLT 63	RUN 1	TI	MF 537	18,300	RN/M	= 16.8	1 MILLI	0N	RDTO	R SPEED≠ 34.	1966 R	AD/SEC		
AZIMUTH	CN	cc	CM	м	AZ IMUTH	CN	cc	CM	м	AZIMUTH	CN	cc	CM	м
180.0	.194	.002	020	.633	240.0	.452	012	012	.541	300.0	.363	007	007	•541
182.0	.199	•00S	019	.630	242.0	.467	014	012	.539	302.0	.364	007	009	.543
184.0	.206	.002	021	.626	244.0	.477	015	012	.538	304.0	.360	007	008	.545
186.0	.215	•002	021	.622	246.0	.494	016	012	•536	306.0	.358	007	008	.547
198.0	.220	.002	021	.618	248.0	.500	018	011	•535	308.0	.354	007	006	.549
190.0	.227	.002	021	.615	250.0	.511	019	010	•533	310.0	.356	007	005	•552
192.0	.234	•002	021	•611	252.0	.528	021	008	.532	312.0	•364	008	007	.554
194.0	•238	.002	020	-608	254.0	•539	023	007	•531	314.0	.362	008	006	.557
196.0	.248	.001	021	•604	256.0	.550	025	006	•530	316.0	.363	008	005	.559
198.0	.255	.001	021	.600	258.0	.570	026	006	.529	318.0	.371	008	005	.562
200.0	.261	.001	021	.597	260.0	•589	029	005	.528	320.0	.373	008	006	•565
202.0	.269	.001	0?1	• 593	262.0	.600	031	003	.528	322.0	•379	008	008	•568
204.0	.274	.001	021	.590	264.0	.602	034	.000	.527	324.0	.379	009	009	•571
206.0	.289	.000	021	.587	266.0	.602	034	.003	.527	326.0	.380	009	009	.574
208.0	.792	001	020	• 583	268.0	•586	032	.002	•527	328.0	.376	008	007	.577
210.0	.299	001	019	.590	270.0	•540	028	.001	.527	330.0	.373	008	008	•580
212.0	.306	001	018	.577	272.0	.470	022	001	.527	332.0	•373	008	007	• 583
214.0	•319	002	019	• 574	274.0	•426	016	004	• 527	334.0	.373	008	007	•586
216.0	.326	002	019	.571	276.0	.379	012	004	.527	336.0	.371	008	007	.590
218.0	.333	003	019	.568	278.0	•362	009	007	.528	338.0	•365	008	006	•593
220.0	•340	004	017	.565	280.0	•363	007	011	.528	340.0	.360	008	005	•597
222.0	•352	004	017	•562	282.0	•356	007	013	.529	342.0	•358	007	005	•600
224.0	•359	005	014	• 559	284.0	•357	007	014	.530	344.0	•352	007	006	.604
226.0	.380	006	015	.557	286.0	.368	007	017	.531	346.0	•339	006	006	.607
228.0	.389	007	015	• 554	288.0	•368	007	013	.532	348.0	.331	005	005	.611
230.0	•402	008	015	• 552	290.0	•365	008	011	•533	350.0	.328	005	007	.615
232.0	•411	009	014	•549	292.0	.370	007	010	•534	352.0	.313	004	007	.618
234.0	•417	009	013	.547	294.0	•367	007	007	• 536	354.0	.305	003	008	.622
236.0	•435	011	013	•545	296.0	.362	007	007	.537	356.0	•296	002	010	.626
238.0	.443	011	013	.543	298.0	.366	007	011	.539	358.0	.286	002	011	.629

FLT 63 RUN1

AIREDIL COEFFICIENT DATA • 9 BLADE RADIUS NASA-LANGLEY AH-1G 78/11/14•

. .

τ

,

FLT 63	RUN 6	ΤĪ	ME 541	57.800	RN/M	= 16.81	MILLI	0N	RUTUS	SPEED= 34.	0290 R	AD/SEC		·
A71MUTH	ĊN	cc	CM	м	AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	CC	СM	м
0.0	.321	006	003	.630	60.0	.191	.005	012	.786	120.0	.020	•001	034	• 786
2.0	.319	005	004	•636	62.0	.191	.005	012	.789	122.0	.014	•001	033	•783
4.0	.315	005	006	.643	64.0	.189	.005	013	.792	124.0	.009	.001	033	•780
6.0	•305	004	006	•649	66.0	.188	.005	013	.795	126.0	.016	•001	035	•776
8.0	.293	003	005	•655	68.0	.191	.005	014	.797	128.0	.016	.001	034	.77?
10.0	.280	003	005	•661	70.0	.194	.006	014	.799	130.0	.022	•002	034	•768
12.0	.269	002	004	•665	72.0	•190	.006	014	.901	132.0	•028	•003	033	.764
14.0	.265	002	005	.674	74.0	.188	.006	014	.803	134.0	•034	•003	034	•760
16.0	•260 ·	002	004	.680	76.0	.181	.006	014	. 805 ·	136.0	.037	•004	035	•755
13.0	.255	001	005	•686	78.0	.173	.006	015	.806	138.0	.047	•004	036	•751
20.0	.246	001	005	.692	80.0	.164	.006	015	.808	140.0	.049	•004	034	.746
22.0	•23H	001	005	•598	82.0	.153	.006	016	.809	142.0	.057	•004	035	•741
24.0	.226	.000	005	.703	84.0	.141	•006	017	.809	144.0	.060	•004	033	•736
25.0	.220	000	005	•709	86.0	•134	•005	020	.810	146.0	•064	•004	033	•731
28.0	.211	.000	005	•715	88.0	•127	.005	020	.810	148.0	•062	•004	031	.726
30.0	.207	.000	005	.720	90.0	.118	.005	021	.810	150.0	•068	.004	030	.720
32.0	.201	.001	005	.726	92.0	.111	.005	02?	.810	152.0	.077	•004	031	•715
34.0	.197	.002	007	•731	94.0	.104	•004	023	.810	154.0	•083	•004	031	.709
35.0	.192	.002	008	•736	96.0	.101	.004	024	.809	156.0	•092	•004	030	•703
35.0	•186	.002	008	•741	98.0	•098	.004	025	.809	158.0	.101	•004	031	•698
40.0	.183	.002	009	•746	100.0	.091	•004	026	.808	160.0	•114	•004	031	•692
42.0	.181	.003	010	.751	102.0	.087	.003	027	.806	162.0	.123	.004	030	.686
44.0	.175	.003	010	.755	104.0	.077	.003	028	.805	164.0	.134	•004	030	.680
46.0	.169	.004	010	.760	106.0	.059	.003	029	.803	166.0	.145	•004	030	•674
48.0	.172	.004	010	•764	108.0	•041	•003	030	.801	168.0	•155	•004	030	.668
50.0	•179	.004	011	•768	110.0	•030	.003	030	.799	170.0	.169	•004	031	•662
52.0	.185	.005	011	•772	112.0	.028	.002	031	.797	172.0	.180	•004	030	.655
54.0	.183	.005	011	.776	114.0	.019	.002	031	.795	174.0	.196	•004	030	. 549
55.0	.191	.005	014	•779	116.0	.020	.002	032	.792	176.0	•211	.003	030	. 443
58.0	.192	•005	012	.783	118.0	.022	.002	033	.789	178.0	.225	•003	029	•637

98

FLT 63 RING

-

ATRENTL COEFFICIENT DATA .9 BLADE KADIUS NASA-LANGLEY AH-1G 78/11/14.

.

4

x

FLT 63	RUN 6	TIM	4E 541	57.800	R N / M	= 16.8	I MILLI	ON.	RUTO	₽ \$PEED= 34	.0290	RAD/SEC		
AZTMUTH	CN	cc	CM	м	AZIMUTH	CN	сс	CM	м	AZIMUTH	I CN	cc	СM	N
182.0	.243	.003	030	.630	240.0	.648	039	003	.474	300.0	.534	028	000	.474
192.0	.264	-002	030	.624	242.0	.656	040	003	.471	302.0	.517	026	001	.477
184.0	.280	.002	029	.618	244.0	.661	041	004	.468	304.0	. 499	024	001	.481
185.0	.297	.001	027	.611	246.0	.669	042	004	.466	306.0	.477	022	.000	.484
188.0	.315	.000	027	.005	248.0	.665	042	001	.463	308.0	.469	020	002	.499
190.0	.333	001	027	.599	250.0	.653	042	.001	.461	310.0	.453	-,018	004	.492
192.0	.350	002	026	.593	252.0	.662	043	000	.459	312.0	• 450	017	007	.496
194.0	.367	003	025	.587	254.0	.657	044	.001	.457	314.0	•439	015	007	.500
196.0	.380	004	023	•581	256.0	.659	043	.001	.455	316.0	.426	014	007	.505
193.0	.396	006	021	.575	258.0	.649	042	.002	.454	318.0	.421	013	007	.509
200.0	.408	007	021	•569	260.0	.657	042	002	.453	320.0	.422	013	008	•514
202.0	.435	009	020	.563	262.0	.647	042	001	•452	322.0	.411	012	008	•519
204.0	•452	010	020	•557	264.0	•656	042	00?	.451	324.0	.403	012	007	.524
206.0	•462	012	018	•551	266.0	.651	042	001	.450	326.0	.400	011	008	.529
209.0	.480	014	017	•546	268.0	.657	041	002	.450	328.0	.400	011	008	.524
210.0	.497	016	016	.540	270.0	•648	041	002	.450	330.0	•395	011	007	.540
212.0	•514	018	015	•535	272.0	.645	040	003	.450	332.0	•391	010	007	.545
214.0	•524	020	013	•529	274.0	.643	041	001	.450	334.0	•390	010	007	•551
216.0	•541	022	013	•524	276.0	.636	039	001	.451	336.0	•384	010	004	•557
218.0	•556	023	012	.519	278.0	.630	040	001	.452	338.0	•384	010	005	.562
220.0	.562	025	010	•514	280.0	.627	039	001	.453	340.0	• 378	010	004	.568
222.0	• 572	027	009	•510	282.0	.620	037	002	.454	342.0	•383	010	005	•574
224.0	•585	028	010	.505	284.0	.615	036	001	• 4 5 5	344.0	•385	009	005	•580
226.0	•599	032	009	.501	286.0	•611	036	000	•457	346.0	•378	009	005	•586
228.0	.604	032	006	•496	288.0	•610	035	001	.459	348.0	• 369	009	005	.59?
230.0	.610	033	005	•492	290.0	•598	034	001	•461	350.0	•362	009	003	.509
232.0	.623	035	004	•488	292.0	• 584	033	.001	.463	352.0	•361	008	005	.605
234.0	• 62.8	035	003	•484	294.0	•576	033	•002	.465	354.0	• 352	008	004	•611
236.0	.630	038	002	•481	296.0	•562	031	•002	•468	356.0	• 341	007	005	•617
238.0	.640	039	003	•477	298.0	•549	030	.001	.471	358.0	• 334	007	004	.624

FLT 63 RUNA

.

.

