30,799 research outputs found
A large accretion disk of extreme eccentricity in the TDE ASASSN-14li
In the canonical model for tidal disruption events (TDEs), the stellar debris
circularizes quickly to form an accretion disk of size about twice the orbital
pericenter of the star. Most TDEs and candidates discovered in the optical/UV
have broad optical emission lines with complex and diverse profiles of puzzling
origin. Liu et al. recently developed a relativistic elliptical disk model of
constant eccentricity in radius for the broad optical emission lines of TDEs
and well reproduced the double-peaked line profiles of the TDE candidate
PTF09djl with a large and extremely eccentric accretion disk. In this paper, we
show that the optical emission lines of the TDE ASASSN-14li with radically
different profiles are well modelled with the relativistic elliptical disk
model, too. The accretion disk of ASASSN-14li has an eccentricity 0.97 and
semimajor axis of 847 times the Schwarzschild radius (r_S) of the black hole
(BH). It forms as the consequence of tidal disruption of a star passing by a
massive BH with orbital pericenter 25r_S. The optical emission lines of
ASASSN-14li are powered by an extended X-ray source of flat radial distribution
overlapping the bulk of the accretion disk and the single-peaked asymmetric
line profiles are mainly due to the orbital motion of the emitting matter
within the disk plane of inclination about 26\degr and of pericenter
orientation closely toward the observer. Our results suggest that modelling the
complex line profiles is powerful in probing the structures of accretion disks
and coronal X-ray sources in TDEs.Comment: 10 pages, 8 figures, accepted for publication in the MNRA
A survey of the treatment and management of patients with severe chronic spontaneous urticaria.
Chronic spontaneous urticaria (CSU) is characterized by the recurrent appearance of weals, angioâoedema or both, occurring at least twice weekly for longer than 6 weeks.1 It is often managed with antihistamines, but occasionally requires other systemic agents in recalcitrant cases.
A crossâsectional survey was conducted by means of an internetâbased survey tool (Typeform; https://www.typeform.com). Participating consultants with a specialist interest in urticaria were identified through the specialist registers of the British Society of Allergy and Clinical Immunology (BSACI), the Improving Quality in Allergy Services (IQAS) Group and the British Association of Dermatologists (BAD), and invited to take part.
The survey content was based on current CSU treatment guidelines from EAACI/GA2LEN/EDF/WAO1 and the British Society for Allergy and Clinical Immunology (BSACI).2 The EAACI/GA2LEN/EDF/WAO guidelines are a joint initiative of the Dermatology Section of the European Academy of Allergy and Clinical Immunology (EAACI), the Global Allergy and Asthma European Network (GA2LEN) (a European Unionâfunded network of excellence), the European Dermatology Forum (EDF), and the World Allergy Organization (WAO). To standardize responses, all participants were presented with a case of recalcitrant CSU (failed on maximum dose of nonsedating antihistamines and montelukast), requiring alternative systemic treatment. Questions covered usage of systemic treatments, routine disease severity assessments, adherence to treatment guidelines and perceived barriers to prescribing.
