188 research outputs found

    Response of preservative chemicals on the shelf life of cut lilium (Lilium spp.) flower cv. ‘Pavia’

    Get PDF
    Lilium cut flowers have commercial importance and extending their vase life is vital. An increase in the vase life quality and quantity can directly increase the viability and price realization of commercially important flowers like lilium. Shelf life of cut lilium flower is influenced by using different preservative chemicals and sucrose added in vase solution. Such an extension of vase life can be achieved via chemical treatment. The trial was carried out to examine the effect of various concentration of two chemicals, AgNO3 (silver nitrate) and 8-HQC (8-Hydroxyquinoline citrate) along with sucrose on the shelf life of lilium cut flower cv. ‘Pavia’ (cross between Asiatic and Longiflorum lilies). In the experiment, sucrose (20%), 8-HQC at 3 concentrations (100, 150, 200 ppm) and AgNO3 at 3 concentrations (50, 75, 100 ppm) and water (distilled) as control were tested alone and with combinations. Cut flowers of lilium were treated at one bud opening stage. The trial was carried out in a completely randomized design (CRD) having 16 treatments and one control in three (3) replications. The fresh weight and relative fresh weight of the cut flower spike, opening of all flowers on a spike, vase solution uptake on a day, total vase solution uptake and vase life of lilium cut flower spike showed the best outcome with AgNO3 (50 ppm) and 20% sucrose treatment combination. Out of the two chemicals, silver nitrate showed better results than 8-HQC as a preservative in enhancing the shelf life of cut Lilium flower cv. ‘Pavia’. Analysis of this new and exciting method will be useful to research institutes, commercial producers, wholesalers, retailers, consumers or anyone to choose right chemical and concentration of holding solution to maximize the post-harvest life of lilium cut flowers

    Role of trans-Planckian modes in cosmology

    Get PDF
    Motivated by the old trans-Planckian (TP) problem of inflationary cosmology, it has been conjectured that any consistent effective field theory should keep TP modes `hidden' behind the Hubble horizon, so as to prevent them from turning classical and thereby affecting macroscopic observations. In this paper we present two arguments against the Hubble horizon being a scale of singular significance as has been put forward in the TP Censorship Conjecture (TCC). First, refinements of TCC are presented that allow for the TP modes to grow beyond the horizon while still keeping the de-Sitter conjecture valid. Second, we show that TP modes can turn classical even well within the Hubble horizon, which, as such, negates this rationale behind keeping them from crossing it. The role of TP modes is known to be less of a problem in warm inflation, because fluctuations start out usually as classical. This allows warm inflation to be more resilient to the TP problem compared to cold inflation. To understand how robust this is, we identity limits where quantum modes can affect the primordial power spectrum in one specific case.Comment: 33 pages, comments welcome; v2: References updated, matches published versio

    Scaffold of Selenium Nanovectors and Honey Phytochemicals for Inhibition of Pseudomonas aeruginosa Quorum Sensing and Biofilm Formation

    Get PDF
    Honey is an excellent source of polyphenolic compounds that are effective in attenuating quorum sensing (QS), a chemical process of cell-to-cell communication system used by the opportunistic pathogen Pseudomonas aeruginosa to regulate virulence and biofilm formation. However, lower water solubility and inadequate bioavailability remains major concerns of these therapeutic polyphenols. Its therapeutic index can be improved by using nano-carrier systems to target QS signaling potently. In the present study, we fabricated a unique drug delivery system comprising selenium nanoparticles (SeNPs; non-viral vectors) and polyphenols of honey (HP) for enhancement of anti-QS activity of HP against P. aeruginosa PAO1. The developed selenium nano-scaffold showed superior anti-QS activity, anti-biofilm efficacy, and anti-virulence potential in both in-vitro and in-vivo over its individual components, SeNPs and HP. LasR is inhibited by selenium nano-scaffold in-vitro. Using computational molecular docking studies, we have also demonstrated that the anti-virulence activity of selenium nano-scaffold is reliant on molecular binding that occurs between HP and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Our preliminary investigations with selenium-based nano-carriers hold significant promise to improve anti-virulence effectiveness of phytochemicals by enhancing effective intracellular delivery

    Fermentation, Isolation, Structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667

    Get PDF
    Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 μM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound

    Measurement of the νe -Nucleus Charged-Current Double-Differential Cross Section at «eν »=2.4 GeV Using NOvA

    Get PDF
    The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector using 8.02×1020 protons-on-target in the NuMI beam. The sample of GeV electron neutrino interactions is the largest analyzed to date and is limited by ≃17% systematic rather than the ≃7.4% statistical uncertainties. The double-differential cross section in final-state electron energy and angle is presented for the first time, together with the single-differential dependence on Q2 (squared four-momentum transfer) and energy, in the range 1 GeV≤Eν<6 GeV. Detailed comparisons are made to the predictions of the GENIE, GiBUU, NEUT, and NuWro neutrino event generators. The data do not strongly favor a model over the others consistently across all three cross sections measured, though some models have especially good or poor agreement in the single differential cross section vs Q2

    Measurement of the νe\nu_e-Nucleus Charged-Current Double-Differential Cross Section at <Eν>=\left< E_{\nu} \right> = 2.4 GeV using NOvA

    Full text link
    The inclusive electron neutrino charged-current cross section is measured in the NOvA near detector using 8.02×10208.02\times10^{20} protons-on-target (POT) in the NuMI beam. The sample of GeV electron neutrino interactions is the largest analyzed to date and is limited by \simeq 17\% systematic rather than the \simeq 7.4\% statistical uncertainties. The double-differential cross section in final-state electron energy and angle is presented for the first time, together with the single-differential dependence on Q2Q^{2} (squared four-momentum transfer) and energy, in the range 1 GeV Eν< \leq E_{\nu} < 6 GeV. Detailed comparisons are made to the predictions of the GENIE, GiBUU, NEUT, and NuWro neutrino event generators. The data do not strongly favor a model over the others consistently across all three cross sections measured, though some models have especially good or poor agreement in the single differential cross section vs. Q2Q^{2}

    Extrinsic Fluorescent Dyes as Tools for Protein Characterization

    Get PDF
    Noncovalent, extrinsic fluorescent dyes are applied in various fields of protein analysis, e.g. to characterize folding intermediates, measure surface hydrophobicity, and detect aggregation or fibrillation. The main underlying mechanisms, which explain the fluorescence properties of many extrinsic dyes, are solvent relaxation processes and (twisted) intramolecular charge transfer reactions, which are affected by the environment and by interactions of the dyes with proteins. In recent time, the use of extrinsic fluorescent dyes such as ANS, Bis-ANS, Nile Red, Thioflavin T and others has increased, because of their versatility, sensitivity and suitability for high-throughput screening. The intention of this review is to give an overview of available extrinsic dyes, explain their spectral properties, and show illustrative examples of their various applications in protein characterization
    corecore