7 X

FLT 53	RUN 9	τı	ME 544	67.200	RN /	1= 16.8	MILLI	ON	RUTUR	R SPEED≖ 34	•0810 F	RADISEC		
AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	cc	C۲	м	AZIMUTH	CN	cc	СM	м
0.0	.401	012	003	.631	60.0	.202	.009	011	.831	120.0	067	004	056	.931
2.0	•381	011	002	•639	62.0	.202	.009	013	.835	122.0	086	005	054	.827
4.0	•364	010	003	•647	64.0	.200	.009	014	.839	124.0	101	006	052	.823
6.0	•352	008	004	•655	66.0	.201	.009	014	.947	126.0	108	007	052	.818
8.0	•340	007	005	•663	68.0	.200	.009	015	.845	128.0	112	007	052	.817
10.0	.330	006	003	.671	70.0	.193	.009	015	.848	130.0	111	008	053	.808
12.0	.309	005	002	•679	72.0	.187	•009	015	.951	132.0	107	009	053	.803
14.0	.300	005	004	•687	74.0	.177	•009	016	.853	134.0	086	008	054	.797
16.0	•298	004	005	•695	76.0	.161	.008	016	.855	136.0	051	008	054	.792
18.0	.289	003	005	•702	78.0	.144	•008	016	.857	138.0	028	007	054	•786
20.0	.285	002	005	.710	80.0	.127	.007	017	.859	140.0	019	007	053	.780
22.0	.269	001	003	•718	82.0	.116	.007	019	.860	142.0	009	005	050	•773
24.0	.261	001	003	•725	84.0	.100	•006	020	.861	144.0	001	004	048	•767
26.0	•252	•000	002	•732	86.0	•088	•006	021	.862	146.0	003	003	045	.760
28.0	.244	.001	005	•740	0.85	.074	.006	023	.862	148.0	.011	002	045	.754
30.0	.246	.001	004	•747	90.0	.060	•005	024	.862	150.0	.027	001	045	.747
33.0	•252	.002	005	.754	92.0	.045	.004	025	.862	152.0	•038	•000	043	.740
34.0	.251	.003	006	•760	94.0	.037	.003	028	.862	154.0	•050	.001	042	.732
36.0	.263	.004	006	.767	96.0	.035	•005	032	.861	156.0	.071	•002	041	.725
38.0	•260	.005	007	•773	98.0	.038	•002	037	.860	158.0	•088	•003	040	.718
40.0	.258	.005	007	.780	100.0	.044	.001	041	.959	160.0	.107	.003	038	.710
42.0	.259	.006	008	•786	102.0	.049	.001	045	•85 7	162.0	.130	•004	039	.703
44.0	.251	.006	008	•792	104.0	•045	•000	040	.855	164.0	•142	.004	036	.695
46.0	.245	.007	008	•797	106.0	.039	000	051	.853	166.0	.167	.005	038	.687
48.0	•243	.008	010	•803	108.0	.030	001	054	.851	168.0	.186	•004	037	.679
50.0	•236	.008	010	•908	110.0	.016	001	055	.848	170.0	•203	•004	035	.671
52.0	.228	.008	010	.813	112.0	.001	002	056	.845	172.0	.234	•004	035	.663
54.0	.220	.009	011	.818	114.0	013	002	057	.842	174.0	•254	.003	034	.655
56.0	.213	.009	011	.823	116.0	028	003	057	.939	176.0	.278	•002	033	.647
59.0	.205	.009	011	.827	118.0	046	004	057	.835	178.0	.303	.002	032	.639

88

.

FET 63 RUNG

78/11/14.

FLT 63	RUN 9	ŢŢ	ME 544	67.200	RN/M	= 16.8	1 MILLI	101	ROTOR	? \$PEED≖ 34•	0810 R	ADISEC		
AZIMUTH	C۷	cc	C٣	M	AZIMUTH	CN	cc	СM	м	AZIMUTH	CN	cc	СM	м
180.0	.328	.000	030	.631	240.0	.822	060	003	•431	300.0	•662	042	001	.431
182.0	.355	001	031	•623	242.0	.824	060	004	.427	302.0	.658	042	004	.435
184.0	.378	003	029	.615	244.0	.822	061	001	.424	304.0	.657	041	005	.420
186.0	.404	004	027	.607	246.0	.822	062	002	.420	306.0	•648	039	007	.444
188.0	.425	006	026	•599	248.0	.828	063	003	.417	308.0	.649	038	010	.440
190.0	.449	008	025	.591	250.0	.822	063	000	.414	310.0	•641	037	008	.454
192.0	.478	011	025	• 5 8 3	252.0	.813	063	001	•411	312.0	.636	036	011	.45
194.0	•504	014	024	.575	254.0	.819	064	001	.409	314.0	•617	035	008	.46
196.0	• 5 3 3	016	025	.568	256.0	.818	063	003	.407	316.0	.596	035	004	.470
198.0	•562	019	025	.560	258.0	.817	052	005	.405	318.0	.584	033	004	.47/
200.0	.586	022	024	•552	260.0	.813	063	005	.404	320.0	.568	031	001	.4 87
202.0	•612	025	024	•545	262.0	.796	060	001	.402	322.0	.561	030	003	.480
204.0	•635	028	022	•537	264.0	•788	061	.001	.401	324.0	• 556	030	003	.49
206.0	.652	031	020	•530	266.0	•789	061	000	.401	326.0	•547	028	004	.502
208.0	.672	035	019	.523	268.0	.786	061	001	.400	328.0	.538	028	005	.50
210.0	.694	038	015	.516	270.0	.780	059	001	.400	330.0	.529	027	005	.515
212.0	•715	042	014	.509	272.0	•773	058	.000	.400	332.0	•523	025	005	.527
214.0	.727	045	011	•502	274.0	.767	057	000	•401	334.0	.517	024	004	.530
216.0	•746	047	010	.495	276.0	.764	057	000	.401	336.0	.512	023	004	•53
218.0	.756	049	009	.489	278.0	.751	055	001	.402	338.0	.503	022	004	.544
220.0	•774	050	009	.483	280.0	.745	054	001	.404	340.0	.493	021	002	.552
222.0	.780	052	008	.477	282.0	.732	053	.000	.405	342.0	.484	021	001	.559
224.0	.796	053	009	.471	284.0	.719	053	.002	.407	344.0	.478	020	002	.567
226.0	.797	054	007	.465	286.0	.721	051	001	.409	346.0	.471	019	001	.575
228.0	•810	055	006	.460	288.0	.706	050	.000	.411	348.0	.472	019	000	.583
230.0	.807	057	004	.454	290.0	.707	049	002	.414	350.0	.470	019	001	.59
?32.0	.806	057	003	.449	292.0	.710	048	005	.417	352.0	.461	018	001	.590
234.0	.813	057	005	.444	294.0	.697	046	004	.420	354.0	459	017	001	.607
236.0	.802	058	000	•440	296.0	.681	045	.000	.423	356.0	448	016	002	.615
238.0	. 811	060	~.000	.435	298.0	.680	044	- 003	427	358.0	430	- 015	- 002	6.2

FLT 63 RUN9

78/11/14.

FLT 63	RUN 1	.0 T1	[ME 545	541.600	RN/	M= 16.7	78 MILLI	0N	RUTUR	SPEED* 34	•0841 6	RAD/SEC		
AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	cc	CM	м
0.0	.422	015	002	.631	60.0	•215	.010	010	.847	120.0	082	004	053	.847
2.0	.407	014	002	•639	62.0	.213	.010	011	.851	122.0	074	005	057	.842
4.0	.390	012	003	•648	64.0	.217	.010	013	.855	124.0	063	006	061	. 838
5.0	.370	011	•000	•657	66.0	•211	.010	012	.859	126.0	065	006	064	.833
8.0	.350	010	.001	.665	68.0	•203	•010	011	.862	128.0	064	007	066	.927
10.0	•342	008	001	•674	70.0	•196	.010	011	.865	130.0	064	008	068	.822
12.0	•333	007	001	.682	72.0	.177	.009	010	.868	132.0	073	009	067	.816
14.0	.321	006	002	•691	74.0	•162	.009	010	.870	134.0	081	009	066	.810
16.0	.310	005	002	•699	76.0	.150	.009	011	.873	136.0	093	010	063	• P04
18.0	.298	004	001	•70e	78.0	•133	•008	011	.875	138.0	099	011	062	•798
20.0	.289	002	.001	•716	80.0	.111	.008	012	• 876	140.0	110	011	060	.791
22.0	.278	002	•000	.724	82.0	.096	.008	014	.878	142.0	111	011	060	.784
24.0	.272	002	003	.732	84.0	.080	.005	017	.879	144.0	083	011	060	.777
26.0	.261	001	003	•740	86.0	•064	.008	020	.880	146.0	051	010	057	•770
28.0	.250	000	003	•748	88.0	•046	•008	023	.880	148.0	023	009	055	.763
30.0	.266	.001	004	.755	90.0	•027	.007	026	.880	150.0	001	007	051	•755
32.0	.270	.002	003	•763	92.0	•013	•006	030	.880	152.0	.007	005	049	.748
34.0	.276	.003	003	.770	94.0	004	.006	032	.880	154.0	.016	004	047	.740
36.0	.278	.004	004	•777	96.0	017	•004	034	.879	156.0	•030	002	045	.732
38.0	.280	.005	005	.784	98.0	031	.004	034	.878	158.0	•053	000	044	.724
40.0	.278	.005	006	.791	100.0	050	•003	034	.876	160.0	•076	.001	045	.716
42.0	.275	• 006	006	•798	102.0	068	.002	032	.875	162.0	.101	.003	045	.708
44.0	.263	•006	005	.804	104.0	086	.001	031	•873	164.0	•126	.003	043	.700
45.0	.257	.007	005	.810	106.0	099	000	031	.871	166.0	•149	•003	041	.691
48.0	.252	.008	006	.816	108.0	115	001	030	.868	168.0	•172	.004	040	•683
50.0	.245	.008	007	•822	110.0	127	002	030	.865	170.0	.199	.004	040	.674
52.0	.240	.009	007	.827	112.0	133	002	032	.862	172.0	.229	.003	038	.665
54.0	.234	.009	008	.832	114.0	129	003	036	.859	174.0	.253	.003	037	.657
56.0	.230	.010	009	.837	116.0	112	003	042	.855	176.0	.283	.003	036	.648
58.0	.220	.010	010	.842	118.0	096	004	048	.851	178.0	.313	•00Z	037	.639

FLT 63 RUN10

.

.

78/11/14.

.

FLT 53	RUN 1	UN 10 TIME 54541.60			RNZM	= 16.7	'8 MILLI	NŪ.	RUTO	IR SPEED= 34.	0841 9	ADISEC		
AZIMUTH	CN	cc	СM	м	AZIMUTH	CN	cc	C۲	м	AZIMUTH	CN	cc	СM	м
180.0	.337	.000	035	.631	240.0	.924	087	.005	•415	300.0	.698	049	.000	.414
182.0	• 36 ⁸	002	033	•622	242.0	•921	084	.003	•410	302.0	.689	048	001	.419
184.0	.393	003	031	.613	244.0	.910	081	•004	.406	304.0	.678	046	003	. 424
186.0	•428	005	031	•605	246.0	•913	079	000	•403	306.0	.669	045	005	.429
189.0	• 4 5 5	007	029	•596	248.0	.915	078	003	.399	308.0	.663	044	005	.434
190.0	•487	010	027	•587	250.0	.919	078	000	.396	310.0	.653	042	007	.439
192.0	.516	013	026	•579	252.0	.909	078	000	.393	312.0	.642	041	007	.445
194.0	• 5 4 3	016	025	.570	254.0	.912	079	•001	.391	314.0	•622	039	005	•451
195.0	• 5 80	019	024	•562	256.0	.898	078	000	.389	316.0	.609	038	004	.457
198.0	•599	022	021	•554	258.0	.898	077	002	•387	318.0	.608	037	003	.463
200.0	•636	026	024	•545	260.0	.900	076	002	.385	320.0	• 599	035	005	.470
202.0	.658	029	020	•537	262.0	.879	075	.001	.384	322.0	• 588	034	004	.477
204.0	• 6 8 3	033	019	.529	264.0	.881	075	.001	.382	324.0	.582	032	005	.484
206.0	•709	037	016	•521	266.0	.867	074	.001	.382	326.0	•573	031	005	.491
208.0	•737	042	015	•514	268.0	.878	072	003	•381	328.0	• 553	030	003	.498
210.0	•754	046	013	•506	270.0	.856	071	.001	.381	330.0	•540	029	002	.506
212.0	•780	051	010	•499	272.0	.843	070	.000	.381	332.0	.527	028	001	.513
214.0	• 796	056	005	•491	274.0	.839	070	001	.382	334.0	.519	027	001	.521
216.0	.827	062	006	•484	276.0	.824	068	002	.382	336.0	.513	026	002	.529
218.0	.854	068	005	•477	278.0	.817	067	002	.383	338.0	.504	025	001	.537
220.0	.875	074	.001	•470	280.0	.803	065	.002	.385	340.0	.490	024	001	.545
222.0	.887	081	.004	•464	282.0	.790	063	.005	.385	342.0	.483	022	000	.553
224.0	.899	087	.007	.457	284.0	.784	062	•005	.388	344.0	.475	021	000	.562
226.0	.914	092	.010	•451	286.0	.780	061	.003	.391	346.0	.471	021	002	.570
228.0	•930	095	.011	•445	288.0	.773	059	002	.393	348.0	.461	020	001	.578
230.0	.944	097	•009	•440	290.0	.737	057	.005	.396	350.0	.456	019	.000	-587
232.0	.946	098	.010	•434	292.0	.723	056	.007	.399	352.0	.452	018	000	.596
234.0	•936	096	.010	•429	294.0	.715	054	.006	.403	354.0	.449	018	.000	.604
235.0	.947	094	•005	• 4 2 4	296.0	•713	052	.003	.405	356.0	.447	017	001	.613
238.0	•941	090	.006	•419	298.0	.712	050	.000	•410	358.0	.444	016	002	.622

.