Responses (Table 1) were received from 19 UK consultants (26 surveys sent; completion rate 73%), 15 of whom had > 10 yearsâ experience in the treatment of CSU. The majority were allergy (58%) and dermatology consultants (37%). Of the 19 consultants, 56% provide a dedicated urticaria service, 37% treat both adult and paediatric patients, and the majority (79%) use systemic medications other than antihistamines and montelukast. Omalizumab and ciclosporin were the most commonly used firstâline agents (47% and 27% respectively) (Fig. 1). The majority (84%) of consultants use validated measures to assess disease severity, including the weekly Urticaria Activity Score (UASâ7, 63%), the Physician Global Assessment (63%), the Patient Global Assessment (44%) and the Dermatology Quality of Life Index (DLQI) (38%). Guidelines are used by 89% to direct their management of CSU, with 50% using the EAACI/GA2LEN/EDF/WAO guideline,1 compared with 31% primarily using the BSACI guideline.2 The main perceived barriers to prescribing systemic medications were potential adverse effects (AEs) (32% strongly agreed), potential longâterm toxicity (26% strongly agreed), cost of treatment (42% strongly agreed), and views expressed by the patient and their family (37% agreed)
The Mid-infrared Fine-structure Lines of Neon as an Indicator of Star For mation Rate in Galaxies
The fine-structure lines of singly ([Ne II] 12.8 micron) and doubly ([Ne III]
15.6 micron) ionized neon are among the most prominent features in the
mid-infrared spectra of star-forming regions, and have the potential to be a
powerful new indicator of the star formation rate in galaxies. Using a sample
of star-forming galaxies with measurements of the fine-structure lines
available from the literature, we show that the sum of the [Ne II] and [Ne III]
luminosities obeys a tight, linear correlation with the total infrared
luminosity, over 5 orders of magnitude in luminosity. We discuss the formation
of the lines and their relation with the Lyman continuum luminosity. A simple
calibration between star formation rate and the [Ne II]+[Ne III] luminosity is
presented.Comment: To appear in ApJ. 8 page
Two-component Bose-Einstein Condensates with Large Number of Vortices
We consider the condensate wavefunction of a rapidly rotating two-component
Bose gas with an equal number of particles in each component. If the
interactions between like and unlike species are very similar (as occurs for
two hyperfine states of Rb or Na) we find that the two components
contain identical rectangular vortex lattices, where the unit cell has an
aspect ratio of , and one lattice is displaced to the center of the
unit cell of the other. Our results are based on an exact evaluation of the
vortex lattice energy in the large angular momentum (or quantum Hall) regime.Comment: 4 pages, 2 figures, RevTe
A supermassive binary black hole with triple disks
Hierarchical structure formation inevitably leads to the formation of
supermassive binary black holes (BBHs) with a sub-parsec separation in galactic
nuclei. However, to date there has been no unambiguous detection of such
systems. In an effort to search for potential observational signatures of
supermassive BBHs, we performed high-resolution smoothed particle hydrodynamics
(SPH) simulations of two black holes in a binary of moderate eccentricity
surrounded by a circumbinary disk. Building on our previous work, which has
shown that gas can periodically transfer from the circumbinary disk to the
black holes when the binary is on an eccentric orbit, the current set of
simulations focuses on the formation of the individual accretion disks, their
evolution and mutual interaction, and the predicted radiative signature. The
variation in mass transfer with orbital phase from the circumbinary disk
induces periodic variations in the light curve of the two accretion disks at
ultraviolet wavelengths, but not in the optical or near-infrared. Searches for
this signal offer a promising method to detect supermassive BBHs.Comment: Accepted for publication in the Astrophysical Journal, 16 pages, 11
figures. High Resolution Version is Available at
http://www2.yukawa.kyoto-u.ac.jp/~kimitake/bbhs.htm
Adaptive Genetic Algorithm for Crystal Structure Prediction
We present a genetic algorithm (GA) for structural search that combines the
speed of structure exploration by classical potentials with the accuracy of
density functional theory (DFT) calculations in an adaptive and iterative way.
This strategy increases the efficiency of the DFT-based GA by several orders of
magnitude. This gain allows considerable increase in size and complexity of
systems that can be studied by first principles. The method's performance is
illustrated by successful structure identifications of complex binary and
ternary inter-metallic compounds with 36 and 54 atoms per cell, respectively.
The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to
56 atoms is also reported. Such phase is likely to be an essential component of
terrestrial exoplanetary mantles.Comment: 14 pages, 4 figure
Phase decorrelation, streamwise vortices and acoustic radiation in mixing layers
Several direct numerical simulations were performed and analyzed to study various aspects of the early development of mixing layers. Included are the phase jitter of the large-scale eddies, which was studied using a 2-D spatially-evolving mixing layer simulation; the response of a time developing mixing layer to various spanwise disturbances; and the sound radiation from a 2-D compressible time developing mixing layer
Non-Sequential Double Ionization is a Completely Classical Photoelectric Effect
We introduce a unified and simplified theory of atomic double ionization. Our
results show that at high laser intensities ( watts/cm)
purely classical correlation is strong enough to account for all of the main
features observed in experiments to date
- âŠ