AIRFOIL COEFFICIENT DATA .9 BLADE RADIUS

.

٠

78/11/14.

.

.

ATTICLE VOLTATION PARA PARALE RADIOS

FLT 63	RUN 1	.1 TI	ME 546	548.800	RNZ	M= 16.8	1 MILLI	ON	RUTUR	SPEED= 34	•0717	RADISEC		•
AZIMUTH	CN	cc	СM	м	AZIMUTH	CN	cc	CM	м	AZIMUTH	CN	cc	СM	м
0.0	•412	014	003	.631	60.0	.236	.011	010	.856	120.0	134	003	050	•R56
2.0	•402	012	004	•640	62.0	•234	.011	011	.860	122.0	113	004	053	.851
4.0	• 384	011	002	•649	64.0	•216	.010	009	.854	124.0	092	005	057	.846
5.0	.373	009	004	.658	66.0	.211	.010	011	.858	126.0	084	006	059	.841
8.0	.356	008	004	.667	68.0	.201	.010	013	.871	128.0	075	007	061	.835
10.0	• 345	007	003	.676	70.0	.186	.010	013	.875	130.0	068	008	-•062	.830
12.0	• 327	006	002	•685	72.0	.162	.010	015	.878	132.0	066	009	062	.824
14.0	•314	005	003	.694	74.0	.144	.011	017	.880	134.0	058	009	064	.818
16.0	• 306	004	004	•702	76.0	.132	.011	022	.883	136.0	060	010	065	.811
18.0	• 301	003	006	.711	78.0	.114	.012	026	.885	138.0	071	010	063	.905
20.0	.290	002	005	•720	80.0	•097	.012	030	.886	140.0	086	011	059	.798
22.0	•283	001	004	.728	82.0	.082	.012	034	.888	142.0	084	011	059	.791
24.0	.281	000	004	•736	84.0	.060	.012	037	.889	144.0	051	011	058	.784
26.0	.283	.000	005	•745	86.0	.042	.012	039	.890	146.0	012	010	057	.776
28.0	.288	.001	005	•753	88.0	.026	.011	043	.890	148.0	.021	007	056	.769
30.0	.291	.002	003	.761	90.0	.011	.010	046	.890	150.0	.030	005	050	.761
32.0	.295	.003	004	.768	92.0	005	.009	046	.890	152.0	.038	004	047	.753
34.0	• 303	•004	006	•776	94.0	020	.008	046	.890	154.0	.055	002	045	.745
36.0	.302	•004	006	•783	96.0	038	.007	048	.889	156.0	.076	000	046	.737
38.0	• 302	.005	005	.791	98.0	055	.006	047	.888	158.0	.095	.001	044	.728
40.0	.298	.006	005	.798	100.0	067	.006	049	.886	160.0	.119	.002	043	.720
42.0	.289	.007	005	.804	102.0	079	.005	050	.885	162.0	.149	.003	044	.711
44.0	.282	.008	005	.811	104.0	094	•004	049	.883	164.0	•172	.004	041	.703
46.0	.278	•008	006	.818	106.0	102	.004	051	.880	166.0	•195	.004	039	.694
48.0	.269	.008	006	.824	108.0	115	.003	051	.878	168.0	.223	.004	037	.685
50.0	.262	.009	006	.830	110.0	126	.002	050	.875	170.0	.249	.003	036	.675
52.0	.253	.010	007	.835	112.0	134	.001	050	.872	172.0	.282	.002	036	.667
54.0	.243	.010	006	.841	114.0	145	.001	049	.868	174.0	.308	.002	034	-658
56.0	.243	.010	008	•B46	116.0	152	000	047	.864	176.0	.330	.000	032	.649
58.0	.244	.010	010	.851	118.0	147	001	048	.860	178.0	. 362	002	031	.640

FLT 63 RUN11

. .

M.O. 20

M

L 1

FLT 63 RUN 11 TIME 54648.800 RN/M= 16.61 MILLION RNTAR SPEED= 34.0717 RAD/SEC AZIMUTH CN CC CM AZIMUTH CN CC CM M M AZIMUTH CN 180.0 .395 -.003 -.030 .631 240.0 .982 -.102 .006 .406 300.0 .765 -.057 -.003 .406 182.0 .419 -.005 -.028 .622 242.0 .980 -.098 .001 .402 302.0 .749 -.055 -.004 .411 184.0 .452 -.008 -.027 .613 244.0 .968 -.095 .000 .398 304.0 .744 -.054 -.005 .416

			• • - •						• •				•	
186.0	• 475	010	025	.604	246.0	.973	091	004	.394	306.0	•738	052	005	.421
188.0	•504	013	024	•595	248.0	.972	088	003	.390	308.0	•736	052	005	.426
190.0	•538	016	024	•586	250.0	.954	087	.001	.387	310.0	.729	051	005	.432
192.0	.571	019	025	•577	252.0	.943	086	000	•384	312.0	.718	050	005	.438
194.0	.594	023	023	•568	254.0	.953	086	002	.382	314.0	.707	048	004	.444
196.0	.620	026	022	•560	256.0	.961	085	005	.379	316.0	.692	046	005	•451
198.0	.645	029	020	•551	258.0	•954	085	003	.377	318.0	.684	046	005	.457
200.0	•666	033	019	•542	260.0	.952	084	003	• 375	320.0	•666	043	004	.464
202.0	.696	038	017	•534	262.0	.939	084	004	.374	322.0	.655	042	005	.471
204.0	.715	042	014	•526	264.0	.921	085	00?	.373	324.0	.637	040	002	.478
205.0	• 75 8	047	016	•517	266.0	.920	084	002	.372	326.0	.614	039	.001	.485
208.0	.775	052	013	•509	258.0	.910	082	001	.372	328.0	.610	037	.001	.493
210.0	.800	058	009	•501	270.0	.916	081	004	•371	330.0	•596	037	.002	• 501
212.0	.829	064	009	•494	272.0	.900	080	.001	• 372	332.0	.590	035	.000	.509
214.0	.855	072	004	•486	274.0	.902	079	002	•372	334.0	.589	034	002	.517
216.0	.876	079	002	.479	276.0	.898	078	005	• 373	336.0	•569	032	.001	•525
218.0	• 902	086	.001	•471	278.0	•886	076	003	•374	338.0	•558	031	•00S	• 533
550.0	•922	093	.003	•464	280.0	.873	074	001	• 375	340.0	.547	030	.001	.542
222.0	•940	098	.006	•457	282.0	.866	073	001	•377	342.0	•540	028	.001	•550
224.0	•951	103	.009	•451	284.0	.862	072	001	.379	344.0	•253	027	.002	• 559
226.0	.962	107	.010	•444	286.0	.834	069	•00S	•381	346.0	•511	025	.002	•56B
228.0	.971	109	.011	•438	288.0	.823	058	•007	.384	348.0	•496	024	.002	• 577
230.0	•967	110	.013	•432	290.0	.811	066	•005	•387	350.0	•484	022	.002	•586
232.0	.971	110	.014	•427	292.0	•797	065	.002	• 390	352.0	.481	021	.001	• 595
234.0	•971	108	.014	•421	294.0	•790	063	• 002	.394	354.0	.469	020	.001	.604
236.0	.970	106	.012	•416	296.0	•788	060	001	•398	356.0	•455	019	001	•613
238.0	.973	104	.010	•411	298.0	•781	059	004	.402	358.0	.441	018	.000	.622

FLT 63 RUN11

•

.

, t

FLT 65	RUN 1	.5 TI	ME 544	94.400	RN/M= 16.14 MILLION				ROTOR	RADISEC				
AZIMUTH	CN	cc	СМ	M	A ZI MUTH	CN	CC	CM	м	AZIMUTH	CN	CC	CM	м
0.0	•236	002	.301	.621	60.0	.124	.003	006	•760	120.0	.003	• 00 5	024	.766
2.0	.223	001	•002	.627	62.0	.130	.004	007	•769	122.0	000	.006	023	•763
4.0	.219	000	.001	.632	64.0	•136	.004	007	.771	124.0	• 000	•000	022	.760
6.0	.211	.001	•000	•638	66.0	.143	•004	007	•774	126.0	.002	.006	023	•756
8.0	.202	.001	000	.644	68.0	.151	.004	007	.776	128.0	004	•006	022	.753
10.0	.198	.001	002	.650	70.0	.158	.004	007	•778	130.0	005	.005	022	•749
12.0	.186	.002	002	.656	72.0	.163	.004	~.007	.760	132.0	006	.005	023	•745
14.0	.179	.002	.000	.661	74.0	.161	.004	006	.782	134.0	004	.004	023	.741
16.0	.176	.002	·0ú2	.667	76.0	.156	°.004	007	•783	136.0	001	.004	024	•737
18.0	.177	.002	002	.672	78.0	.144	.004	008	•784	138.0	.002	.004	024	•733
20.0	.169	.002	0ú2	.678	80.0	.133	.004	009	.786	140.0	.005	.004	023	.728
22.0	.162	.002	002	.683	82.0	.117	.004	010	.787	142.0	.008	.004	023	.724
24.0	.155	.003	002	.689	84.0	.099	.004	011	.787	144.0	.011	.004	023	.719
26.0	.148	.003	002	•694	86.0	.080	.003	012	•788	146.0	.017	.004)23	.714
28.0	.149	.003	003	. 699	88.0	.064	.004	014	.788	148.0	.021	.004	022	.710
30.0	.147	•003	004	.704	90.0	.053	.003	014	•788	150.0	.025	.004	022	.705
32.0	.144	.003	004	•7 09	92.0	.044	.003	015	.788	152.0	.030	.004	022	.699
34.0	.143	.003	005	.714	94.0	.039	.003	016	.788	154.0	.034	.004	021	.694
36.0	.134	.003	003	.719	96.0	.032	.003	018	.787	156.0	.041	.005	021	. 689
38.0	.134	.003	004	•724	98.0	.022	.003	013	.787	158.0	.053	.004	021	.684
40.0	.137	.003	005	.728	100.0	.C18	.003	019	• 786	160.0	.051	.004	018	.678
42.0	.134	.003	005	•733	102.0	.013	.003	019	•785	162.0	.064	•004	019	.673
44.0	.134	.003	005	.737	104.0	.006	.003	020	.783	164.0	.070	.004	020	.667
45.0	.131	.003	005	.741	106.0	.007	.004	021	.782	166.0	.061	.004	021	.661
48.0	.131	.003	006	.745	108.0	.006	.004	021	.780	168.0	.091	.004	021	.656
50.0	.128	.003	006	.749	110.0	.001	.004	021	•778	170.0	.104	.004	021	.65ŭ
52.0	.125	.003	007	•753	112.0	.003	.005	022	.776	172.0	.110	.004	020	.644
54.0	.125	.003	006	.756	114.0	.003	.005	022	.774	174.0	.119	.004	020	.638
56.0	.125	.003	006	.760	116.0	.003	.005	023	.771	176.0	.129	.004	019	.633
58.0	.124	.003	005	.763	118.0	.002	.005	024	.769	178.0	.142	.004	020	.627

-

FLT 65 RUN15

94

AIRFUIL CUEFFICIENT DATA .9 BLADE RADIUS

.506 -.028 .009 .479

. .

NASA-LANGLEY AH-16

78/11/15.

358.0

.247 -.002

4

FLT 65 RUN 15 TIME 54494.44			94.400	вили	= 16.1	4 MILLI	ИС	ROTOR	ADISEC					
AZIMUTH	CN	cc	CM	M	AZIMUTH	CN	cc	СМ	м	AZIMUTH	CN	cc	CM	м
180.0	.158	.304	021	.621	240.0	.507	030	.012	.476	300.0	.378	017	.010	.475
182.0	.171	.004	019	.615	242.0	.513	030	.012	.473	302.0	.361	014	.013	.479
184.0	185	.003	018	.539	244.0	.514	031	.013	.470	304.0	.340	013	.014	.482
186.0	.195	.003	016	•603	246.0	.517	031	.012	.468	306.0	.338	012	.012	.485
188.0	.209	.002	016	•598	248.0	.516	031	.013	.466	308.0	.339	011	.008	.489
190.0	.229	.002	016	•592	250.0	.515	031	.013	.463	310.0	.329	010	.008	.492
192.0	.244	.001	015	.586	252.0	.518	031	.013	.462	312.0	.315	010	.)12	.496
194.0	.264	.001	015	.580	254.0	.517	032	.014	•460	314.0	•312	010	.012	.500
196.0	.284	000	015	.575	256.0	.513	032	.015	•458	316.0	.310	009	. 010	.504
198.0	•293	002	013	• 569	258.0	.516	032	.016	.457	318.Ŭ	.306	008	.009	.509
200.0	•305	003	012	• 564	260.0	.517	032	.016	•455	320.0	.309	008	.009	•513
202.0	.319	004	011	•558	262.0	•515	032	.016	•455	322.0	• 30 3	008	.009	.518
204.0	•341	005	011	• 553	264.0	.511	032	.017	• 4 54	324.0	.293	008	.011	• 522
205.0	•352	007	009	•547	266.0	•513	031	.015	•454	326.0	•298	007	.009	•527
208.0	.366	008	007	•542	268.0	• 51 2	032	.016	•453	328.0	•299	007	.008	•532
210.0	• 384	009	007	•537	270.0	.507	032	.016	•453	330.0	.297	007	.008	•537
212.0	• 393	011	005	•532	272.0	•509	031	.015	•453	332.0	.291	007	.009	•542
214.0	.413	012	005	•527	274.0	.498	030	.016	.454	334.0	.293	006	.008	• 547
216.0	•423	014	003	•522	276.0	•498	030	.015	•454	336.0	.294	006	.007	• 552
218.0	.431	016	001	•518	278.0	•488	029	.016	•455	338.0	•295	006	.006	• 5 5 8
220.0	.443	017	000	•513	280.0	•485	029	.016	•456	340.0	.290	006	.008	•563
222.0	•453	018	.000	•509	282.0	.493	028	.013	•457	342.0	.285	006	.008	• 569
224.0	• 456	020	.004	.505	284.0	.482	028	.014	•45B	344.0	.283	006	.037	•574
226.0	.467	021	.004	.500	280.0	•479	027	•014	.460	346.0	.281	006	•00s	•580
228.0	•473	023	.005	•496	288.0	.466	026	.015	.461	348.0	.285	005	.005	•986
230.0	•479	024	.006	•493	290.0	• 4 5 4	025	.015	.463	350.0	•282	004	.005	•591
232.0	•492	025	.006	.489	292.0	•447	024	.012	.465	352.0	.275	004	.004	•597
234.0	.500	026	.007	•485	294.0	.430	022	.015	•468	354.0	.261	003	.004	.603
230.0	• 5 Oa	027	.008	.482	296.0	.427	020	.011	.470	350.0	.256	003	.003	.609

298.0 .390 -.018 .015 .473

FLT 65 RUN15

.302 .615

۹ ۹

• c

FLT 65	RUN 1	.8 TI	ME 547	82.700	RN/M= 16.15 MILLION				ROTOR	SPEED= 34	AD/SEC			
AZIMUTH	CN	cc	СМ	м	AZIMUTH	CN	cc	СM	м	AZIMUTH	CN	сс	СМ	м
0.0	.354	010	.003	.630	60.0	.276	.005	003	.777	120.0	.221	.001	014	.777
2.0	.342	008	.001	.636	62.0	.273	.006	003	.700	122.0	.212	.00i	013	.774
4 • C	.333	006	000	·642	64.0	.282	.004	001	.782	124.0	.199	.001	013	.770
5.0	.324	006	.001	.648	66.0	.288	.004	001	.785	126.0	.187	.001	013	•767
8.0	.308	005	.002	•654	68.0	.294	.004	001	.787	128.0	.175	.001	012	.764
10.0	.295	004	.001	.660	70.0	.297	.003	.000	•789	130.0	.171	.001	012	•760
12.0	•277	003	.001	.665	72.0	.297	.004	.001	.791	132.0	.171	.000	012	.756
14.0	.271	002	000	.671	74.0	.293	.004	.002	•793	134.0	.168	000	011	.752
16.0	.277	002	001	•6 7 7	76.0	•280	.003	.005	•794	136.0	.170	001	011	•748
18.0	.282	002	.000	.683	78.O	.270	.003	.005	•796	138.0	.170	001	011	•743
20.0	.283	003	.003	•688	80.0	.260	.003	.005	.797	140.0	.175	001	011	•739
22.0	.280	003	.004	•694	82.0	.246	.003	.005	.798	142.0	.174	001	011	•734
24.0	.277	003	.003	•699	84.0	.238	.004	.004	.798	144.0	.168	001	010	.730
26.0	•264	002	•003	•734	86.0	.227	.004	.004	•799	146.0	.167	000	010	.725
28.0	.251	002	.003	.710	88.0	.218	•003	.004	• 799	148.0	.171	000	010	.720
30.0	•234	001	.004	.715	90.0	.210	.003	.003	•799	150.0	.177	000	012	.715
32.0	.224	001	.002	•72 C	92.0	.204	.003	.001	•799	152.0	.179	000	012	.710
34.0	.220	.000	00Ű	.725	94.0	.199	.003	.001	•799	154.0	.180	000	012	.704
36.0	.209	.001	000	•730	96.0	.196	•003	~.001	•798	156.0	.181	.000	312	.699
38.0	.201	.001	002	•734	98.0	.196	.003	002	•798	158.0	.184	.000	012	•694
40.0	.195	•001	JC3	•739	100.0	.196	.003	003	•797	160.0	.185	.001	012	•688
42.0	•198	.001	004	•743	102.0	.196	.003	004	•796	1ċ2.0	.186	.000	012	•683
44.0	.213	.002	006	.748	104.0	.194	.002	~.005	•794	164.0	.188	.001	012	.677
46.0	•239	.002	008	.7 52	106.0	.197	•003	006	.793	166.0	.193	.000	311	.671
48.0	•257	.003	007	.756	108.0	.202	•223	008	.791	168.0	.192	.001	011	•606
50.0	.267	.003	006	•760	110.0	.204	.002	009	•789	170.0	.197	.001	011	.600
52.0	•267	.003	004	•763	112.0	.209	.002	010	•787	172.0	.205	.001	012	•654
54.0	•274	.004	003	•767	114.0	.217	.002	012	•785	174.0	.212	.000	012	.640
56.0	.280	.004	002	.770	116.0	.218	.002	012	.782	176.0	.217	.000	012	•642
58.0	•278	.004	002	.774	118.0	.220	.002	013	.780	178.0	.225	.000	011	.636

FLE 65 RUN18

AIRFOIL COEFFICIENT DATA .9 ELADE RADIUS

.

.

NASA-LANGLEY AH-1G

78/11/15.

FLT 65	RUN 1	.8 TI	ME 547	82.700	RN/M= 16.15 MILLION				ROTOR SPEED≄ 34.5916 RAD/SEC							
AZIMUTH	CN	сC	CM	м	AZIMUTH	CN	cc	СМ	м	AZIMUTH	CN	cc	CM	м		
160.0	.233	000	011	.630	240.0	.580	035	.011	.484	300.0	.580	044	.022	.484		
182.0	.24C	001	011	.624	242.0	.587	036	.012	.481	302.0	.564	036	.314	.487		
184.0	.248	001	010	.619	244.0	.605	038	.010	.478	304.0	. 554	034	.009	.490		
186.0	.259	001	011	.613	246.0	.569	040	.016	.476	306.0	.549	032	.007	.493		
188.0	.266	001	010	.607	248.0	.593	041	.018	.474	308.0	.538	030	.008	.497		
190.0	.273	002	009	.601	250.0	.603	041	.018	.472	310.0	. 526	030	.012	.501		
192.0	.284	003	009	.595	252.0	.607	042	.018	.470	312.0	.515	029	.015	.505		
194.0	.286	003	008	.590	254.0	.616	042	.017	.468	314.0	.512	028	.016	.509		
196.0	.300	003	008	.584	256.0	.623	043	.015	.466	316.0	.510	028	.015	.513		
198.0	.311	004	009	• 57 8	258.0	.630	043	.015	.465	318.0	.506	028	.014	.517		
200.0	.323	005	009	.573	260.0	.632	043	.016	.404	320.0	.504	027	.012	.522		
202.0	.340	006	010	.567	262.0	.644	043	.012	.463	322.0	.505	027	.011	.526		
204.0	.352	006	008	.562	264.0	.647	044	.015	.462	324.0	.496	026	.012	.531		
206.0	.367	008	007	•556	266.0	.654	045	.015	.462	326.0	.495	026	.012	.536		
208.0	.380	009	007	.551	268.0	.656	046	.016	.461	328.0	.491	025	.011	.541		
210.0	.392	010	~.007	.546	270.0	.664	048	.016	.461	330.0	.492	024	.011	.546		
212.0	.408	011	007	•541	272.0	.666	048	.020	.461	332.0	.481	024	.013	.551		
214.0	.416	013	005	• 536	274.0	.670	049	.020	.462	334.0	.476	024	• 213	•556		
216.0	.435	014	003	.531	276.0	.570	049	• 02 0	.462	336.0	.473	024	.013	.501		
218.0	• 447	016	003	.526	278.0	.077	052	.024	.463	336.0	.471	024	.014	.567		
220.0	.462	018	002	.522	280.0	•692	052	.022	.464	340.0	.482	023	.014	.572		
222.0	• 479	019	002	.517	282.0	.705	052	.022	.465	342.0	.497	023	.014	.578		
224.0	.488	021	000	.513	284.0	.718	054	.025	.466	344.0	.493	023	.014	.584		
226.0	.500	023	•002	.509	286.0	.752	358	.025	.468	346.0	.482	023	•014	.589		
228.0	•514	024	.002	.505	288.0	.776	065	.028	.470	348.0	.476	023	.015	.595		
230.0	• 526	026	.003	.501	290.0	.799	074	.033	.471	350.0	•463	022	.015	.601		
232.0	•540	027	.002	.497	292.0	.797	078	•036	•474	352.0	.436	020	.013	.607		
234.0	• 556	029	.003	•494	294.0	.748	073	.036	.476	354.0	.415	017	.009	•612		
236.0	.565	031	.005	.490	296.0	.679	064	.034	.478	356.0	.387	014	.007	.618		
238.0	.574	033	.007	.487	298.0	.620	054	.028	.481	358.0	.357	011	.006	.624		

.028 .481

358.0

.357 -.011

FLT 65 RUN18

•624

. .

FLT 65	RUN 25 TIME 55583.000				RN/M	= 16.14	4 MILLI	ON	RUTOR	AD/SEC				
AZIMUTH	CN	CC	CM	м	AZIMUTH	CN	cc	CM	m	AZIMUTH	CN	cc	CM	M
0.0	.203	005	.007	•624	60.0	.214	.004	005	.769	120.0	.121	.001	015	•769
2.0	.269	004	.005	.630	62.0	.222	.004	007	.772	122.0	.123	.001	016	•766
4.0	.253	003	•004	.636	64.0	.222	.004	007	.774	124.0	.120	.001	015	•763
6.0	.245	002	.002	•642	66.0	.222	.004	007	.777	125.0	.117	.001	015	•759
8.0	.239	001	.001	.047	0.63	.225	.004	007	.779	128.0	•118	.002	016	•756
10.0	.233	001	000	.653	70.Ŭ	•235	.004	907	.781	130.0	•117	.002	016	•752
12.0	•224	000	000	•659	72.0	.245	.004	007	.783	132.0	.121	•002	016	.748
14.0	.219	.000	.000	.665	74.0	.254	.004	006	.785	134.0	.119	.002	016	•744
10.0	.217	.001	001	.670	76.0	.259	.004	ذ00 -	.786	136.0	.119	.001	015	.740
18.0	.211	.001	001	•676	78.0	.259	.004	004	.787	138.0	.115	.001	015	•736
20.0	.203	.001	000	.681	80.0	.256	.004	003	.789	140.0	.110	.001	014	.732
22.0	.192	.001	002	.687	82.0	.249	.004	003	.789	142.0	.114	.002	015	•727
24.0	.168	.002	003	•692	84.0	.241	.004	003	.790	144.0	.115	.002	015	•722
26.0	.179	.002	002	•69 7	86.0	.232	.004	004	.791	146.0	.116	.002	013	.718
28.0	.174	.002	001	.703	88.U	.225	.004	004	.791	148.0	.120	.001	014	.713
30.0	.175	.002	003	.708	90.0	.218	.003	004	.791	150.0	.122	.002	016	.708
32.0	.166	.002	003	.713	92.0	.213	.003	005	.791	152.0	.124	.002	015	.703
34.0	.166	.002	004	.718	94.0	.210	.003	007	.791	154.0	.124	.002	013	.697
36.0	.164	.002	004	•722	96.0	.207	.003	009	.790	150.0	.124	.002	012	.692
38.0	.157	.002	003	.727	98.0	.202	.003	009	.789	158.0	.129	.002	013	.587
40.0	.156	•0ü3	004	•731	100.0	.200	.003	010	.789	160.0	.135	.002	014	•681
42.0	.156	.003	004	•736	102.0	.198	.003	011	.787	162.0	.140	.002	015	•676
44.0	.150	.003	006	•740	104.0	.198	•003	011	.786	164.0	.144	.002	015	•670
46.0	.145	.003	007	•744	106.0	.193	•00S	012	.785	166.0	.148	.002	015	.665
48.0	.156	.003	008	.740	108.0	.187	.002	012	.783	158.0	.152	.002	014	.659
50.0	.175	.004	010	.752	110.0	.172	•0J2	012	.781	170.0	.160	.002)lj	.653
52.0	.189	.004	010	.756	112.0	.159	.002	013	.779	172.0	•169	.002	015	• 64 8
54.0	.199	.004	008	.755	114.0	•141	-002	014	.777	174.0	.178	•00Z	014	.642
56.0	.207	.004	007	.763	116.0	.129	.001	014	.774	176.0	.183	.002	014	.636
58.Ŭ	.211	.004	005	.760	118.0	.125	.001	014	.772	178.0	.188	.002	012	.630

•

FLT 65 RUN25

.

r 2

AIRFUIL COEFFICIENT DATA .9 BLADE RADIUS

-.003

-.001

.000

.003

.005

.001

.004

.006

.009

.009

.010

.522

.517

.513

.508

.504

,500

.496

.493

.489

.485

.483

-.014

-.016

-.017

-.025

-.027

-.026

.450 -.018

.464 -.020

.488 -.022

.498 -.024

.532 -.030

• 42 C

.435

.444

. 509

.515

.524

.

218.0

220.0

222.0

224.0

226.0

228.0

230.0

232.0

234.0

236.0

238.0

NASA-LANGLEY AH-1G

78/11/15.

.00

CM

.021

.024

.020

.016

.010

.006

.005

.004

.009

.014

.013

.313

.012

.012

.011

.011

.013

.013

.012

.011

.011

.011

.011

.011

.010

.009

.007

.007

.010 .512

.013 .517

M

.460

.483

.466

.489

.493

.496

.500

.504

.508

• 521

. 526

.531

.536

.541

.546

• 551

.556

.562

.567

.572

.578

.584

.589

.595

.601

.607

.612

.610

FLT 05 TIME 55583.000 PN/M= 15.14 MILLION ROTOR SPEED= 34.2684 RAD/SEC RUN 25 AZIMUTH CN 0.0 СM M AZIMUTH CN 00 CM Μ AZIMUTH CN 240.0 180.0 .195 .001 -.011 +024 .540 -.032 .009 .480 300.0 .489 -.033 .619 242.0 302.0 182.0 .207 .001 -.013 .550 -.033 .011 .477 .432 -.028 -.022 184.0 .001 -.013 .613 244.0 -.035 304.0 .220 .557 .013 .474 .398 -.013 305.0 186.0 -.018 .228 .000 .607 246.0 .503 -.036 .014 .472 ·386 188.0 .000 -.012 .601 248.0 -.037 .470 308.0 -.017 .239 .561 .017 .388 190.0 -.000 -.013 .595 250.0 .467 310.0 -.015 .257 .563 -.038 .016 .391 192.0 .261 -.001 -.010 .590 252.0 .565 -.038 .017 .466 312.0 . 397 -.014 -.009 194.0 -.002 254.0 .464 314.0 -.014 .267 .584 .568 -.039 .017 .395 196.0 .277 -.003 -.009 .578 256.0 .580 -.040 .402 316.0 .385 -.014 .013 -.003 198.0 .293 -.009 .573 258.0 .580 -.040 .016 •461 318.0 .388 -.015 260.0 -.039 200.0 .302 -.004 -.009 .567 .581 .017 •460 320.0 .380 -.015 202.0 .315 -.005 -.005 .562 262.0 .588 -.040 .015 .459 322.0 .368 -.014 204.0 .326 324.0 -.005 -.009 .556 264.0 .584 -.040 .01ø .458 .359 -.014 206.0 . 344 -.007 -.009 .551 266.0 .585 -.040 .018 .453 326.0 .361 -.014 208.0 -.008 -.008 .546 268.0 -.040 .457 328.0 -.014 .360 .580 .019 .361 330.0 210.0 .369 -.009 -.006 .541 270.0 .580 -.040 .018 .457 .360 -.013 212.0 -.010 -.006 332.0 .386 .536 272.0 .580 -.040 .018 .457 .359 -.013 -.040 214.0 -.011 -.006 .531 274.0 .585 .458 334.0 -.012 .403 .019 .355 216.0 -.013 -.004 .526 276.0 .580 -.040 .458 336.0 .408 .020 .350 -.012

278.0

280.0

282.0

284.0

286.0

268.0

290.0

292.0

294.0

296.0

298.0

.578

.588

. 589

.595

.594

.595

.594

.601

.594

. 579

-.040

-.040

-.041

-.041

-.041

-.041

-.042

-.043

-.043

-.041

.542 -.037

.459

.460

.461

.462

•464

.465

•467

.469

.472

.474

.022 .477

.019

.017

.020

.020

.020

.022

.024

.)25

.026

.023

333.0

340.0

342.0

344.0

348.0

350.0

352.0

354.0

356.0

358.0

346.0

.348

.351

.354

.355

.353

.357

.358

.355

.338

.317

-.012

-.011

-.011

-.011

-.011

-.011

-.011

-.011

-.010

-.008

.288 -.006

FLT 65 RUN25

AIREDIL CORFFICIENT DATA .9 BLADE RADIUS NASA-LANGLEY AH-16 78/11/27.

t t

• •

FLT 56	RUN 2	? TI	ME 557	89.850	RN/M= 16.37 MILLION				ROTOR SPEED= 35.2791 RAD/SEC					
Δ7ΙΜUTH	ÇΝ	cc	C٩	M	AZ1MUTH	CN	cc	CM	м	AZIMUTH	CN	cc	СM	м
ວ.າ	.471	024	.007	.646	60.C	.350	.003	003	.798	120.0	.236	.002	005	.798
2.0	• 452	019	• 202	.652	62.0	.349	.003	003	.801	122.0	.245	.002	005	,795
4.0	•430	016	002	.659	64.0	.350	.003	003	• ^B 04	124.0	.258	.002	006	.792
5.0	•400	012	003	•665	66.0	.347	.003	001	.807	126.0	.273	•005	008	.788
8.0	•381	010	002	•671	68.0	• 342	.003	.002	.809	128.0	.285	.002	009	.785
10.0	•371	008	003	•677	70.0	.338	.003	•003	• 911	130.0	.295	.001	009	.781
12.0	.360	008	003	•683	72.0	• 330	.003	.005	. 913	132.0	.309	•001	000	.777
14.0	•367	007	004	•689	74.0	• 322	.003	•006	.815	134.0	• 322	.001	010	•773
16.0	•378	007	004	.695	76.0	.317	.003	.005	.817	136.0	•333	.000	010	•7 <u>68</u>
18.0	•378	007	003	.701	78.0	.315	.003	•004	•818	138.0	•345	000	010	.764
20.0	•370	007	002	•706	0.06	.310	.003	.004	.819	140.0	.357	001	010	.759
25.0	.359	006	•000	.712	62.0	.304	.004	•003	• R 2 0	142.0	• 366	002	011	.755
24.0	• 352	005	.002	•718	84.0	.302	.004	.002	.821	144.0	• 363	00z	010	.750
25.0	• 352	004	.001	•723	86.0	• 302	.004	001	.921	146.0	•353	003	008	.745
28.0	•347	003	.002	•729	38.0	• 302	.004	003	.822	148.0	• 342	003	00A	.739
30.0	• 346	005	000	•734	90.0	.302	.004	005	.822	150.0	• 334	004	007	.734
32.0	.347	002	002	•739	92.0	.305	.005	008	.822	152.0	. 325	005	007	.729
34.0	•355	001	005	•745	94.0	.308	•005	011	•921	154.0	.320	005	006	.723
36.0	•365	001	005	.750	96.0	.305	.005	013	.921	156.0	• 320	006	005	•71ª
38.0	.376	001	006	•754	98.0	.300	.004	013	.820	158.0	.325	007	006	.712
40.0	•381	001	005	•759	100.0	.291	.004	012	•19	160.0	• 332	007	006	.705
42.0	•390	000	005	.764	102.0	.278	.034	012		162.0	.338	008	006	.701
44.0	•392	000	005	•768	104.0	•264	•004	011	• 917	164.0	.345	009	007	.695
45.0	•392	•000	004	•773	106.0	•251	.003	010	.815	166.0	•353	009	006	.689
43.0	• 380	.001	002	•777	108.0	•241	•003	00 ⁸	•13	168.0	•353	009	007	.683
50.0	•370	.001	002	•781	110.0	•230	•003	006	•B11	170.0	•355	008	008	.677
52.0	•361	.002	002	•785	112.0	.226	.003	006	.809	172.0	.360	008	 009	.671
54.0	.359	.002	003	•788	114.0	.225	.002	006	.807	174.0	.367	007	009	. 445
56.0	•355	.002	003	• 792	116.0	.224	.002	004	.804	176.0	.374	007	010	.659
59.0	.352	.003	003	•795	118.0	.229	.002	004	.901	178.0	.379	008	011	.553

FLT 66 PUN2?

AIRFOIL COEFFICIENT DATA .9 BLADE RADIUS NASA-LANGLEY AH-16

CM

.494

-.001

78/11/27.

ĊN

СС

.753 -.052

CM

.008

м

.494

ROTOP SPEED= 35.2791 RAD/SEC

AZIMUTH

300.0

TIME 55789.850 FLT 56 RUN 22 RN/M= 16.37 MILLION A7TMUTH CΝ 0.0 CM м AZIMUTH CN CC 180.0 .379 -.908 ~.010 240.0 .546 .607 -.035 .380 -.009 -.008 .640 242.0 -.036 .617 .388 -.009 -.008 .634 244.0 .631 -.037 . 394 -.010 -.009 .628 246.0 .634 -.038 .409 -.010 -.908 .522 248.0 .641 -.038 . 420 -.012 -.009 .616 250.0 .647 -.039 252.0 .427 -.013 -.007 .610 .652 -.040 .435 -.013 -.007 .604 254.0 .654 -.040

182.0 .001 .491 302.0 .746 -.051 .007 .497 184.0 -.002 .490 304.0 .739 -.049 .005 .501 306.0 .504 186.0 -.001 .486 .731 -.048 .003 168.0 -.001 . 484 308.0 .712 -.046 .005 .509 .512 190.0 -.001 .481 310.0 .700 -.044 .006 .516 192.0 -.001 .479 312.0 .696 -.044 .005 194.0 .001 .478 314.0 .688 -.043 .005 .520 .440 -.042 .002 .524 195.0 -.015 -.007 .598 256.0 .476 316.0 .688 .658 -.041 .001 .592 258.0 .529 193.0 . 444 -.016 -.005 .665 -.041 .002 .475 318.0 .687 -.042 .001 . 452 -.016 -.005 .586 260.0 .473 320.0 .679 -.041 .001 .533 200.0 .673 -.041 .001 202.0 .459 -.017 -.005 .581 262.0 .000 .473 322.0 .677 -.041 .001 .538 .682 -.042 .465 -.005 .675 -.041 .543 204.0 -.018 .575 264.0 .697 -.043 -.001 .472 324.0 .002 -.005 206.0 .475 -.018 .570 266.0 .698 -.044 .001 .471 326.0 .666 -.040 .005 .548 208.0 . 482 -.020 -.004 .564 268.0 .705 -.045 .002 .471 328.0 .672 -.039 .003 . 553 .670 210.0 .485 -.021 -.004 .559 270.0 .714 -.045 .001 .471 330.0 -.038 .004 .559 212.0 .495 -.022 -.003 .553 272.0 .719 -.046 .001 .471 332.0 .660 -.038 .006 .564 .507 214.0 -.023 -.004 .548 274.0 .729 .471 -.038 .007 .569 -.048 .004 334.0 .650 .508 -.023 -. 004 216.0 .543 276.0 •734 -.049 .006 .472 336.0 .650 -.038 .008 .575 218.0 .523 -.024 -.004 .538 278.0 .739 -.050 .47? 338.0 -.039 .009 . 580 .008 .650 .533 220.0 -.025 200.0 .586 -.004 .534 .752 -.051 .008 .473 340.0 .650 -.040 .013 222.0 .537 -.026 -.003 .529 282.0 .758 -.052 .009 .475 342.0 .657 -.041 .015 . 592 224.0 .547 -.002 .524 284.0 .598 -.027 .762 -.053 .010 .476 344.0 .675 -.041 .016 226.0 .56? -.027 -.004 .520 286.0 .760 .478 346.0 .699 -.041 .604 -.053 .019 .016 .479 228.0 .574 -.029 -.006 .516 288.0 .771 -.053 .011 348.0 .727 -.041 .018 .610 -.054 230.0 .577 -.030 -.004 .512 290.0 .778 .481 350.0 -.041 . 616 .011 .726 .019 232.0 .579 -.031 -.003 .508 292.0 .778 -.054 .012 .484 352.0 .696 -.040 .622 .020 234.0 .590 -.032 -.005 .504 294.0 .780 -.054 .486 354.0 .628 .011 .646 -.038 .021 236.0 .601 -.033 -.004 .501 296.0 .773 -.054 .011 .488 356.0 .589 -.036 .020 .634 298.0 .491 238.0 .601 -.034 -.002 .498 .764 -.053 .008 358.0 .548 -.033 .017 .640

APPENDIX F. - THEORETICAL AIRFOIL PRESSURE DISTRIBUTIONS

Theoretical distributions of airfoil pressure coefficients were generated by utilizing the transonic-flow analysis of reference 35. This computer program uses a relaxation scheme around a conformally mapped representation of a "fluid" airfoil. That airfoil consists of a specified geometric shape and turbulent boundary layer that grows from a specified chordwise location on each airfoil surface. The program can predict transonic flow patterns and effects but cannot handle either separation or laminar flow. More details about the program are available in references 40 and 41.

Four primary input parameters were required for each flow condition. The Mach number was the value for the flow component normal to the blade leading edge. The normal-force coefficient of the flight data was input as a close approximation of lift coefficient. The two transition points (specifying the start of the boundary layer) were determined based on the estimates plotted in figure 55. Unless otherwise specified, the input airfoil coordinates were the set of reference 4 modified for the trailing-edge truncation.

REFERENCES

- Dadone, Leo V.; and Fukushima, Toshiyuki: A Review of Design Objectives for Advanced Helicopter Rotor Airfoils. Paper presented at Am. Helicopter Soc. Symp. on Helicopter Aero. Efficiency (Hartford, CT), March 1975.
- Paglino, Vincent M.; and Clark, David R.: A Study of the Potential Benefits of Advanced Airfoils for Helicopter Applications. Paper presented at Am. Helicopter Soc. Symp. on Helicopter Aero. Efficiency (Hartford, CT), March 1975.
- 3. Reichert, G; and Wagner, S. N.: Some Aspects of the Design of Rotor-Airfoil Shapes. Paper No. 14, AGARD CP-111, September 1972.
- Kemp, Larry D.: An Analytical Study for the Design of Advanced Rotor Airfoils. NASA CR-112297, 1973.
- 5. Bingham, Gene J.: An Analytical Evaluation of Airfoil Sections for Helicopter Rotor Applications. NASA D-7796, 1975.
- Sloof, J. W.; Wortmann, F. X. and Duhon, J. M.: The Development of Transonic Airfoils for Helicopters. Preprint 901, 31st Annual Nat. Forum of the Am. Helicopter Soc., May 1975.
- Renand, J.; and Nibelle, F.: Effects of the Airfoil Choice on Rotor Aerodynamic Behavior in Forward Flight. Paper No. 23; Second European Rotorcraft and Powered Lift Aircraft Conference. (Buckeberg, F. R. G.), September 1976.
- 8. Thibert, J. J.; and Gallot, J.: A New Airfoil Family for Rotor Blades. Paper No. 41, Third European Rotorcraft and Powered Lift Aircraft Forum (Axi-en-Provence, France), September 1977.
- 9. Blackwell, James A., Jr.; and Hinson, Bobby L.: The Aerodynamic Design of an Advanced Rotor Airfoil. NASA CR-2961, 1978.
- 10. Dadone, L. V.: Design and Analytical Study of a Rotor Airfoil. NASA CR-2988, 1978.
- Dadone, Leo: Rotor Airfoil Optimization: An Understanding of the Physical Limits. Preprint 78-04, 34th Annual Nat. Forum of the Am. Helicopter Soc., May 1978.
- 12. Ward, John F.; and Young, Warren H., Jr.: A Summary of Current Research in Rotor Unsteady Aerodynamics With Emphasis on Work at Langley Research Center. Paper No. 10, AGARD CP-111, September 1972.
- Landgrebe, Anton J.; Moffitt, Robert C.; and Clark, David R.: Aerodynamic Technology for Advanced Rotorcraft - Part II. J. Am. Helicopter Soc., vol. 22, no. 3, July 1977, pp. 2-9

- 14. Pearcey, H. H.; Wilby, P. G.; Riley, M. J.; and Brotherhood, P.: The Derivation and Verification of a New Rotor Profile on the Basis of Flow Phenomena; Aerofoil Research and Flight Tests. Paper No. 16, AGARD CP-111, September 1972.
- Riley, M. J.; and Brotherhood, P.: Comparative Performance Measurements of Two Helicopter Blade Profiles in Hovering Flight. R.&M. No. 3792, British A.R.C., 1977.
- Morris, Charles E. K., Jr.: Rotor-Airfoil Flight Investigation: Preliminary Results. Preprint 78-05, 34th Annual Nat. Forum of the Am. Helicopter Society, May 1978.
- 17. Morris, Charles E. K., Jr.: A Flight Investigation of Rotor Airfoils. Paper No. 10, Advanced Technology Airfoil Research, Vol. II. NASA CP 2046, March 1978, pp. 141-154.
- 18. Morris, Charles E. K., Jr.; Tomaine, Robert L.; and Stevens, Dariene D.: A Flight Investigation of Performance and Loads for a Helicopter With NLR-1T Main-Rotor Blade Sections. NASA TM 80165, 1979.
- 19. Morris, Charles E. K., Jr.: A Flight Investigation of Basic Performance Characteristics of a Teetering-Rotor Attack Helicopter. NASA TM 80112, 1979.
- 20. Dadone, Leo: Two-Dimensional Wind-Tunnel Test of an Oscillating Rotor Airfoil, Vols. I and II. NASA CR-2914 and NASA CR-2915, 1977.
- 21. Noonan, Kevin W.; and Bingham, Gene J.: Two-Dimensional Aerodynamic Characteristics of Several Rotorcraft Airfoils at Mach Numbers From 0.35 to 0.90. NASA TM X-73990, 1977.
- 22. Brotherhood, P.; and Riley, M. J.: Flight Experiments on Aerodynamic Features Affecting Helicopter Blade Design. Paper No. 17, Third European Rotorcraft and Powered Lift Aircraft Forum (Aix-en-Provence, France), September 1977.
- 23. Shockey, Gerald A.; Williamson, Joe W.; and Cox, Charles R.: AH-1G Helicopter Aerodynamic and Structural Loads Survey. USAAMRDL TR-76-39, Feb. 1977.
- 24. Shockey, G. A.; Williamson, J. W. and Cox, C. R.: Helicopter Aerodynamics and Structural Loads Survey. Preprint 1060. 32nd Annual Nat. Forum of the Am. Helicopter Soc., May 1976.
- 25. Cox, C. R.: Helicopter Rotor Aerodynamic and Aeroacoustic Environments. Preprint 77-1338. 4th Aeroacoustic Conference of the AIAA. October 1977.
- 26. Scheiman, James; and Kelley, Henry L.: Comparison of Flight-Measured Helicopter Rotor-Blade Chordwise Pressure Distributions With Static Two-Dimensional Airfoil Distributions. NASA TN D-3936, 1967.

104
- 27. Bowden, T. H.; and Shockey, G. A.: A Wind Tunnel Investigation of the Aerodynamic Environment of a Full-Scale Helicopter Rotor in Forward Flight. USAAVLABS TR 70-35, July 1970.
- 28. Dadone, L. V.; and Fukushima, T.: Investigation of Rotor Blade Element Airloads for a Teetering Rotor in the Blade Stall Regime. NASA CR-137534, 1974.
- 29. Boerstoel, J. W.; and Huizing, G. H.: Transonic Shock-Free Airfoil Design by an Analytical Hodograph Method. AIAA Paper 74-539, 1974.
- 30. Knight, Vernie H., Jr.; Haywood, William S., Jr.; and Williams, Milton L.: A Rotor-Mounted Digital Instrumentation System for Helicopter Blade Flight Research Measurements. NASA TP 1146, 1978.
- 31. James, C. A.: A Suite of Computer Programs for the Automatic Analysis of Helicopter Rotor Blade Pressure Measurements. Tech. Memo. FS 47, British R.A.E., October 1975.
- 32. Scheiman, James; and Ludi, LeRoy, H.: Qualitative Evaluation of Effects of Helicopter Rotor-Blade Tip Vortex on Blade Airloads. NASA TN D-1637, 1963.
- 33. Ward, John F.: Helicopter Rotor Periodic Differential Pressures and Structural Response Measured in Transient and Steady-State Maneuvers. J. Am. Helicopter Soc., volume 16, number 1, January 1971. pp. 16-25.
- 34. Brotherhood, P.: Some Aerodynamic Measurements in Helicopter Flight Research. Aeronautical Journal, October 1975, pp. 450-465.
- 35. Bauer, Frances; Garabedian, Paul; and Korn, David: Supercritical Wing Sections III. Lecture Notes in Economics and Mathematical Systems, vol. 150, Springer-Verlag (New York), 1977.
- 36. Monnerie, Bernard; and Philippe, Jean-Jacques: Aerodynamic Problems of Helicopter Blade Tips. Paper No. 40, Third European Rotorcraft and Powered Lift Aircraft Forum (Aix-en-Provence, France), September 1977.
- 37. Arieli, Rimon; and Tauber, Michael E.: Computation of Subsonic and Transonic Flow About Lifting Rotor Blades. AIAA Paper No. 79-1667, August 1979.
- 38. Smetana, Frederick O.; Summey, Delbert C.; Smith, Neill S.; and Carden, Ronald K.: Light Aircraft Lift, Drag and Moment Prediction. A Review and Analysis. NASA CR-2523, 1975.
- 39. Markel, John D.: Z-Transform Applications Using Digital Computers. Electro-Technology, vol. 82, no. 6, December 1968, pp. 21-36.
- 40. Garabedian, P. R. Transonic Flow Theory of Airfoils and Wings. Advances in Engineering Science. Vol. 4. NASA CP-2001, 1976, pp. 1349-1358.

41. Bauer, Frances; Garabedian, Paul; Korn, David; and Jameson, Antony: Supercritical Wing Sections II. Lecture Notes in Economics and Mathematical Systems, Vol. 108, Springer-Verlag (New York), 1975.

. •

TABLE I.- BASIC AIRCRAFT CHARACTERISTICS

Empty weight, N (lb.) 28,130 (6323) Fuel capacity, N (lb.) 7,250 (1630) Powerplant 7,250 (1630) Nominal transmission limit at 100% rpm, kW (hp) 820 (1100)
Wing: Airfoil Root
Root, m (ft) 0.88 (2.89) Tip, m (ft) 0.62 (2.04) Incidence angle (chord line), deg 14.0 Leading-edge sweep, deg 15.2 Dihedral angle, deg 0.0
Horizontal tail: Airfoil
Root, m (ft)
<pre>Vertical tail: Airfoil Root</pre>
Root, m (ft) 1.42 (4.67) Tip, m (ft) 69 (2.25) Leading-edge sweep, deg 50.0 Twist, deg 1.11

TABLE I.- Concluded

Main rotor:
Number of blades 2 Airfoil NLR-1T Radius (R), m (ft) 6.706 (22.0) Chord, m (ft) 0.686 (2.25) Taper 1:1 Solidity 0.0651 Twist, deg -10/R Flapwise inertia, kg-m ² (slug-ft ²) 2120 (1560) Lock number 5.05 Nominal tip speed, m/sec (ft/sec) 227.5 (746.6) Hub precone angle, deg 2.75 Pitch-flap coupling (δ_3), deg 0.0 Blade pitch range at .75 R, deg -12.3, +39.6
Width, m (ft) 0.191 (0.75) Overhang length, m (ft) 0.042 (0.138) In-board edge 0.761 R
Tail rotor:
Number of blades 2 Airfoil
.25 tail-rotor radiusNACA 0018tipcambered, 8% thickRadius1.295 (4.25)Chord, m (ft)0.292 (0.96)Taper1:1Solidity0.144Twist, deg0.0Equivalent root cut-out35Nominal tip speed, m/sec (ft/sec)227.5 (746.4)Blade pitch range, deg10Pitch-flap coupling (δ_2), deg30°

TABLE II.- COORDINATES OF NLR-1T AIRFOIL

Parameter	System Accuracy (a)	Digital Channel Precision	Filter (b) Frequency
Aerodynamic Flight State:			
dynamic pressure - regular - sensitive static pressure - regular - sensitive angle of attack angle of sideslip total temperature	70 Pa 14 Pa 500 Pa 70 Pa .10 .10 .06 ⁰ C	14 Pa 3 Pa 200 Pa 40 Pa .180 .180 .180 .10C	1 Hz 10 Hz 10 Hz
Inertial Flight State:			
roll attitude pitch attitude heading angular rates longitudinal acceleration lateral acceleration normal acceleration	.5 ⁰ .5 ⁰ 3.0 ⁰ .01 rad/sec .001 g .001 g .005 g	.36 ⁰ .18 ⁰ .72 ⁰ .044 rad/sec .004 g .003 g .009 g	10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz
Control Positions:			
lateral servo longitudinal servo collective servo horizontal fin pedal position tail-rotor collective	.1 ⁰ .1 ⁰ .1 ⁰ .1 ⁰ .1 ⁶ .1 ⁰	.04 ⁰ .07 ⁰ .05 ⁰ .02 ⁰ .07 ⁰ .07 ⁰	10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz
Rotor/Engine Parameters:			
main-rotor speed - regular -sensitive main-rotor azimuth engine torque pressure fuel quantity	.5% 10 [%] 3 kPa 60	.23% .05% 22.5 ⁰ 1.3 kPa 40	

TABLE III.- PADS-PCM DATA SYSTEM CHARACTERISTICS

Notes: a - accuracy of analog signal before digitization

b - frequency at 3 db roll-off for constant delay, 4-pole Bessel Filters

Parameter	Analog System Accuracy	Digital Channel Precision	Maximum Final-Data Error
Q	122 N-m	158 N-m	.60 kN-m
т _ь	-	.40 ⁰ C	1.0 ⁰ C
β _s	.1 ⁰	.11 ⁰	.3 ⁰
θ _s	.1 ⁰	.23 ⁰	.8 ⁰
ψ	-	1.410	.3 ⁰

TABLE IV. CHARACTERISTICS OF SELECTED ROTOR-DATA PARAMETERS

-

TABLE V. - CHARACTERISTICS OF BLADE PRESSURE-DATA SYSTEM

Surface	Surface Orifice		a Maximum			Data reduction parameters ^C				
	Loc	ation	Precision kPa	Final- Data Error kPa	f3db	^{∆m} 1,a	^{∆m} 1,b	^{∆p} o,a	^{∆p} o,b	$\Delta \psi_{\mathbf{d}}$
	<u>x</u> c	y c			Hz	Pa counts-C	Pa counts-C	Pa/C	Pa/C	deg
Upper	.02	.0215	.408	2.04	130	.21	.21	75	22	-2.35
	.10	.0449	.392	1.73	112	.43	.49	90	26	-2.71
	.20	.0525	.330	1.43	80	.32	.34	106	140	-3.73
	.50	.0536	.339	1.48	173	19	21	52	46	-1.77
	.70	.0438	.367	1.20	164	01	.05	-27	-26	-1.87
	.80	.0319	.360	1.07	188	21	19	61	-42	-1.63
	.90	.0157	.288	1.11	178	.23	.25	103	112	-1.73
Lower	.02	0114	.488	1.79	132	.32	.36	67	19	-2.31
	.10	0212	.396	1.59	128	.22	.55	85	31	-2.38
	.20	0272	.303	1.63	182	.05	.60	78	91	-1.69
	.50	0309	.272	1.17	160	.19	.18	35	3	-1.92
	.70	0247	.280	1.13	159	.10	.10	11	-34	-1.93
	.90	0142	.320	1.19	188	.03	.08	20	-44	-1.63

Notes: a - increment per unit digital input

b - highly conservative value for absolute value of single data point

.

1

c - $\Delta p_t = (\Delta m_1 \Delta D + \Delta p_0)(T_b - 23.9)$

Flight condition	Level flight -reference	Hover	Left turn	Right turn	Pull-up
Flight no Run no.	65-15	61 - 26B	65-18	65-25	66-22
μ	0.243	0.0	0.241	0.241	0.245
V, knots	107.9	0.0	108.9	107.5	112.5
^M h	0.69	0.69	0.70	0.69	0.71
C _L '	0.0037	0.0034	0.0062	0.0051	0.0075
n _{z,} g units	0.99	1.00	1.70	1.40	2.05
α _f , degrees	-2.8		3.9	-0.7	8.6
ϕ_{f} , degrees	-0.4	-0.8	-48.0	44.9	-0.5
θ_{f} , degrees	-3.8	0.0	-5.4	-4.0	-2.5
P _f , rad/sec	0.00	0.00	-0.03	0.03	0.02
q _f , rad/sec	0.00	0.00	0.18	0.12	0.28
r _f ,rad/sec	0.00	-0.01	-0.14	0.13	0.00
P _f , rad/sec ²	0.00	-0.01	0.02	0.02	-0.09
• 9 _f , rad/sec ²	-0.01	-0.01	-0.03	0.03	-0.10
• r _f , rad/sec ²	0.00	0.02	-0.04	-0.03	-0.04
c _Q	0.00022	0.00022	0.0014	0.00017	0.00009
A _{Os} , degrees	8.5	8.1	7.9	8.1	7.1
A _{ls} , degrees	-0.1	-1.5	-0.3	-0.2	-0.2
^B ls, degrees	5.0	-0.2	2.5	3.0	2.1
a _{ls} , degrees	-1.4	0.1	0.1	-0.1	-0.2
b _{ls} , deyrees	0.1	-0.6	1.1	0.6	1.0
Ω, rad/sec	34.07	34.02	34.59	34.27	35.28
a, m/sec	331.7	329.9	331.7	331.8	329.9

Flight condition	Level flight - speed sweep							
Flight no Run no.	.63-1	63-6	63-9	63-10	63-11			
μ	0.151	0.257	0.330	0.356	0.370			
V, knots	67.5	114.2	146.4	158.3	164.5			
^M h	0.70	0.70	0.70	0.70	0.70			
CL'	0.0042	0.0043	0.0044	0.0042	0.0043			
n _z , g units	0.98	0.98	1.00	0.97	1.00			
^a f, degrees	0.4	-2.9	-4.7	-6.1	-6.5			
ϕ_{f} , degrees	0.0	-0.7	-0.4	-1.3	0.1			
θ _f , degrees	-1.5	-3.1	-6.1	-7.4	7.6			
P _f , rad/sec	0.00	0.00	0.00	-0.01	0.01			
9 _f rad/sec	0.00	0.00	0.01	0.00	0.00			
r _f ,rad/sec	0.00	0.00	0.00	0.00	0.00			
• Pf, rad/sec ²	0.01	0.00	0.04	-0.05	-0.11			
4 _f , rad/sec ²	0.00	-0.01	0.00	0.01	0.02			
, r _f , rad/sec ²	0.02	0.01	-0.02	0.02	0.01			
с _Q	0.00015	0.00024	0.00035	0.00042	0.00047			
A _{Os} , degrees	7.5	10.1	13.0	14.7	15.4			
A _{ls} , deyrees	-1.0	-0.3	-0.3	-1.1	-0.7			
B _{1s} , degrees	2.0	5.9	8.9	10.6	11.2			
^a ls, deyrees	0.0	-1.2	-1.8	-2.4	-2.4			
b _{ls} , degrees	0.4	0.0	-0.6	-1.4	-1.3			
Ω, rad/sec	34.20	34.03	34.08	34.08	34.07			
a, m/sec	326.4	326.4	326.4	326.6	326.4			

Figure 1.- Aircraft schematic and conventions used to define senses of axes, angles, and accelerations.

g

Figure 2.- Three-view scale drawing of aircraft. All dimensions are given in meters.

.

۲

.

Figure 3.- Flight test vehicle.

Figure 4.- Geometric characteristics of NLR-1T airfoil.

•

Figure 4.- Concluded.

119

4

.

Figure 5.- Comparison of design and measured blade-section coordinates of 0.9R.

,

۲

.

x

Figure 6.- Data canister and hub instrumentation.

Figure 7.- Exploded-view drawing of typical pressure-transducer installation.

Figure 8.- Typical components for pressure-transducer assembly with transducers removed.

(a) Typical mid-chord cover plate.

(b) Blade upper surface.

Figure 9.- Blade surface with pressure transducers installed.

Figure 10.- Lower surface of blade tip prior to installation of pressure data system.

(a) Read-out gauge and fixture interior surfaces.

(b) Fixture installed on model blade section.

Figure 11.- Blade-section pressure fixture for preflight calibration.

(a) $\mu = 0.151$

Figure 12.- Histories of uncorrected, local blade pressures and rotor azimuth for level flight (Flight 63 of Appendices D and E). r/R = 0.9

Figure 12.- Continued.

Figure 12.- Concluded.

Figure 13.- Comparison of blade section data for several rotor revolutions at one test point. $C_L' = 0.0043$; $\mu = 0.37$; r/R = 0.9.

Figure 14.- Histories of uncorrected, local blade pressures and rotor azimuth for a descending left turn. μ = 0.224; C_L' = 0.0086; r/R = 0.9.

Figure 15.- Histories of uncorrected, local blade pressures and rotor azimuth for a symmetrical pull-up (Flight 66, run 22 of Appendices D and E). μ = 0.24; C_L' = 0.0075; r/R = 0.9.

Figure 16.- Azimuthwise distribution of blade-section aerodynamic loads for three tip-speed ratios.

(a) $\mu = 0.15$

-

•.

 ψ , deg

(b) $\mu = 0.26$

Figure 17.- Continued.

(c) $\mu = 0.37$

Figure 17.- Concluded.

(a) Pressure distribution, $\psi = 70^{\circ}$

(c) Pressure as a function of azimuth

Figure 18.- Pressure-data characteristics for local supercritical flow. μ = 0.37; CL' = 0.0043; r/R = 0.9.

Figure 19.- Sample patterns of supersonic flow regions for blade section. μ = 0.37; CL = 0.0043; r/R = 0.9.

(a) Normal-force coefficient.

Figure 20.- Azimuthal distribution of blade-section aerodynamic characteristics at a series of tip-speed ratios (Flight 63 of Appendices D and E). \overline{C}_L ' = 0.0043; \overline{M}_h = 0.70; r/R = 0.9.

- c_n

(b) Pitching-moment coefficient

Figure 20.- Continued.

140

c_m

C_{p,u}

(d) Lower-surface pressure coefficient; x/c = 0.02.

Figure 20.- Concluded.

Figure 21.- Blade-section operating conditions at a series of tip-speed ratios. $\overline{C}_L' = 0.0043$; $\overline{M}_h = 0.70$; r/R = 0.9.

•

Figure 21.- Continued.

Figure 21.- Concluded.

•

-

Figure 22.- Envelope of blade-section aerodynamic operating conditions (Flight 63, Appendix E). \overline{C}_L ' = 0.0043; \overline{M}_h = 0.70; r/R = 0.9.

(a) Low-speed flight

•

.

Figure 23.- Comparison of blade-section operating conditions for two values of vehicle load coefficient. $M_h = 0.69$; r/R = 0.9.

(b) High-speed flight

Figure 23.- Concluded.

 ψ , deg

Figure 25.- Pressure coefficient records for one revolution in hover. $C_L' = 0.0039$; $M_h = 0.68$; $\Delta h/R \approx 1.9$; r/R = 0.9.

 ψ , deg

Figure 27.- Blade-section aerodynamics for one revolution at each of three hover test conditions.

-

Figure 28.- Blade-section pressure data for one rotor revolution in descending flight.

-

-

•

-

Figure 29.- Measured and representative blade-section operating conditions for level flight. $\mu\approx$ 0.24; r/R = 0.9.

Figure 30.- Azimuthwise distribution of normal-force and pitching-moment coefficients for level flight. μ = 0.24; r/R = 0.9.

 ψ , deg

•

-

Figure 31.- Effect of rotor load on azimuthwise distribution of bladesection normal-force coefficient for descending left turn. $\overline{\mu} = 0.242; \ \overline{M}_h = 0.70; \ r/R = 0.9.$

Figure 32.- Comparison of azimuthwise distributions of blade-section aerodynamic characteristics for descending left turns and level flight. μ = 0.242; M_h = 0.70; r/R = 0.9.

Figure 33.- Comparison of blade-section operating conditions for left turn and reference level-flight condition. μ = 0.24; M_h = 0.7; r/R = 0.9.

Figure 34.- Comparison of azimuthwise distributions of blade-section aerodynamic characteristics for descending right turns and level flight. μ = 0.24; r/R = 0.9.

Figure 35.- Effect of rotor load on azimuthwise distribution of blade-section normal-force coefficient for symmetrical pull-ups. $\overline{\mu} = 0.242; \ \overline{M}_h = 0.70; \ r/R = 0.9.$

•

٠

Figure 36.- Comparison of azimuthwise distributions of blade-section aerodynamic characteristics for symmetrical pull-ups and level flight. μ = 0.245; M_h = 0.70; r/R = 0.9.

Figure 37.- Azimuthwise distributions of local pressure coefficient for two symmetrical pull-ups and level flight. $\overline{\mu}$ = 0.245; \overline{M}_{h} = 0.70; r/R = 0.9.

Figure 38.- Comparison of blade-section operating conditions for a symmetrical pull-up, a descending left turn, and level flight. $\overline{\mu}$ = 0.24; \overline{M}_{h} = 0.70; r/R = 0.9.

Figure 39.- Comparison of blade-section operating conditions for two rotor revolutions in the same pull-up maneuver and in level flight. r/R = 0.9.

Figure 40.- Comparison of blade-section pressure data for level flight and two maneuvers. μ = 0.22; r/R = 0.9.

Figure 42.- Comparison of pitching-moment coefficient variation with Mach number for flight, wind-tunnel, and theoretical results for the same set of normal-force and Mach number values. r/R = 0.9.

Figure 43.- Comparison of flight data, wind-tunnel data, and theoretical pressure distributions (ref. 35). (Flight 63, run 11 of Appendices D and E.)

(b) M \approx 0.89; C_n \approx 0.1

Figure 43.- Continued.

Figure 43.- Concluded.

Ср

Figure 44.- Comparison of blade-section pressure distributions from theory and flight tests (Flight 63, run 11 of Appendices D and E); r/R = 0.9.

.

;

.

Figure 44.- Continued.

٠

.

Figure 44.- Continued.

Figure 44.- Continued.

Figure 44.- Continued.

•

٠

176

.

4

Figure 44.- Concluded.

177

i

Figure 45.- Comparison of flight data and theoretical blade-section pressure distribution for $\psi = 70^{\circ}$; r/R = 0.9.

Figure 46.- Comparison of flight data and theoretical blade-section pressure distributions for several sets of airfoil coordinates. Flight 63, run 11 of Appendices D and E; $\psi = 70^{\circ}$, M = 0.88; c_n = 0.19; r/R = 0.9.

yaw angle, deg

Figure 47.- Comparison of flight data and blade-section pressure distribution computed with and without Mach number and airfoil coordinate adjustment for yawed flow (ref. 35). $\psi = 70^\circ$; $\mu = 0.37$; r/R = 0.9.

Cp

Figure 48.- Comparison of flight data and theoretical pressure distribution for ψ = 140°; r/R = 0.9.

Figure 49.- Comparison of flight data and theoretical blade-section pressure distributions for several sets of airfoil coordinates. Flight 63, run 11 of Appendices D and E; $\psi = 140^{\circ}$; M = 0.80; c_n = -0.09; r/R = 0.9.

.

٠

Figure 50.- Parameters for determination of stagnation-point locus as a function of effective angle of attack for the NLR-IT airfoil.

(a) $\psi = 90^{\circ}$; M = 0.89

Figure 51.- Results of curve-fit methods for flight pressure data. (Flight 63, run 11 of Appendices D and E.)

.

(b)
$$\psi = 130^{\circ}$$
; M = 0.83

Figure 51.- Continued.

(c) $\psi 180^{\circ}$; M = 0.63

Figure 51.- Continued.

٠

٠

....

-

Figure 51.- Concluded.

Figure 52.- Amplitude correction factors for electronics lag. Cutoff frequency, 80 H_z; gain factor, 2.0; 1000 sample/sec rate.

¥

Figure 53.- Comparison of measured, corrected, and approximated pressure for a highly active pressure transducer.

ŧ

Figure 53.- Concluded.

•

Z

Figure 54.- Real and approximated dynamic-response characteristics for several pressure-transducer systems.

с_п

Figure 55.- Predicted blade-section boundary-layer transition for NLR-1T blades.

1. Report Ne. NASA TM-80166 2. Government Accession No. AVRADCOM Technical Report 80-8-2			3. Recipient's Catalog No.		
4. Title and Subtitle			5. Report Date		
A FLIGHT INVESTIGATION OF BLADE-SECTION AE FOR A HELICOPTER MAIN ROTOR HAVING NLR-1T SECTIONS			ICS 6. Per	forming Organization Code	
7. Author(s) Charles E. K. Morris, Jr., Dariene D. Stevens ar			8. Per	8. Performing Organization Report No.	
Robert L. Tomaine			10. Wo	rk Unit No.	
9. Performing Organization Name and Address NASA Langley Research Center and Structures Laboratory AVRADCOM Research and Technology Laboratories Hampton, VA 23665			atory 11. Co	ntract or Grant No.	
12. Scionsoring Agency Natile and Address			13, 1y		
National Aeronautics and Space Administration Washington, DC 20546			14. Arc	echnical Memorandum ny Project No.	
U.S. Army Aviation Research and Development Command St. Louis, MO 63166			nd TL26	2209A76	
15. Supplementary Notes					
a. Charles E. K. Morris, Robert L. Tomaine: S L	Jr. and Dariene D. S tructures Laboratory aboratories	Stevens , AVRAE	: Langley Re COM Research	search Center and Technology	
 b. Major contributors to M. T. Baxter, P. L. D FLTMD and Messrs. J. FED. 	this research at La eal, J. A. Fernandez F. Bryant, J. O. Rig	RC, NAS , P. R. gins, F	A, were Mess Pfeffer, an . S. Vassey,	rs. M. A. Basnett, d L. B. McHenry of and W. A. Walls of	
16. ABSTRACT			•••••••••		
A flight investigation ha data on the aerodynamic b The data system recorded as well as vehicle flight hover, forward flight, an	s been conducted usin ehavior of main-roto blade-section aerodyn state, performance, d collective-fixed ma	ng a te r blade namic p and lo aneuver	etering-roto s with the N ressures at ads. The te s.	r helicopter to obtain LR-1T blade section. 90-percent rotor radius st envelope included	
Data were obtained on app advancing blade in high-s good agreement was achieve airfoil theory and flight actions.	arent blade-vortex in peed flight and wake ed between chordwise data with no apparen	nteract intera pressu nt indi	ions, negati ctions in ho re distribut cations of b	ve lift on the ver. In many cases, ions predicted by lade-vortex inter-	
This report presents deta data may be used for evalu	iled data for an adva uating performance ar	nced a nd airf	irfoil on an oil analyses	AH-1G helicopter; the	
17. Key Words (Suggested by Author(s)) Airfoil	18	Distributi	on Statement		
Helicopter Teetering rotor		Unclassified - Unlimited			
				STAR CATEGORY 02	
19. Security Classif, (of this report)	20. Security Classif, (of this pag	e)	21, No. of Pages	22. Price*	
Unclassified	Unclassified		192	\$9.00	

* For sale by the National Technical Information Service, Springfield, Virginia 22161

· . · · · •

• . · , .